Langton's Ant Langton's ant (also virtual ant or vant) is a simple [1]zero player [2]game and [3]cellular automaton simulating the behavior of an ant that behaves according to extremely simple rules but nevertheless builds a very complex structure. It is similar to [4]game of life. Langton's ant is [5]Turing complete (it can be used to perform any computation that any other computer can). Rules: in the basic version the ant is placed in a square grid where each square can be either white or black. Initially all squares are white. The ant can face north, west, south or east and operates in steps. In each step it does the following: if the square the ant is on is white (black), it turns the square to black (white), turns 90 degrees to the right (left) and moves one square forward. These simple rules produce a quite complex structure, seen below. The interesting thing is that initially the ant behaves [6]chaotically but after about 10000 steps it suddenly ends up behaving in an ordered manner by building a "highway" that's a non-chaotic, repeating pattern. From then on it continues building the highway until the end of time. ........................................................................... .............................................................##............ ............................................................##......##..... ...........................................................#.##.#..#..#.... ...........................................................#..#.###..###... .....##.....................................................#.##..####.#... ....##........................................................##........... ...#.##.#.....................................................##.##.##..... ...#..#.##................................................#.##.#..####..... ....#.A.#.#................................##....##....##.###.##.#####..... ....#...#.##..............................##..####....##..#.##.#.#..#...... ...###..#.#.#............................#.##..####....####.###.####....... ...#####.#..##......................##...#.......##..##....#...#.###....... ....#..###..#.#....................#..#..#......#..##..##...##.####........ .....###...#..##..................#..#...#.......##.##...#..#..##.#........ ......#..###..#.#.................#..#....#.########.#.#.##..####.#........ .......###...#..##..........##..##.#.#.#....##.##.#.#.##..#..##..##........ ........#..###..#.#........#####.#..##...##.#...#....#.#..#..#..#.#........ .........###...#..##......#.##...##...#..#...####..#...##.####.##.......... ..........#..###..#.#.....#....#...####.#..#####.##...##########...##...... ...........###...#..##....#.....#.##.#####.##..#.#...#..#..##.#..#..#...... ............#..###..#.#...#.....#####.#.#####.....#.#..##.#....##...#...... .............###...#..##...#..#.######.##.#.##.#.#....###.###...##...#..... ..............#..###..#.#...##..#.##...##.##.###.###...#..#.##..####.#..... ...............###...#..##......#.####..##..#########..#..##....#..##...... ................#..###..#.#..#...##..###########.#..####..#....#....#...... .................###...#..##.###..##.#...##.......####.####...#......#..... ..................#..###..#.#.#..#.###.#.#.##......##...#.#.#....#...#..... ...................###...#.....#.##.#.##..##..#####.####..####.##...#...... ....................#..###..#.##....#..#.###..#......###.##.#..#..##....... .....................###...#...#.#..#.#.####.##..#.##.###..#.....#......... ......................#..###..##...##.##...###..#....#..##.####...#........ .......................###...#.#.##.###..#..##.....#...###.##..##.#........ ........................#..#.........##.##...#..##.....##.#.....##......... ...........................#.#...#.##.###...#...#.#..####....#.##.......... .......................#.###.#.##.#.#.##.##.##.#...#####.###.##............ .......................###.##...#.####..##.##.######.#.###.#...#........... ........................#.....#...#####.#.#..####..#...###.#.#.#........... ..........................#.###.##..#.##..###.#.#.....###...###............ ..........................#.#..###..##.####.##...#.#..#.##..##............. .........................###.#..#...#.....#.....##.##..###................. ............................##..##.#.#.........###.......#................. ................................#.#..#.........#..#....#................... ................................###...##............##.#................... .................................#..####..........#..##.................... ..................................##..############..##..................... ........................................................................... Langton's ant after 11100 steps, A signifies the ant's position, note the chaotic region from which the highway emerges left and up. The Langton's ant game can be extended/modified, e.g. in following ways: * multiple colors: Squares can have more colors than just black/white that are cycled by the ant. Here we also need to specify which way the ant turns for each color it steps on, for example for 4 colors we may specify the rules as LRLL (turn left on 1st color, right on 2nd color etc.). * multiple ants: called colonies * different grid: e.g. hexagonal or 3D * multiple ant states: Besides having a direction the ant can have a more complex state. Such ants are called [7]turmites (Turing termite). The ant was invented/discovered by [8]Christopher Langton in his 1986 paper called Studying Artificial Life With Cellular Automata where he calls the ants vants (virtual ants). Implementation The following is a simple [9]C implementation of Langton's ant including the extension to multiple colors (modify COLORS and RULES). #include <stdio.h> #include <unistd.h> #define FIELD_SIZE 48 #define STEPS 5000 #define COLORS 2 // number of colors #define RULES 0x01 // bit map of the rules, this one is RL unsigned char field[FIELD_SIZE * FIELD_SIZE]; struct { int x; int y; char direction; // 0: up, 1: right, 2: down, 3: left } ant; int wrap(int x, int max) { return (x < 0) ? (max - 1) : ((x >= max) ? 0 : x); } int main(void) { ant.x = FIELD_SIZE / 2; ant.y = FIELD_SIZE / 2; ant.direction = 0; for (unsigned int step = 0; step < STEPS; ++step) { unsigned int fieldIndex = ant.y * FIELD_SIZE + ant.x; unsigned char color = field[fieldIndex]; ant.direction = wrap(ant.direction + (((RULES >> color) & 0x01) ? 1 : -1),4); field[fieldIndex] = (color + 1) % COLORS; // change color // move forward: switch (ant.direction) { case 0: ant.y++; break; // up case 1: ant.x++; break; // right case 2: ant.y--; break; // down case 3: ant.x--; break; // left default: break; } ant.x = wrap(ant.x,FIELD_SIZE); ant.y = wrap(ant.y,FIELD_SIZE); // draw: for (int i = 0; i < 10; ++i) putchar('\n'); for (int y = 0; y < FIELD_SIZE; ++y) { for (int x = 0; x < FIELD_SIZE; ++x) if (x == ant.x && y == ant.y) putchar('A'); else { unsigned char val = field[y * FIELD_SIZE + x]; putchar(val ? ('A' + val - 1) : '.'); } putchar('\n'); } usleep(10000); } return 0; } See Also * [10]Resnick's termite * [11]game of life * [12]turmite * [13]rule 110 * [14]cellular automaton * [15]turtle graphics Links: 1. zero_player.md 2. game.md 3. cellular_automaton.md 4. game_of_life.md 5. turing_complete.md 6. chaos.md 7. turmite.md 8. langton.md 9. c.md 10. resnicks_termite.md 11. game_of_life.md 12. turmite.md 13. rule_110.md 14. cellular_automaton.md 15. turtle_graphics.md