
the NOVICE.4TH and LIST.4TH code

http://www.forth.org/novice.html

Hugh Aguilar

September 7, 2010

Abstract

I will describe some of the main features of the novice.4th and list.4th

programs, which are written in ANS-Forth. Forth has traditionally o�ered

a Catch-22 � you can't write applications until you have basic tools

available, but you can't implement these tools until you have acquired

some experience writing applications. My library is intended to allow the

novice to acquire this experience using by my code and not necessarily

understanding how it works. The novice package is like sausage � you

don't need to know how it is made to eat it. The reader of this article

however, is assumed to be a fairly advanced Forth programmer who is

deciding if he should recommend my novice package to novices or not.

1 novice.4th

There are a lot of useful functions and tools in the novice.4th �le. For boosting
speed, we have MACRO:, which is like colon except that it compiles inline. Also,
there is {, which is used for de�ning local variables in colon words. This �xes the
problem of LOCALS| de�ning its locals backwards. I think my { is compatible
with the John Hopkins format, although I've never seen the John Hopkins code
so I can't be sure. There are many other tools that are useful for application
writing, but which won't be covered in this document.

1.1 :NAME and friends

By far, the most important function in the novice.4th �le is this:

: :name (str wid --) \ like colon except takes its name as a parameter

I tried to talk the Forth-200x committee into making :NAME standard, but
they refused (they pretty much categorically refuse every suggestion made by
an outsider). To a large extent, my original motivation for writing the novice
package was to popularize :NAME so that it would eventually attain critical
mass and get accepted into the standard. The Forth-200x committee's primary

1

(sole) concern is supporting legacy code, so they are a lot more interested in
the popularity of a feature rather than its technical merits. This is also why
ANS-Forth contains features that are incompatible with each other (>R etc., and
local variables) � both features were popular, and the fact that the features
don't work in conjunction was not an issue. This is also why there is so little
innovation � a feature can't become popular unless it can �rst be written in
standard Forth so everybody can use it, but if it can be written in standard
Forth then there is no point in adding it to the standard � it is a Catch-22!

In addition to :NAME, I also have some similar de�ners trivially derived from
:NAME:

: :2name (prefix-str suffix-str wid --) \ used for suffixing or prefixing names

: :3name (prefix-str mid-str suffix-str wid --)

: :name! (str wid --) \ like :NAME but with a ! suffix

: :name@ (str wid --) \ like :NAME but with a @ suffix

1.2 DEFER and VECTOR

:NAME e�ectively obsoletes CREATE DOES> for writing de�ning words. The code
generated by :NAME is always faster executing than the code generated by
CREATE DOES>. Let us look at a simple example of both a CREATE DOES> func-
tion (DEFER) and a :NAME function (VECTOR), found in the novice.4th �le:

: xxx
true abort" *** uninitialized vector ***" ;

: defer (--) \ stream: name
create ['] xxx ,
does>

@ execute ;

: is (xt --) \ stream: name
state @ if

postpone [']
postpone >body
!,

else
' >body ! then ;

immediate

: <vector> { name | xt -- }
here ['] xxx , to xt
c" is-" name get-current :2name \ runtime: xt --

xt lit, !, ;,
name get-current :name \ runtime: -- \runtime runtime: i*x -- j*x

state@, if, xt lit, postpone lit, postpone @, postpone execute,
else, xt lit, @, execute, then, ;,
immediate

;

: vector (--)
bl word hstr dup >r <vector> r> dealloc ;

DEFER and IS should be familiar to every Forth programmer; these are used
primarily for mutual-recursion, but also for any function whose de�nition may
need to be changed at some later date without recompiling the original source-
code. DEFER de�nes the �deferred� (a.k.a. �vectored�) word. IS is then used
to associate an xt (�execution token�) of a word to that deferred word. My

2

de�nition of DEFER and IS is pretty typical. The reader will note that my
IS is state-smart, which is considered to be a Bad Thing in Forth. In this case
however, state-smartness is not a big deal because the possibility that somebody
would tick IS is beyond unlikely.

The only new thing (in IS) is this function:

: !, (--) \ runtime: val adr --
postpone ! ;

I have a lot of functions like !, in the novice.4th �le; they help to make
colon-word generators much more readable � you don't have so many explicit
POSTPONE invocations in your functions, which can become rather tedious.

DEFER is a CREATE DOES> de�ner (rather primitive) � let us now consider
<VECTOR> that is a :NAME de�ner (more advanced). This de�ner generates two
colon words. If the name given to <VECTOR> is XXX, the two colon words will
be IS-XXX and XXX. The IS-XXX function is just a typical colon word; it has
the xt compiled within it as a literal, and it stores this value into a dictionary
variable. The XXX function is more complicated. It is an immediate colon word;
it generates code that will fetch the xt value and execute it.

