
Lightweight MDS Involution Matrices

Siang Meng Sim1, Khoongming Khoo2, Frédérique Oggier1, and
Thomas Peyrin1

1 Nanyang Technological University, Singapore
2 DSO National Laboratories, Singapore

ssim011@e.ntu.edu.sg, kkhoongm@dso.org.sg, frederique@ntu.edu.sg,

thomas.peyrin@ntu.edu.sg

Abstract. In this article, we provide new methods to look for lightweight
MDS matrices, and in particular involutory ones. By proving many new
properties and equivalence classes for various MDS matrices construc-
tions such as circulant, Hadamard, Cauchy and Hadamard-Cauchy, we
exhibit new search algorithms that greatly reduce the search space and
make lightweight MDS matrices of rather high dimension possible to
find. We also explain why the choice of the irreducible polynomial might
have a significant impact on the lightweightness, and in contrary to the
classical belief, we show that the Hamming weight has no direct impact.
Even though we focused our studies on involutory MDS matrices, we
also obtained results for non-involutory MDS matrices. Overall, using
Hadamard or Hadamard-Cauchy constructions, we provide the (involu-
tory or non-involutory) MDS matrices with the least possible XOR gates
for the classical dimensions 4× 4, 8× 8, 16× 16 and 32× 32 in GF(24)
and GF(28). Compared to the best known matrices, some of our new
candidates save up to 50% on the amount of XOR gates required for
an hardware implementation. Finally, our work indicates that involutory
MDS matrices are really interesting building blocks for designers as they
can be implemented with almost the same number of XOR gates as non-
involutory MDS matrices, the latter being usually non-lightweight when
the inverse matrix is required.

Key words: lightweight cryptography, Hadamard matrix, Cauchy ma-
trix, involution, MDS.

1 Introduction

Most symmetric key primitives, like block ciphers, stream ciphers or hash func-
tions, are usually based on various components that provide confusion and dif-
fusion. Both concepts are very important for the overall security and efficiency
of the cryptographic scheme and extensive studies have been conducted to find
the best possible building blocks. The goal of diffusion is basically to spread the
internal dependencies as much as possible. Several designs use a weak yet fast
diffusion layer based on simple XOR, addition and shifting operation, but an-
other trend is to rely on strong linear diffusion matrices, like Maximal Distance
Separable (MDS) matrices. A typical example is the AES cipher [17], which uses
a 4× 4 matrix in GF(28) to provide diffusion among a vector of 4 bytes. These

mathematical objects ensure the designers a perfect diffusion (the underlying
linear code meets the Singleton bound), but can be quite heavy to implement.
Software performances are usually not so much impacted as memory is not re-
ally constrained and table-based implementations directly incorporate the field
multiplications in the stored values. However, hardware implementations will
usually suffer from an important area requirement due to the Galois field mul-
tiplications. The impact will also be visible on the efficiency of software bitslice
implementations which basically mimic the hardware computations flow.

Good hardware efficiency has became a major design trend in cryptography,
due to the increasing importance of ubiquitous computing. Many lightweight
algorithms have recently been proposed, notably block ciphers [12, 14, 19, 9] and
hash functions [4, 18, 11]. The choice of MDS matrices played an important role
in the reduction of the area required to provide a certain amount of security.
Along with PHOTON hash function [18] was proposed a new type of MDS matrix
that can be computed in a serial or recursive manner. This construction greatly
reduces the temporary memory (and thus the hardware area) usually required
for the computation of the matrix. Such matrices were later used in LED [19]
block cipher, or PRIMATEs [1] authenticated encryption scheme, and were further
studied and generalized in subsequent articles [28, 32, 3, 2, 10]. Even though these
serial matrices provide a good way to save area, this naturally comes at the
expense of an increased number of cycles to apply the matrix. In general, they
are not well suited for round-based or low-latency implementations.

Another interesting property for an MDS matrix to save area is to be invo-
lutory. Indeed, in most use cases, encryption and decryption implementations
are required and the inverse of the MDS matrix will have to be implemented
as well (except for constructions like Feistel networks, where the inverse of the
internal function is not needed for decryption). For example, the MDS matrix
of AES is quite lightweight for encryption, but not really for decryption3. More
generally, it is a valuable advantage that one can use exactly the same diffusion
matrix for encryption and decryption. Some ciphers like ANUBIS [5], KHAZAD [6],
ICEBERG [31] or PRINCE [13] even pushed the involution idea a bit further by
defining a round function that is almost entirely composed of involution oper-
ations, and where the non-involution property of the cipher is mainly provided
by the key schedule.

There are several ways to build a MDS matrix [33, 23, 25, 29, 20, 15], a com-
mon method being to use a circulant construction, like for the AES block ci-
pher [17] or the WHIRLPOOL hash function [8]. The obvious benefit of a circulant
matrix for hardware implementations is that all of its rows are similar (up to
a right shift), and one can trivially reuse the multiplication circuit to save im-
plementation costs. However, it has been proven in [22] that circulant matrices
of order 4 cannot be simultaneously MDS and involutory. And very recently

3 The serial matrix construction proposed in [18, 19] allows an efficient inverse com-
putation if the first coefficient is equal to 1. However, we recall that serial matrices
are not well suited for round-based or low-latency implementations.

Gupta et al. [21] proved that circulant MDS involutory matrices do not exist.
Finding lightweight matrices that are both MDS and involutory is not an easy
task and this topic has attracted attention recently. In [29], the authors consider
Vandermonde or Hadamard matrices, while in [33, 20, 15] Cauchy matrices were
used. Even if these constructions allow to build involutory MDS matrices for big
matrix dimensions, it is difficult to find the most lightweight candidates as the
search space can become really big.

Our contributions. In this article, we propose a new method to search for
lightweight MDS matrices, with an important focus on involutory ones. After
having recalled the formula to compute the XOR count, i.e. the amount of
XORs required to evaluate one row of the matrix, we show in Section 2 that
the choice of the irreducible polynomial is important and can have a significant
impact on the efficiency, as remarked in [24]. In particular, we show that the best
choice is not necessarily a low Hamming weight polynomial as widely believed,
but instead one that has a high standard deviation regarding its XOR count.
Then, in Section 3, we recall some constructions to obtain (involutory) MDS
matrices: circulant, Hadamard, Cauchy and Cauchy-Hadamard. In particular,
we prove new properties for some of these constructions, which will later help us
to find good matrices. In Section 4 we prove the existence of equivalent classes
for Hadamard matrices and involutory Hadamard-Cauchy matrices and we use
these considerations to conceive improved search algorithms of lightweight (in-
volutory) MDS matrices. In Section 5, we quickly describe these new algorithms,
providing all the details for lightweight involutory MDS matrices in Appendix B
and for lightweight non-involutory MDS matrices in Appendix C. Our methods
can also be relaxed and applied to the search of lightweight non-involutory MDS
matrices. These algorithms are significant because they are feasible exhaustive
search while the search space of the algorithms described in [20, 15] is too big
to be exhausted4. Our algorithms guarantee that the matrices found are the
lightest according to our metric.

Overall, using Hadamard or Hadamard-Cauchy constructions, we provide the
smallest known (involutory or non-involutory) MDS matrices for the classical
dimensions 4 × 4, 8 × 8, 16 × 16 and 32 × 32 in GF(24) and GF(28). All our
results are summarized and commented in Section 6. Surprisingly, it seems that
involutory MDS matrices are not much more expensive than non-involutory MDS
ones, the former providing the great advantage of a free inverse implementation
as well. We recall that in this article we are not considering serial matrices, as
their evaluation either requires many clock cycles (for serial implementations)
or an important area (for round-based implementations).

Due to space constraints, all proofs are given in the Appendix D.

4 The huge search space issue can be reduced if one could search intelligently only
among lightweight matrix candidates. However, this is not possible with algorithms
from [20, 15] since the matrix coefficients are known only at the end of the matrix
generation, and thus one cannot limit the search to lightweight candidates only.

Notations and preliminaries. We denote by GF(2r) the finite field with 2r

elements, r ≥ 1. This field is isomorphic to polynomials in GF(2)[X] modulo an
irreducible polynomial p(X) of degree r, meaning that every field element can
be seen as a polynomial α(X) with coefficients in GF(2) and of degree r − 1:

α(X) =
∑r−1
i=0 biX

i, bi ∈ GF(2), 0 ≤ i ≤ r − 1. The polynomial α(X) can also
naturally be viewed as an r-bit string (br−1, br−2, ..., b0). In the rest of the article,
an element α in GF(2r) will be seen either as the polynomial α(X), or the r-
bit string represented in a hexadecimal representation, which will be prefixed
with 0x. For example, in GF(28), the 8-bit string 00101010 corresponds to the
polynomial X5 +X3 +X, written 0x2a in hexadecimal.

The addition operation on GF(2r) is simply defined as a bitwise XOR on
the coefficients of the polynomial representation of the elements, and does not
depend on the choice of the irreducible polynomial p(X). However, for mul-
tiplication, one needs to specify the irreducible polynomial p(X) of degree r.
We denote this field as GF(2r)/p(X), where p(X) can be given in hexadecimal
representation5. The multiplication of two elements is then the modulo p(X)
reduction of the product of the polynomial representations of the two elements.

Finally, we denote by M [i, j] the (i, j) entry of the matrix M , we start the
counting from 0, that is M [0, 0] is the entry corresponding to the first row and
first column.

2 Analyzing XOR count according to different finite
fields

In this section, we explain the XOR count that we will use as a measure to eval-
uate the lightweightness of a given matrix. Then, we will analyze the XOR count
distribution depending on the finite field and irreducible polynomial considered.
Although it is known that finite fields of the same size are isomorphic to each
other and it is believed that the security of MDS matrices is not impacted by
this choice, looking at the XOR count is a new aspect of finite fields that remains
unexplored in cryptography.

2.1 The XOR count

It is to note that the XOR count is an easy-to-manipulate and simplified metric,
but MDS coefficients have often been chosen to lower XOR count, e.g. by having
low Hamming weight. As shown in [24], low XOR count is strongly correlated
minimization of hardware area.

Later in this article, we will study the hardware efficiency of some diffusion
matrices and we will search among huge sets of candidates. One of the goals

5 This should not be confused with the explicit construction of finite fields, which is
commonly denoted as GF(2r)[X]/(P), where (P) is an ideal generated by irreducible
polynomial P .

will therefore be to minimize the area required to implement these lightweight
matrices, and since they will be implemented with XOR gates (the diffusion layer
is linear), we need a way to easily evaluate how many XORs will be required to
implement them. We explain our method in this subsection.

In general, it is known that low Hamming weight generally requires lesser
hardware resource in implementations, and this is the usual choice criteria for
picking a matrix. For example, the coefficients of the AES MDS matrix are 1, 2
and 3, in a hope that this will ensure a lightweight implementation. However, it
was shown in [24] that while this heuristic is true in general, it is not always the
case. Due to some reduction effects, and depending on the irreducible polyno-
mial defining the computation field, some coefficients with not-so-low Hamming
weight might be implemented with very few XORs.

Definition 1 The XOR count of an element α in the field GF(2r)/p(X) is the
number of XORs required to implement the multiplication of α with an arbitrary
β over GF(2r)/p(X).

For example, let us explain how we compute the XOR count of α = 3 over
GF(24)/0x13 and GF(24)/0x19. Let (b3, b2, b1, b0) be the binary representation
of an arbitrary element β in the field. For GF(24)/0x13, we have:

(0, 0, 1, 1) · (b3, b2, b1, b0) = (b2, b1, b0 ⊕ b3, b3)⊕ (b3, b2, b1, b0) = (b2 ⊕ b3, b1 ⊕ b2, b0 ⊕ b1 ⊕ b3, b0 ⊕ b3),

which corresponds to 5 XORs6. For GF(24)/0x19, we have:

(0, 0, 1, 1) · (b3, b2, b1, b0) = (b2 ⊕ b3, b1, b0, b3)⊕ (b3, b2, b1, b0) = (b2, b1 ⊕ b2, b0 ⊕ b1, b0 ⊕ b3),

which corresponds to 3 XORs. One can observe that XOR count is different
depending on the finite field defined by the irreducible polynomial.

In order to calculate the number of XORs required to implement an entire
row of a matrix, we can use the following formula given in [24]:

XOR count for one row of M = (γ1, γ2, ..., γk) + (n− 1) · r, (1)

where γi is the XOR count of the i-th entry in the row of M , n being the number
of nonzero elements in the row and r the dimension of the finite field.

For example, the first row of the AES diffusion matrix being (1, 1, 2, 3) over the
field GF(28)/0x11b, the XOR count for the first row is (0+0+3+11)+3×8 = 38
XORs (the matrix being circulant, all rows are equivalent in terms of XOR
count).

6 We acknowledge that one can perform the multiplication with 4 XORs as b0 ⊕ b3
appears twice. But that would require additional cycle and extra memory cost which
completely outweighed the small saving on the XOR count.

2.2 XOR count for different finite fields

We programmed a tool that computes the XOR count for every nonzero element
over GF(2r) for r = 2, . . . , 8 and for all possible irreducible polynomials (all the
tables will be given in the full version of this article, we provide an extract
in Appendix F). By analyzing the outputs of this tool, we could make two
observations that are important to understand how the choice of the irreducible
polynomial affects the XOR count. Before presenting our observations, we state
some terminologies and properties related to reciprocal polynomials in finite
fields.

Definition 2 A reciprocal polynomial 1
p (X) of a polynomial p(X) over GF(2r),

is a polynomial expressed as 1
p (X) = Xr · p(X−1). A reciprocal finite field, K =

GF(2r)/ 1
p (X), is a finite field defined by the reciprocal polynomial which defines

F = GF(2r)/p(X).

In other words, a reciprocal polynomial is a polynomial with the order of the
coefficients reversed. For example, the reciprocal polynomial of p(X) = 0x11b
in GF(28) is 1

p (X) = 0x 1
11b = 0x1b1. It is also to be noted that the reciprocal

polynomial of an irreducible polynomial is also irreducible.

The total XOR count. Our first new observation is that even if for an indi-
vidual element of the field the choice of the irreducible polynomial has an impact
on the XOR count, the total sum of the XOR count over all elements in the field
is independent of this choice. We state this in the following theorem, the proof
being provided in Appendix D.1.

Theorem 1 The total XOR count for a field GF(2r) is r
∑r
i=2 2i−2(i−1), where

r ≥ 2.