I generally always write a low-level de�ner with pointy brackets that takes
the name as a cstring on the stack (such as <VECTOR> above). And I also have
a high-leve de�ner without any brackets that pulls the name out of the input
stream (such as VECTOR above). Note that HSTR converts a cstring into a new
cstring stored in the heap. DEALLOC is like FREE but with more error-checking.

A pretty good argument can be made that it is a mistake for me to make
my vectored word a state-smart immediate function, because some luckless soul
will tick it and the result will be chaos. Maybe so! This has never happened to
me, but it is possible and (by some accounts) likely. I just made my vectored
words state-smart immediate functions for the sake of e�ciency. Almost all of
the applications that I write are heavily recursive. The four example programs
that I provide (symtab.4th, LC53.4th, LowDraw.4th and slide-rule.4th) are
all recursive at their crux. For me, e�ciency in mutual-recursion is pretty im-
portant. If you are worried about the deferred word being state-smart however,
it is easy to modify <VECTOR> to generate a typical colon word rather than an
immediate word at some cost in speed (because it will be a function rather than
inline-code) � this simpli�cation will be left as an exercise for the reader.

1.3 down with CREATE DOES> de�ners!

There are three reasons why I don't like CREATE DOES> de�ners:

• CREATE DOES> de�ners are inherently ine�cient. The compiler can't know
if the data comma'd in after the CREATE is mutable or not, so it has to
assume the worst-case scenario that the data is mutable (by an external
function such as IS). The compiler can't compile the datum as a literal
in the DOES> code, but rather it must compile a fetch of the data in
the DOES> code. By comparison, I always know if my data is going to

3

be immutable (it usually is) or mutable (such as the example abovee).
If it is immutable, I can compile a literal, which is much faster than a
fetch from memory. Because of this, :NAME de�ners always generate more
e�cient code than CREATE DOES> de�ners � this is not a compiler issue,
but is true of all ANS-Forth compilers. Some compilers (VFX) allow the
programmer to specify with declarations that CREATE data is immutable,
but these declarations are not ANS-Forth compliant � by comparison, my
:NAME is ANS-Forth compliant, although it is much di�erent than what
most Forth programmers consider to be a �typical� de�ner.

• CREATE DOES> de�ners only allow for one action to be associated with
the de�ned word. In DEFER above, this is the execution of the xt. Other
actions must be written as external words using >BODY internally. In DEFER

above, this is the IS �function� (not really a function in the theoretical
sense, because it modi�es global data). The VECTOR de�ner is a pretty
simple example, as it has only two actions. The array de�ners (1ARRAY
etc., and ARY) and the WBUF de�ner in novice.4th are better examples of
how multiple actions can be associated with a data type.

• CREATE DOES> de�ners can be hard to read when the programmer manu-
ally accesses the data comma'd in after the CREATE (as done in �Starting
Forth�). A common solution to this problem is to de�ne a record exter-
nally to the CREATE DOES> de�ner. In the DOES> code, the base-adr is
pushed onto the return stack and R@ is then used throughout, followed by
the �eld name, to access each �eld. This is pretty readable, but it also
makes for bulky and ine�cient code. My :NAME de�ners generate a lot
more e�cient code, and they are yet quite readable because the �elds are
given names (local variables) in the de�ner. In VECTOR, the xt local is
such a �eld. Better examples of this readability are the array de�ners and
WBUF, which have a lot more �elds.

All of that meta-programming (with POSTPONE) can sometimes become com-
plicated. A good technique for writing de�ning words is to �rst write the code
as a single static instance. After the code is debugged, it can be rewritten as
a de�ning word. For example, in novice.4th I have a de�ner called WBUF that
de�nes ring-bu�ers. I also have a �le wbuf.4th that contains a single static
ring-bu�er. This was a prototype of the more general WBUF de�ner. The novice
can see the two-stage process used in developing a de�ning word.

2 list.4th

I programmed in Factor for a while. For various reasons I didn't like it, and I
went back to Forth. One thing that did impress me about Factor however, was
the way that it provides �sequences� as a fundamental data structure. Almost
any program can use sequences for holding a wide variety of kinds of data. I
decided that Forth needed something similar, which is why I wrote the list.4th
package. Factor's sequences are actually stored as arrays internally, whereas I
am using linked lists, but the general idea is the same. The Lisp language
(that Factor is derived from) uses lists as their fundamental data structure, and

4

my aim was to put Forth in the same category. The list.txt �le provides
documentation for how this code is intended to be used. A brief overview will
be provided here however.