From Theorem 1, it seems that there is no clear implication that one irre-
ducible polynomial is strictly better than another, as the mean XOR count is
the same for any irreducible polynomial. However, the irreducible polynomials
have different distribution of the XOR count among the field elements, that is
quantified by the standard deviation. A high standard deviation implies that the
distribution of XOR count is very different from the mean, thus there will be
more elements with relatively lower/higher XOR count. In general, the order of
the finite field is much larger than the order of the MDS matrix and since only
a few elements of the field will be used in the MDS matrices, there is a better
chance of finding an MDS matrix with lower XOR count.

Hence, our recommendation is to choose the irreducible polynomial with the
highest standard deviation regarding the XOR count distribution. From previous
example, in GF(24) (XOR count mean equals 4.25 for this field dimension), the
irreducible polynomials 0x13 and 0x19 lead to a standard deviation of 2.68, while

0x1f leads to a standard deviation of 1.7075. Therefore, the two first polynomials
seem to be a better choice. This observation will allow us to choose the best
irreducible polynomial to start with during the searches. We refer to Appendix F
for all the standard deviations according to the irreducible polynomial.

We note that the folklore belief was that in order to get lightweight imple-
mentations, one should use a low Hamming weight irreducible polynomial. The
underlying idea is that with such a polynomial less XORs might be needed when
the modular reduction has to be applied during a field multiplication. However,
we have shown that this is not necessarily true. Yet, by looking at the data from
Appendix F, we remark that the low Hamming weight irreducible polynomials
usually have a high standard deviation, which actually validates the folklore be-
lief. We conjecture that this heuristic will be less and less exact when we go to
higher and higher order fields.

Matching XOR count. Our second new observation is that the XOR count
distribution implied by a polynomial will be the same compared to the distri-
bution of its reciprocal counterpart. We state this observation in the following
theorem, the proof being provided in Appendix D.2.

Theorem 2 There exists an isomorphic mapping from a primitive α ∈ GF(2r)/p(X)
to another primitive β ∈ GF(2r)/ 1

p (X) where the XOR count of αi and βi is

equal for each i = {1, 2, ..., 2r − 1}.

In Appendix E, we listed all the primitive mapping from a finite field to its re-
ciprocal finite field for all fields GF(2r) with r = 2, . . . , 8 and for all possible irre-
ducible polynomials. We give an example to illustrate our theorem. For GF(24),
there are three irreducible polynomials: 0x13, 0x19 and 0x1f and the XOR count
for the elements are shown in Appendix F. From the binary representation we
see that 0x 1

13 = 0x19. Consider an isomorphic mapping φ : GF(24)/0x13 →
GF(24)/0x19 defined as φ(2) = 12, where 2 and 12 are the primitives for the
respective finite fields. Table 2 of Appendix E shows that the order of the XOR
count is the same.

We remark that for a self-reciprocal irreducible polynomial, for instance 0x1f
in GF(24), there also exists an automorphism mapping from a primitive to an-
other primitive with the same order of XOR count (see Appendix E).

Theorem 2 is useful for understanding that we do not need to consider
GF(2r)/ 1

p (X) when we are searching for lightweight matrices. As there exists an
isomorphic mapping preserving the order of the XOR count, any MDS matrix
over GF(2r)/ 1

p (X) can be mapped to an MDS matrix over GF(2r)/p(X) while
preserving the XOR count. Therefore, it is redundant to search for lightweight
MDS matrices over GF(2r)/ 1

p (X) as the lightest MDS matrix can also be found

in GF(2r)/p(X). This will render our algorithms much more efficient: when using
exhaustive search for low XOR count MDS over finite field defined by various
irreducible polynomial, one can reduce the search space by almost a factor 2 as
the reciprocal polynomials are redundant.

3 Types of MDS matrices and properties

In this section, we first recall a few properties of MDS matrices and we then
explain various constructions of (involutory) MDS matrices that were used to
generate lightweight candidates. Namely, we will study 4 types of diffusion matri-
ces: circulant, Hadamard, Cauchy, and Hadamard-Cauchy. We recall that we do
not consider serially computable matrices in this article, like the ones described
in [18, 19, 28, 32, 3, 2], since they are not adapted to round-based implementa-
tions. As MDS matrices are widely studied and their properties are commonly
known, their definition and properties are given in the Appendix A.

3.1 Circulant matrices

A common way to build an MDS matrix is to start from a circulant matrix,
reason being that the probability of finding an MDS matrix would then be
higher than a normal square matrix [16].

Definition 3 A k × k matrix C is circulant when each row vector is rotated to
the right relative to the preceding row vector by one element. The matrix is then
fully defined by its first row.

An interesting property of circulant matrices is that since each row differs
from the previous row by a right shift, a user can just implement one row of
the matrix multiplication in hardware and reuse the multiplication circuit for
subsequent rows by just shifting the input. However in this paper, we will show
in Section B.1 and C.1 that these matrices are not the best choice.

3.2 Hadamard matrices

Definition 4 ([20]) A finite field Hadamard (or simply called Hadamard) ma-
trix H is a k × k matrix, with k = 2s, that can be represented by two other
submatrices H1 and H2 which are also Hadamard matrices:

H =

(
H1 H2

H2 H1

)
.

Similarly to [20], in order to represent a Hadamard matrix we use notation
had(h0, h1, ..., hk−1) (with hi = H[0, i] standing for the entries of the first row
of the matrix) where H[i, j] = hi⊕j and k = 2s. It is clear that a Hadamard
matrix is bisymmetric. Indeed, if we define the left and right diagonal reflection
transformations as HL = TL(H) and HR = TR(H) respectively, we have that
HL[i, j] = H[j, i] = H[i, j] and HR[i, j] = H[k − 1 − i, k − 1 − j] = H[i, j] (the
binary representation of k − 1 = 2s − 1 is all 1, hence k − 1− i = (k − 1)⊕ i).

Moreover, by doing the multiplication directly, it is known that if H =
had(h0, h1, ..., hk−1) is a Hadamard matrix, then H × H = c2 · I, with c2 =

h20 + h21 + h22 + ... + h2k−1. In other words, the product of a Hadamard matrix
with itself is a multiple of an identity matrix, where the multiple c2 is the sum
of the square of the elements from the first row.

A direct and crucial corollary to this fact is that a Hadamard matrix over
GF(2r) is involution if the sum of the elements of the first row is equal to 1.
Now, it is important to note that if one deals with a Hadamard matrix for which
the sum of the first row over GF(2r) is nonzero, we can very simply make it
involutory by dividing it with the sum of its first row.

We will use these considerations in Section B.2 to generate low dimension
diffusion matrices (order 4 and 8) with an innovative exhaustive search over all
the possible Hadamard matrices. We note that, similarity to a circulant matrix,
an Hadamard matrix will have the interesting property that each row is a per-
mutation of the first row, therefore allowing to reuse the multiplication circuit
to save implementation costs.

3.3 Cauchy matrices

Definition 5 A square Cauchy matrix, C, is a k×k matrix constructed with two
disjoint sets of elements from GF(2r), {α0, α1, ..., αk−1} and {β0, β1, ..., βk−1}
such that C[i, j] = 1

αi+βj
.

It is known that the determinant of a square Cauchy matrix, C, is given as

det(C) =

∏
0≤i<j≤k−1(αj − αi)(βj − βi)∏

0≤i<j≤k−1(αi + αj)
.

Since αi 6= αj , βi 6= βj for all i, j ∈ {0, 1, ..., k−1}, a Cauchy matrix is nonsingu-
lar. Note that for a Cauchy matrix over GF(2r), the subtraction is equivalent to
addition as the finite field has characteristic 2. As the sets are disjoint, we have
αi 6= βj , thus all entries are well-defined and nonzero. In addition, any submatrix
of a Cauchy matrix is also a Cauchy matrix as it is equivalent to constructing a
smaller Cauchy matrix with subsets of the two disjoint sets. Therefore, by the
first statement of Proposition 3, a Cauchy matrix is an MDS matrix.

3.4 Hadamard-Cauchy matrices

The innovative exhaustive search over Hadamard matrices from Section B.2 is
sufficient to generate low dimension diffusion matrices (order 4 and 8). However,
the computation for verifying the MDS property and the exhaustive search space
grows exponentially. It eventually becomes impractical to search for higher di-
mension Hadamard matrices (order 16 or more). Therefore, we use the Hadamard-
Cauchy matrix construction, proposed in [20] as an evolution of the involutory
MDS Vandermonde matrices [28], that guarantees the matrix to be an involutory
MDS matrix.

In [20], the authors proposed a 2s×2s matrix construction that combines both
the characteristics of Hadamard and Cauchy matrices. Because it is a Cauchy
matrix, a Hadamard-Cauchy matrix is an MDS matrix. And because it is a
Hadamard matrix, it will be involutory when c2 is equal to 1. Therefore, we can
construct a Hadamard-Cauchy matrix and check if the sum of first row is equal
to 1 and, if so, we have an MDS and involutory matrix. A detailed discussion on
Hadamard-Cauchy matrices is given in Section B.3.

4 Equivalence classes of Hadamard-based matrices

Our methodology for finding lightweight MDS matrices is to perform an inno-
vative exhaustive search and by eventually picking the matrix with the lowest
XOR count. Naturally, the main problem to tackle is the huge search space. By
exploiting the properties of Hadamard matrices, we found ways to group them
in equivalent classes and significantly reduce the search space. In this section,
we introduce the equivalence classes of Hadamard matrices and the equivalence
classes of involutory Hadamard-Cauchy matrices. It is important to note that
these two equivalence classes are rather different as they are defined by very dif-
ferent relations. We will later use these classes in Sections B.2, B.3, C.2 and C.3.

4.1 Equivalence classes of Hadamard matrices

It is known that a Hadamard matrix can be defined by its first row, and different
permutation of the first row results in a different Hadamard matrix with possibly
different branch number. In order to find a lightweight MDS involution matrix,
it is necessary to have a set of k elements with relatively low XOR count that
sum to 1 (to guarantee involution). Moreover, we need all coefficients in the first
row to be different. Indeed, if the first row of an Hadamard matrix has 2 or more
of the same element, say H[0, i] = H[0, j], where i, j ∈ {0, 1, ..., k − 1}, then in
another row we have H[i ⊕ j, i] = H[i ⊕ j, j]. These 4 entries are the same and
by Corollary 3, H is not MDS.

By permuting the entries we hope to find an MDS involution matrix. How-
ever, given k distinct nonzero elements, there are k! ways to permute the first
row of the Hadamard matrix, which can quickly become intractable. Therefore,
we introduce a relation that relates certain permutations that lead to the same
branch number.

Definition 6 Let H and H(σ) be two Hadamard matrices with the same set of
entries up to some permutation σ. We say that they are related, H ∼ H(σ), if
every pair of input vectors, (v, v(σ)) with the same permutation σ, to H and H(σ)

respectively, have the same set of elements in the output vectors.

For example, let us consider the following three Hadamard matrices

H =


w x y z
x w z y
y z w x
z y x w

 , H(σ1) =


y z w x
z y x w
w x y z
x w z y

 , H(σ2) =


w x z y
x w y z
z y w x
y z x w

 ,

One can see that H(σ1) is defined by the third row of H, i.e. the rows are shifted
by two positions and σ1 = {2, 3, 0, 1}. Let us consider an arbitrary input vector
for H, say v = (a, b, c, d). Then, if we apply the permutation to v, we obtain
v(σ1) = (c, d, a, b). We can observe that:

v ·H = (aw + bx+ cy + dz, ax+ bw + cz + dy, ay + bz + cw + dx, az + by + cx+ dw),

v(σ1) ·H(σ1) = (cy + dz + aw + bx, cz + dy + ax+ bw, cw + dx+ ay + bz, cx+ dw + az + by),

It is now easy to see that v ·H = v(σ1) ·H(σ1). Hence, we say that H ∼ H(σ1).
Similarily, with σ2 = {0, 1, 3, 2}, we have v(σ2) = (a, b, d, c) and:

v ·H = (aw + bx+ cy + dz, ax+ bw + cz + dy, ay + bz + cw + dx, az + by + cx+ dw),

v(σ2) ·H(σ2) = (aw + bx+ dz + cy, ax+ bw + dy + cz, az + by + dw + cx, ay + bz + dx+ cw),

and since v ·H and v(σ2) ·H(σ2) are the same up to the permutation σ2, we can
say that H ∼ H(σ2).

Definition 7 An equivalence class of Hadamard matrices is a set of Hadamard
matrices satisfying the equivalence relation ∼.

Proposition 1 Hadamard matrices in the same equivalence class have the same
branch number.

When searching for an MDS matrix, we can make use of this property to
greatly reduce the search space: if one Hadamard matrix in an equivalence class
is not MDS, then all other Hadamard matrices in the same equivalence class will
not be MDS either. Therefore, it all boils down to analyzing how many and which
permutation of the Hadamard matrices belongs to the same equivalence classes.
Using the two previous examples σ1 and σ2 as building blocks, we generalize
them and present two lemmas.

Lemma 1 Given a Hadamard matrix H, any Hadamard matrix H(α) defined
by the (α+ 1)-th row of H, with α = 0, 1, 2, ..., k − 1, is equivalent to H.

Next, let us consider the other type of permutation. We can see in the example
with σ2 that up to the permutation applied to the Hadamard matrix, input
and output vectors are the same. Let H(σ), v(σ) and u(σ) denote the permuted
Hadamard matrix, the permuted input vector and its corresponding permuted

output vector. We want the permutation to satisfy uσ(j) = u
(σ)
j , where j ∈

{0, 1, ..., k − 1}. That is the permutation of the output vector of H is the same

as the permuted output vector of H(σ). Using the definition of the Hadamard
matrix, we can rewrite it as

k−1⊕
i=0

vihi⊕σ(j) =

k−1⊕
i=0

v
(σ)
i H(σ)[i, j].

Using the definition of the permutation and by the fact that it is one-to-one
mapping, we can rearrange the XOR order of the terms on the left-hand side
and we obtain

k−1⊕
i=0

vσ(i)hσ(i)⊕σ(j) =

k−1⊕
i=0

vσ(i)hσ(i⊕j).

Therefore, we need the permutation to be linear with respect to XOR: σ(i⊕j) =
σ(i)⊕ σ(j). This proves our next lemma.

Lemma 2 For any linear permutation σ (w.r.t. XOR), the two Hadamard ma-
trices H and H(σ) are equivalent.

We note that the permutations in Lemma 1 and 2 are disjoint, except for
the identity permutation. This is because for the linear permutation σ, it always
maps the identity to itself: σ(0) = 0. Thus, for any linear permutation, the first
entry remains unchanged. On the other hand, when choosing another row of H
as the first row, the first entry is always different.

With these two lemmas, we can now partition the family of Hadamard ma-
trices into equivalence classes. For Lemma 1, we can easily see that the number
of permutation is equal to the order of the Hadamard matrix. However, for
Lemma 2 it is not so trivial. Therefore, we have the following lemma.