2.1 the SEQ and DECOMMA data types

A list is de�ned like this:

list
w field .line

constant seq

: init-seq (str node -- node)
init-list >r
hstr r@ .line !
r> ;

: new-seq (str -- node)
seq alloc
init-seq ;

Here, SEQ is a child data-type of LIST. There should always be an INIT-xxx
and NEW-xxx function for the list. You should not do the initialization of the
record in the NEW-xxx function. You need to have an INIT-xxx function because
there might be a child of this data type, and its INIT-xxx function will need to
call this INIT-xxx function. For example:

seq
w field .head \ a SEQ of the .LINE string split on comma deliminators

constant decomma

: init-decomma (str node -- node)
init-seq >r
r@ .line @ count split r@ .head !
r> ;

: new-decomma (str -- node)
decomma alloc
init-decomma ;

Here we have a child data-type called DECOMMA whose parent is SEQ. This
data type will have a .LINE �eld that it inherits from SEQ, and will also have
a .HEAD �eld of its own. In this case, .HEAD is a SEQ list. The SPLIT function
splits a string on comma deliminators to form a SEQ list.

This style of pseudo-OOP I learned in Factor � the business of making the
initialization a separate function from the creation was non-obvious (to me),
but it is the crux of the system. My Forth code does have some weaknesses.
The most glaring being that all of the �eld names are globally de�ned. A �eld
such as .HEAD isn't intrinsically associated with the DECOMMA record. If another
record also has a .HEAD �eld (pretty likely considering what a generic name
.HEAD is), the result will be chaos. Still though, my list.4th is a step in the
right direction. My slide-rule program (that generates gcode for a CNC milling
machine and also PostScript for the faces of a slide-rule) was a crucible for my
list package. That program came out pretty well IMHO, so I think the list.4th
code has been proven to be capable of being the basis for a large application.

5

2.2 CLONE-LIST and CONCRETE-LIST

Lists are always created on the heap. We also have these functions that are
used for making copies of lists:

: clone-list (head -- new-head)

: concrete-list (head -- new-head)

CLONE-LIST makes a copy of an existing list, and the new list is on the heap.
CONCRETE-LIST is similar, except that the new list is in the dictionary. This is
very useful for allowing the programmer to generate lists at compile-time rather
than run-time. My FREE can distinguish between memory that was allocated
on the heap or in the dictionary. If it is dictionary memory, then FREE does
nothing. This allows the programmer to free up lists after they are no longer
needed (to prevent memory leaks) without needing to know if those lists were
originally generated at compile-time and put in the dictionary, or at run-time
and put on the heap.

2.3 list traversal

Another worthy feature of Factor is quotations. These are very useful in certain
circumstances (although they are somewhat overused in Factor what with DIP

etc., imho). Quotations (and generators for the same reason) will never be
introduced into Forth-200x because they require the ability to take a snapshot of
the state of a function (especially the local variable stack), which is not possible
in ANS-Forth. As I said before: anything that can't be written in ANS-Forth
can't become popular, and therefore will never become �legacy code,� which is
the only criteria for gaining support in Forth-200x.

Although we can't have quotations in Forth, my list.4th package does have
�touchers� (somewhat of an ugly name, but I couldn't think of anything else).
These are functions that are called via EXECUTE for every node in a list.

: each (i*x head 'toucher -- j*x) \ toucher: i*x node -- j*x

Here is an example for the DECOMMA lists:

: <count-C> (count node -- new-count) \ increment count if the first field contains a capital C
.head @ .line @ count s" C" search nip nip if 1+ then ;

: count-C (head -- count)
0
swap ['] <count-C> each ;

The reader will note that the toucher can access data on the stack underneath
the node (the i*x data). Our <count-C> toucher accesses the count value, which
it increments. The only rule here is that the toucher can't remove or add data
to the stack � and even this rule can be broken in certain cases (see collect-C
in the list.4th �le). The ability for the toucher to access data underneath the
node is possible in Forth because Forth is untyped. This would not be possible
in C/C++ because the toucher would have to have a prototype that exactly
describes its input parameters (just the node) and would not allow touchers

6

to be written that accessed other input parameters. In C, untyped functions
can be faked up by passing the underneath parameters inside of a struct, and
declaring a void pointer to this struct as the parameter. This would be horribly
ugly, and also ine�cient � one of many reasons for avoiding C/C++ like the
plague that it is.

Here is a slightly more complicated example:

: <purge-C> (head node -- new-head) \ remove any node in which the first field contains a capital C
dup .head @ .line @ count s" C" search nip nip if remove <kill-decomma>
else drop then ;

: purge-C (head -- new-head)
dup ['] <purge-C> each ;

Here we are �ltering out the list. I use REMOVE to remove the pattern-
matched node from the list, and <KILL-DECOMMA> to deallocate it so that it
doesn't become a memory leak. I can remove any node from the list, including
the head or the tail. This works because I have simple linked lists. Other
implementations of linked lists (the grand-eloquently named �Forth Foundation
Library� being an example) use a handle for improved e�ciency. The handle
is a record that contains pointers to the head and tail, so it is not necessary
to sequentially search the linked list to �nd the tail node. The problem with
using a handle however, is that you can't arbitrarily remove nodes from the list
as I am doing in purge-C. If you remove the head or the tail node, your handle
will no longer be up-to-date and the result will be chaos. My simple lists are
somewhat less e�cient (especially my TAIL function), but they are more robust.
I don't think the use of a handle is a very good idea. If I do upgrade my list
package in the future, I will upgrade it to a doubly-linked circular list, which
has all of the same robustness as my current simple implementation.

I also have these words for traversing lists:

macro: each[\ toucher: i*x node -- j*x
begin dup while

dup .fore @ >r ;

macro:]each
r> repeat drop ;

These can be used like this:

: clone-node (node -- new-node) \ returns a list with only one node in it
dup allocation >r
r@ alloc tuck \ -- new-node node new-node \r: -- size
r> cmove> init-list ;

: clone-list (head -- new-head)
nil swap each[clone-node link]each ;

For the most part, I recommend the use of EACH rather than EACH[and
]EACH. The reason is that EACH[and]EACH use the return stack internally, and
this isn't obvious to the user. If the user writes code inside of EACH[and]EACH

that access local variables in the function, the result will be chaos � and I'll
get blamed. With EACH on the other hand, the user wouldn't expect his toucher
to have access to the local variables in the parent function and wouldn't try to
access them. The best solution would be to have quotations, in which case the

7

quotations could access local variables in the function where they are born �
but that is not feasable in ANS-Forth.

In some cases, EACH[and]EACH are the best solution. In CLONE-LIST above,
be best way to factor the code is to have a CLONE-NODE function. This means
that our toucher has to include both CLONE-NODE and LINK. Rather than factor
this out into a function of their own, it is easier and more readable to just write
them inline inside of EACH[and]EACH.

Another advantage of EACH[and]EACH over EACH, is better e�ciency. The
user is welcome to use EACH[and]EACH for this reason, just be careful that you
don't get into trouble trying to access local variables in your toucher code.

In addition to EACH, I also have traversers that are used for locating a pattern-
matched node:

: find-node (i*x head 'toucher -- j*x node|false) \ toucher: i*x node -- j*x flag

: find-prior (i*x head 'toucher -- j*x -1|node|false) \ toucher: i*x node -- j*x flag

2.4 memory allocation words

All of the memory allocation words have been rewritten, with a few new ones
thrown in:

: allocate (n -- adr ior) \ the ior is false if successful

: concrete-alloc (n -- adr)

macro: concrete-allocate (n -- adr ior) \ the ior is false if successful (it always is)

macro: <allocation> (adr -- size) \ signed \ negative means it is a concrete node
w - @ ;

macro: allocation (adr -- size) \ unsigned
<allocation> abs ;

: resize (old-adr n -- new-adr ior) \ the ior is false if successful

: free (adr -- ior) \ the ior is false if successful

ALLOCATE and CONCRETE-ALLOCATE are used for allocating memory. ALLOCATE
does this on the heap, and CONCRETE-ALLOCATE in the dictionary. They store
the size of the allocated memory block in the cell just ahead of the memory
block. ALLOCATE stores this as a positive number, and CONCRETE-ALLOCATE as
a negative. ALLOCATION uses this information to return the size of the allocated
memory block. This is necessary for CLONE-NODE and CONCRETE-NODE (used by
CLONE-LIST and CONCRETE-LIST) so they know how big to make the new node
and how much memory to CMOVE> over there to e�ect the copy. RESIZE also uses
this size information similarly. FREE just checks to make sure that the memory
block is in the heap (a positive size) rather than the dictionary (a negative size)
so it doesn't try to free dictionary memory, which would crash the system.

I also tried to talk the Forth-200x committee into making CONCRETE-ALLOCATE,
ALLOCATE, ALLOCATION, RESIZE and FREE part of the standard, but this idea
was also quashed. Once again, I put these functions in my novice package in an
e�ort to build up enough critical mass to be accepted into the standard.

8