Lemma 3 Given a set of 2s nonzero elements, S = {α0, α1, ..., α2s−1}, there

are
∏s−1
i=0 (2s − 2i) linear permutations w.r.t. XOR operation.

Theorem 3 Given a set of 2s nonzero elements, S = {α0, α1, ..., α2s−1}, there

are (2s−1)!∏s−1
i=0 (2

s−2i) equivalence classes of Hadamard matrices of order 2s defined by

the set of elements S.

For convenience, we call the permutations in Lemma 1 and 2 theH-permutations.
The H-permutations can be described as a sequence of the following types of
permutations on the index of the entries:

1. choose α ∈ {0, 1, ..., 2s − 1}, define σ(i) = i⊕ α,∀i = 0, 1, ..., 2s − 1, and
2. fix σ(0) = 0, in ascending order of the index i, choose the permutation if i is

power of 2, otherwise it is defined by the linear permutation (w.r.t. XOR):
σ(i⊕ j) = σ(i)⊕ σ(j).

We remark that given a set of 4 nonzero elements, from Theorem 3 we see
that there is only 1 equivalence class of Hadamard matrices. This implies that

there is no need to permute the entries of the 4 × 4 Hadamard matrix in hope
to find MDS matrix if one of the permutation is not MDS.

With the knowledge of equivalence classes of Hadamard matrices, what we
need is an algorithm to pick one representative from each equivalence class and
check if it is MDS. The idea is to exhaust all non-H-permutations through select-
ing the entries in ascending index order. Since the entries in the first column of
Hadamard matrix are distinct (otherwise the matrix is not MDS), it is sufficient
for us to check the matrices with the first entry (index 0) being the smallest
element. This is because for any other matrices with the first entry set as some
other element, it is in the same equivalence class as some matrix H(α) where
the first entry of (α + 1)-th row is the smallest element. For indexes that are
powers of 2, select the smallest element from the remaining set. While for the
other entries, one can pick any element from the remaining set.

For 8 × 8 Hadamard matrices for example, the first three entries, α0, α1

and α2 are fixed to be the three smallest elements in ascending order. Next,
by Lemma 2, α3 should be defined by α1 and α2 in order to preserve the linear
property, thus to ”destroy” the linear property and obtain matrices from different
equivalence classes, pick an element from the remaining set in ascending order
as the fourth entry α3. After which, α4 is selected to be the smallest element
among the remaining 4 elements and permute the remaining 3 elements to be α5,
α6 and α7 respectively. For each of these arrangement of entries, we check if it is
MDS using the algorithm discussed in Section B.2. We terminate the algorithm
prematurely once an MDS matrix is found, else we conclude that the given set
of elements does not generate an MDS matrix.

It is clear that arranging the entries in this manner will not obtain two
Hadamard matrices from the same equivalence class. But one may wonder if it
actually does exhaust all the equivalence classes. The answer is yes: Theorem 3
shows that there is a total of 30 equivalence classes for 8×8 Hadamard matrices.
On the other hand, from the algorithm described above, we have 5 choices for
α3 and we permute the remaining 3 elements for α5, α6 and α7. Thus, there are
30 Hadamard matrices that we have to check.

4.2 Equivalence classes of involutory Hadamard-Cauchy matrices

Despite having a new technique to reduce the search space, the computation cost
for checking the MDS property is still too huge when the order of the Hadamard
matrix is larger than 8. Therefore, we use the Hadamard-Cauchy construction for
order 16 and 32. Thanks to the Cauchy property, we are ensured that the matrix
will be MDS. Hence, the only problem that remains is the huge search space
of possible Hadamard-Cauchy matrices. To prevent confusion with Hadamard
matrices, we denote Hadamard-Cauchy matrices with K.

First, we restate in Algorithm 1 the technique from [20] to build involutory
MDS matrices, with some modifications on the notations for the variables. Al-
though it is not explicitly stated, we can infer from Lemma 6,7 and Theorem 4

from [20] that all Hadamard-Cauchy matrices can be expressed as an output of
Algorithm 1.

Algorithm 1 Construction of 2s × 2s MDS matrix or involutory MDS matrix
over GF(2r)/p(X).

INPUT: an irreducible polynomial p(X) of GF(2r), integers s, r satisfying s < r and
r > 1, a boolean Binvolutory.

OUTPUT: 2s×2s Hadamard-Cauchy matrix K, where K is involutory if Binvolutory

is set True.

procedure ConstructH-C(r, p(X), s, Binvolutory)
select s linearly independent elements x1, x2, x22 , ..., x2s−1 from GF(2r) and con-

struct S, the set of 2s elements xi,
where xi =

⊕s−1
t=0 btx2t for all i ∈ [0, 2s−1] (with (bs−1, bs−2, ..., b1, b0) being

the binary representation of i)
select z ∈ GF(2r) \ S and construct the set of 2s elements yi, where yi = z + xi

for all i ∈ [0, 2s − 1]
initialize an empty array ary s of size 2s

if (Binvolutory == False) then
ary s[i] = 1

yi
for all i ∈ [0, 2s − 1]

else
ary s[i] = 1

c·yi
for all i ∈ [0, 2s − 1], where c =

⊕s−1
t=0

1
z+xt

end if
construct the 2s × 2s matrix K, where K[i, j] = ary s[i⊕ j]
return K

end procedure

Similarly to Hadamard matrices, we denote a Hadamard-Cauchy matrix by
its first row of elements as hc(h0, h1, ..., h2s−1), with hi = K[0, i]. To summa-
rize the construction of a Hadamard-Cauchy matrix of order 2s mentioned in
Algorithm 1, we pick an ordered set of s + 1 linearly independent elements, we
call it the basis. We use the first s elements to span an ordered set S of 2s

elements, and add the last element z to all the elements in S. Next, we take the
inverse of each of the elements in this new set and we get the first row of the
Hadamard-Cauchy matrix. Lastly, we generate the matrix based on the first row
in the same manner as an Hadamard matrix.

For example, for an 8 × 8 Hadamard-Cauchy matrix over GF(24)/0x13, say
we choose x1 = 1, x2 = 2, x4 = 4, we generate the set S = {0, 1, 2, 3, 4, 5, 6, 7},
choosing z = 8 and taking the inverses in the new set, we get a Hadamard-Cauchy
matrix K = hc(15, 2, 12, 5, 10, 4, 3, 8). To make it involution, we multiply each
element by the inverse of the sum of the elements. However for this instance the
sum is 1, hence K is already an involutory MDS matrix.

One of the main differences between the Hadamard and Hadamard-Cauchy
matrices is the choice of entries. While we can choose all the entries for a

Hadamard matrix to be lightweight and permute them in search for an MDS
candidate, the construction of Hadamard-Cauchy matrix makes it nontrivial to
control its entries efficiently. Although in [20] the authors proposed a backward
re-construction algorithm that finds a Hadamard-Cauchy matrix with some pre-
decided lightweight entries, the number of entries that can be decided beforehand
is very limited. For example, for a Hadamard-Cauchy matrix of order 16, the
algorithm can only choose 5 lightweight entries, the weight of the other 11 entries
is not controlled. The most direct way to find a lightweight Hadamard-Cauchy
matrix is to apply Algorithm 1 repeatedly for all possible basis. We introduce
now new equivalence classes that will help us to exhaust all possible Hadamard-
Cauchy matrices with much lesser memory space and number of iterations.

Definition 8 Let K1 and K2 be two Hadamard-Cauchy matrices, we say they
are related, K1 ∼HC K2, if one can be transformed to the other by either one or
both operations on the first row of entries:

1. multiply by a nonzero scalar, and
2. H-permutation of the entries.

The crucial property of the construction is the independence of the elements
in the basis, which is not affected by multiplying a nonzero scalar. Hence, we can
convert any Hadamard-Cauchy matrix to an involutory Hadamard-Cauchy ma-
trix by multiplying it with the inverse of the sum of the first row and vice versa.
However, permutating the positions of the entries is the tricky part. Indeed, for
the Hadamard-Cauchy matrices of order 8 or higher, some permutations destroy
the Cauchy property, causing it to be non-MDS. Using our previous 8 × 8 ex-
ample, suppose we swap the first two entries, K ′ = hc(2, 15, 12, 5, 10, 4, 3, 8), it
can be verified that it is not MDS. To understand why, we work backwards to
find the basis corresponding to K ′. Taking the inverse of the entries, we have
{9, 8, 10, 11, 12, 13, 14, 15}. However, there is no basis that satisfies the 8 linear
equations for the entries. Thus it is an invalid construction of Hadamard-Cauchy
matrix. Therefore, we consider applying theH-permutation on Hadamard-Cauchy
matrix. Since it is also a Hadamard matrix, the H-permutation preserves its
branch number, thus it is still MDS. So we are left to show that a Hadamard-
Cauchy matrix that undergoes H-permutation is still a Hadamard-Cauchy ma-
trix.

Lemma 4 Given a 2s × 2s involutory Hadamard-Cauchy matrix K, there are
2s ·

∏s−1
i=0 (2s − 2i) involutory Hadamard-Cauchy matrices that are related to K

by the H-permutations of the entries of the first row.

With that, we can define our equivalence classes of involutory Hadamard-
Cauchy matrices.

Definition 9 An equivalence class of involutory Hadamard-Cauchy matrices is
a set of Hadamard-Cauchy matrices satisfying the equivalence relation ∼HC .

In order to count the number of equivalence classes of involutory Hadamard-
Cauchy matrices, we use the same technique for proving Theorem 3. To do that,
we need to know the total number of Hadamard-Cauchy matrices that can be
constructed from the Algorithm 1 for a given finite field.

Lemma 5 Given two natural numbers s and r, based on Algorithm 1, there are∏s
i=0(2r − 2i) many 2s × 2s Hadamard-Cauchy matrices over GF(2r).

Theorem 4 Given two positive integers s and r, there are
∏s−1
i=0

2r−1−2i
2s−2i equiva-

lence classes of involutory Hadamard-Cauchy matrices of order 2s over GF(2r).

In [15], the authors introduced the notion of compact Cauchy matrices which
are defined as Cauchy matrices with exactly 2s distinct elements. These matrices
seem to include Cauchy matrices beyond the class of Hadamard-Cauchy matri-
ces. However, it turns out that the equivalence classes of involutory Hadamard-
Cauchy matrices can be extended to compact Cauchy matrices.

Corollary 1 Any compact Cauchy matrices can be generated from some equiv-
alence class of involutory Hadamard-Cauchy matrices.

Note that since the permutation of the elements in S and z + S only results
in rearrangement of the entries of the compact Cauchy matrix, the XOR count
is invariant from Hadamard-Cauchy matrix with the same set of entries.

5 Searching for involutory MDS and non-involutory
MDS matrices

Due to space constraints, we have put respectively in Appendix B and C the
new methods we have designed to look for the lightest possible involutory MDS
and non-involutory MDS matrices.

More precisely, regarding involutory MDS matrices (see Appendix B), using
the previous properties and equivalence classes given in Sections 3 and 4 for
several matrix constructions, we have derived algorithms to search for the most
lightweight candidate. First, we point out that the circulant construction can not
lead to involutory MDS matrices, then we focus on the case of matrices of small
dimension using the Hadamard construction. For bigger dimension, we add the
Cauchy property to the Hadamard one in order to guarantee that the matrix will
be MDS. We recall that, similarity to a circulant matrix, an Hadamard matrix
will have the interesting property that each row is a permutation of the first
row, therefore allowing to reuse the multiplication circuit to save implementation
costs.

Regarding non-involutory MDS matrices (see Appendix C), we have extended
the involutory MDS matrix search to include non-involutory candidates. For

Hadamard construction, we removed the constraint that the sum of the first
row elements must be equal to 1. For the Hadamard-Cauchy, we multiply each
equivalent classes by a non-zero scalar value. We note that the disadvantage of
non-involutory MDS matrices is that their inverse may have a high computation
cost. But if the inverse is not required (for example in the case of popular con-
structions such as a Feistel network, or a CTR encryption mode), non-involution
matrices might be lighter than involutory matrices.

6 Results

We first emphasize that although in [20, 15] the authors proposed methods to
construct lightweight matrices, the choice of the entries are limited as mentioned
in Section 4.2. This is due to the nature of the Cauchy matrices where the
inverse of the elements are used during the construction, which makes it non-
trivial to search for lightweight Cauchy matrices7. However, using the concept of
equivalence classes, we can exhaust all the matrices and pick the lightest-weight
matrix.

We applied the algorithms of Section 5 to construct lightweight MDS in-
volutions over GF(28). We list them in the upper half of Table 1 and we can
see that they are much lighter than known MDS involutions like the KHAZAD

and ANUBIS, previous Hadamard-Cauchy matrices [6, 20] and compact Cauchy
matrices [15]. In lower half of Table 1, we list the GF(28) MDS matrices we
found using the methods of Appendix C and show that they are lighter than
known MDS matrices like the AES, WHIRLPOOL and WHIRLWIND matrices [17, 8,
7]. We also compare with the 14 lightweight candidate matrices C0 to C13 for
the WHIRLPOOL hash functions suggested during the NESSIE workshop [30, Sec-
tion 6]. Table 1 is comparing our matrices with the ones explicitly provided in the
previous articles. Recently, Gupta et al. [21] constructed some circulant matrices
that is lightweight for both itself and its inverse. However we do not compare
them in our table because their approach minimizes the number of XORs, look-
up tables and temporary variables, which might be optimal for software but not
for hardware implementations based purely on XOR count.

By Theorem 2 in Section 2, we only need to apply the algorithms from
Section 5 for half the representations of GF(28) when searching for optimal
lightweight matrices. And as predicted by the discussion after Theorem 1, the
lightweight matrices we found in Table 1 do come from GF(28) representations
with higher standard deviations.

We provide in the first column of the Table 1 the type of the matrices. They
can be circulant, Hadamard or Cauchy-Hadamard. The subfield-Hadamard con-
struction is based on the method of [24, Section 7.2] which we explain here.

7 Using direct construction, there is no clear implication for the choice of the ele-
ments αi and βj that will generate lightweight entries cij . On the other hand, every
lightweight entry chosen beforehand will greatly restrict the choices for the remaining
entries if one wants to maintain two disjoint sets of elements {αi} and {βj}.

Consider the MDS involution M = had(0x1, 0x4, 0x9, 0xd) over GF(24)/0x13
in the first row of Table 1. Using the method of [24, Section 7.2], we can ex-
tend it to a MDS involution over GF(28) by using two parallel copies of Q.
The matrix is formed by writing each input byte xj as a concatenation of two
nibbles xj = (xLj ||xRj). Then the MDS multiplication is computed on each half

(yL1 , y
L
2 , y

L
3 , y

L
4) = M ·(xL1 , xL2 , xL3 , xL4) and (yR1 , y

R
2 , y

R
3 , y

R
4) = M ·(xR1 , xR2 , xR3 , xR4)

over GF(24). The result is concatenated to form four output bytes (y1, y2, y3, y4)
where yj = (yLj ||yRj).

We could have concatenated different submatrices and this is done in the
WHIRLWIND hash function [7], where the authors concatenated four MDS sub-
matrices over GF(24) to form (M0|M1|M1|M0), an MDS matrix over GF(216).
The submatrices are non-involutory Hadamard matrices M0 = had(0x5, 0x4, 0xa,
0x6, 0x2, 0xd, 0x8, 0x3) andM1 = (0x5, 0xe, 0x4, 0x7, 0x1, 0x3, 0xf, 0x8) defined over
GF(24)/0x13. For fair comparison with our GF(28) matrices in Table 1, we con-
sider the corresponding WHIRLWIND-like matrix (M0|M1) over GF(28) which takes
half the resource of the original WHIRLWIND matrix and is also MDS.

The second column of the result tables gives the finite field over which the
matrix is defined, while the third column displays the first row of the matrix
where the entries are bytes written in hexadecimal notation. The fourth column
gives the XOR count to implement the first row of the n × n matrix. Because
all subsequent rows are just permutations of the first row, the XOR count to
implement the matrix is just n times this number. For example, to compute
the XOR count for implementing had(0x1, 0x4, 0x9, 0xd) over GF(24)/0x13, we
consider the expression for the first row of matrix multiplication 0x1·x1⊕0x4·x2⊕
0x9 ·x3⊕0xd ·x4. From Table 4 of Appendix F, the XOR count of multiplication
by 0x1, 0x4, 0x9 and 0xd are 0, 2, 1 and 3, which gives us a cost of (0 + 2 +
1 + 3) + 3 × 4 = 18 XORs to implement one row of the matrix (the summand
3 × 4 account for the three XORs summing the four nibbles). For the subfield
construction over GF(28), we need two copies of the matrix giving a cost of
18× 2 = 36 XORs to implement one row.

Due to page constraints, we only give comparisons with known lightweight
matrices over GF(28). The comparisons with GF(24) matrices will be provided
in the full version of the paper. In fact, the subfield-Hadamard constructions
in Table 1 already captures lightweight GF(24) matrices, and we show that our
construction are lighter than known ones. For example in the lower half of Ta-
ble 1, the GF(24) matrices M0 and M1 used in the WHIRLWIND hash function has
XOR count 61 and 67 respectively while our Hadamard matrix had(0x1, 0x2, 0x6,
0x8, 0x9, 0xc, 0xd, 0xa) has XOR count 54.

With our work, we can now see that one can use involutory MDS for almost
the same price as non-involutory MDS. For example in the upper half of Table 1,
the previous 4×4 MDS involution from [20] is about 3 times heavier than the AES
matrix8; but in this paper, we have used an improved search technique to find

8 We acknowledge that there are implementations that requires lesser XOR to imple-
ment directly the entire circulant AES matrix. However, the small savings obtained

an MDS involution lighter than the AES and ANUBIS matrix. Similarly, we have
found 8×8 MDS involutions which are much lighter than the KHAZAD involution
matrix, and even lighter than lightweight non-involutory MDS matrix like the
WHIRLPOOL matrix. Thus, our method will be useful for future construction of
lightweight ciphers based on involutory components like the ANUBIS, KHAZAD,
ICEBERG and PRINCE ciphers.

on XOR count are completely outweighed by the extra memory cost required for
such an implementation in terms of temporary variables.

Table 1: Comparison of MDS Matrices over GF(28). The upper table compares the
involutory MDS matrices, while the lower table compares the non-involutory MDS

matrices (the factor 2 is due to the fact that we have to implement two copies of the
matrices)

INVOLUTORY MDS MATRICES

matrix type finite field coefficients of the first row XOR count reference

4× 4 matrix

Subfield-Hadamard GF(24)/0x13 (0x1, 0x4, 0x9, 0xd) 2× (6 + 3× 4) = 36 Section B.2

Hadamard GF(28)/0x165 (0x01, 0x02, 0xb0, 0xb2) 16 + 3× 8 = 40 Section B.2

Hadamard GF(28)/0x11d (0x01, 0x02, 0x04, 0x06) 22 + 3× 8 = 46 ANUBIS [5]

Compact Cauchy GF(28)/0x11b (0x01, 0x12, 0x04, 0x16) 54 + 3× 8 = 78 [15]

Hadamard-Cauchy GF(28)/0x11b (0x01, 0x02, 0xfc, 0xfe) 74 + 3× 8 = 98 [20]

8× 8 matrix

Hadamard GF(28)/0x1c3 (0x01, 0x02, 0x03, 0x91, 0x04, 0x70, 0x05, 0xe1) 46 + 7× 8 = 102 Section B.2

Subfield-Hadamard GF(24)/0x13 (0x2, 0x3, 0x4, 0xc, 0x5, 0xa, 0x8, 0xf) 2× (36 + 7× 4) = 128 Section B.2

Hadamard GF(28)/0x11d (0x01, 0x03, 0x04, 0x05, 0x06, 0x08, 0x0b, 0x07) 98 + 7× 8 = 154 KHAZAD [6]

Hadamard-Cauchy GF(28)/0x11b (0x01, 0x02, 0x06, 0x8c, 0x30, 0xfb, 0x87, 0xc4) 122 + 7× 8 = 178 [20]

16× 16 matrix

Hadamard-Cauchy GF(28)/0x1c3
(0x08, 0x16, 0x8a, 0x01, 0x70, 0x8d, 0x24, 0x76,

258 + 15× 8 = 378 Section B.3
0xa8, 0x91, 0xad, 0x48, 0x05, 0xb5, 0xaf, 0xf8)

Hadamard-Cauchy GF(28)/0x11b
(0x01, 0x03, 0x08, 0xb2, 0x0d, 0x60, 0xe8, 0x1c,

338 + 15× 8 = 458 [20]
0x0f, 0x2c, 0xa2, 0x8b, 0xc9, 0x7a, 0xac, 0x35)

32× 32 matrix

Hadamard-Cauchy GF(28)/0x165

(0xd2, 0x06, 0x05, 0x4d, 0x21, 0xf8, 0x11, 0x62,

610 + 31× 8 = 858 Section B.3
0x08, 0xd8, 0xe9, 0x28, 0x4b, 0x96, 0x10, 0x2c,
0xa1, 0x49, 0x4c, 0xd1, 0x59, 0xb2, 0x13, 0xa4,
0x03, 0xc3, 0x42, 0x79, 0xa0, 0x6f, 0xab, 0x41)

Hadamard-Cauchy GF(28)/0x11b

(0x01, 0x02, 0x04, 0x69, 0x07, 0xec, 0xcc, 0x72,

675 + 31× 8 = 923 [20]
0x0b, 0x54, 0x29, 0xbe, 0x74, 0xf9, 0xc4, 0x87,
0x0e, 0x47, 0xc2, 0xc3, 0x39, 0x8e, 0x1c, 0x85,
0x58, 0x26, 0x1e, 0xaf, 0x68, 0xb6, 0x59, 0x1f)

NON-INVOLUTORY MDS MATRICES

matrix type finite field coefficients of the first row XOR count reference

4× 4 matrix

Subfield-Hadamard GF(24)/0x13 (0x1, 0x2, 0x8, 0x9) 2× (5 + 3× 4) = 34 Section C.2

Hadamard GF(28)/0x1c3 (0x01, 0x02, 0x04, 0x91) 13 + 3× 8 = 37 Section C.2

Circulant GF(28)/0x11b (0x02, 0x03, 0x01, 0x01) 14 + 3× 8 = 38 AES [17]

8× 8 matrix

Hadamard GF(28)/0x1c3 (0x01, 0x02, 0x03, 0x08, 0x04, 0x91, 0xe1, 0xa9) 40 + 7× 8 = 96 Section C.2

Circulant GF(28)/0x11d (0x01, 0x01, 0x04, 0x01, 0x08, 0x05, 0x02, 0x09) 49 + 7× 8 = 105 WHIRLPOOL [8]

Subfield-Hadamard GF(24)/0x13 (0x1, 0x2, 0x6, 0x8, 0x9, 0xc, 0xd, 0xa) 2× (26 + 7× 4) = 108 Section C.2

Circulant GF(28)/0x11d WHIRLPOOL-like matrices between 105 to 117 [30]

Subfield-Hadamard GF(24)/0x13 WHIRLWIND-like matrix 33 + 39 + 2× 7× 4 = 128 [7]

16× 16 matrix

Hadamard-Cauchy GF(28)/0x1c3
(0xb1, 0x1c, 0x30, 0x09, 0x08, 0x91, 0x18, 0xe4,

232 + 15× 8 = 352 Section C.3
0x98, 0x12, 0x70, 0xb5, 0x97, 0x90, 0xa9, 0x5b)

32× 32 matrix

Hadamard-Cauchy GF(28)/0x1c3

(0xb9, 0x7c, 0x93, 0xbc, 0xbd, 0x26, 0xfa, 0xa9,

596 + 31× 8 = 844 Section C.3
0x32, 0x31, 0x24, 0xb5, 0xbb, 0x06, 0xa0, 0x44,
0x95, 0xb3, 0x0c, 0x1c, 0x07, 0xe5, 0xa4, 0x2e,
0x56, 0x4c, 0x55, 0x02, 0x66, 0x39, 0x48, 0x08)

Acknowledgments

The authors would like to thank the anonymous referees for their helpful com-
ments. We also wish to thank Wang HuaXiong for providing useful and valuable
suggestions.

References

1. E. Andreeva, B. Bilgin, A. Bogdanov, A. Luykx, F. Mendel, B. Mennink, N. Mouha,
Q. Wang, and K. Yasuda. PRIMATEs v1. Submission to the CAESAR Competi-
tion, 2014. http://competitions.cr.yp.to/round1/primatesv1.pdf.

2. D. Augot and M. Finiasz. Direct Construction of Recursive MDS Diffusion Layers
using Shortened BCH Codes. In FSE, LNCS, 2014. To appear.

3. Daniel Augot and Matthieu Finiasz. Exhaustive search for small dimension re-
cursive MDS diffusion layers for block ciphers and hash functions. In ISIT, pages
1551–1555, 2013.

4. Jean-Philippe Aumasson, Luca Henzen, Willi Meier, and Maŕıa Naya-Plasencia.
Quark: A Lightweight Hash. In CHES, pages 1–15, 2010.

5. P. Barreto and V. Rijmen. The Anubis Block Cipher. Submission to the NESSIE
Project, 2000.

6. P. Barreto and V. Rijmen. The Khazad Legacy-Level Block Cipher. First Open
NESSIE Workshop, 2000.

7. Paulo S. L. M. Barreto, Ventzislav Nikov, Svetla Nikova, Vincent Rijmen, and
Elmar Tischhauser. Whirlwind: a new cryptographic hash function. Des. Codes
Cryptography, 56(2-3):141–162, 2010.

8. Paulo S. L. M. Barreto and Vincent Rijmen. Whirlpool. In Encyclopedia of Cryp-
tography and Security (2nd Ed.), pages 1384–1385. 2011.

9. Ray Beaulieu, Douglas Shors, Jason Smith, Stefan Treatman-Clark, Bryan Weeks,
and Louis Wingers. The SIMON and SPECK Families of Lightweight Block Ci-
phers. Cryptology ePrint Archive, Report 2013/404, 2013.

10. Thierry P. Berger. Construction of Recursive MDS Diffusion Layers from Gabidulin
Codes. In INDOCRYPT, volume 8250 of LNCS, pages 274–285. Springer, 2013.

11. A. Bogdanov, M. Knezevic, G. Leander, D. Toz, K. Varici, and I. Verbauwhede.
spongent: A Lightweight Hash Function. In CHES, pages 312–325, 2011.

12. Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel
Poschmann, Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.
PRESENT: An Ultra-Lightweight Block Cipher. In Pascal Paillier and Ingrid Ver-
bauwhede, editors, CHES, volume 4727 of LNCS, pages 450–466. Springer, 2007.

13. J. Borghoff, A. Canteaut, T. Güneysu, E. B. Kavun, M. Knezevic, L. R. Knudsen,
G. Leander, V. Nikov, C. Paar, C. Rechberger, P. Rombouts, S. S. Thomsen,
and T. Yalçin. PRINCE - A Low-Latency Block Cipher for Pervasive Computing
Applications - Extended Abstract. In ASIACRYPT, pages 208–225, 2012.

14. C. De Cannière, O. Dunkelman, and M. Knezevic. KATAN and KTANTAN - A
Family of Small and Efficient Hardware-Oriented Block Ciphers. In CHES, pages
272–288, 2009.

15. T. Cui, C.i Jin, and Z. Kong. On compact cauchy matrices for substitution-
permutation networks. IEEE Transactions on Computers, 99(PrePrints):1, 2014.

16. Joan Daemen, Lars R. Knudsen, and Vincent Rijmen. The Block Cipher Square.
In Eli Biham, editor, FSE, volume 1267 of LNCS, pages 149–165. Springer, 1997.

17. Joan Daemen and Vincent Rijmen. The Design of Rijndael: AES - The Advanced
Encryption Standard. Springer, 2002.

18. Jian Guo, Thomas Peyrin, and Axel Poschmann. The PHOTON Family of
Lightweight Hash Functions. In CRYPTO, pages 222–239, 2011.

19. Jian Guo, Thomas Peyrin, Axel Poschmann, and Matthew J. B. Robshaw. The
LED Block Cipher. In CHES, pages 326–341, 2011.

20. Kishan Chand Gupta and Indranil Ghosh Ray. On Constructions of Involutory
MDS Matrices. In AFRICACRYPT, pages 43–60, 2013.

21. Kishan Chand Gupta and Indranil Ghosh Ray. On Constructions of Circulant
MDS Matrices for Lightweight Cryptography. In ISPEC, pages 564–576, 2014.

22. Jorge Nakahara Jr. and lcio Abraho. A new involutory mds matrix for the aes. I.
J. Network Security, 9(2):109–116, 2009.

23. Pascal Junod and Serge Vaudenay. Perfect Diffusion Primitives for Block Ciphers.
In Helena Handschuh and M. Anwar Hasan, editors, Selected Areas in Cryptogra-
phy, volume 3357 of LNCS, pages 84–99. Springer, 2004.

24. K. Khoo, T. Peyrin, A. Poschmann, and H. Yap. FOAM: Searching for Hardware-
Optimal SPN Structures and Components with a Fair Comparison. In Crypto-
graphic Hardware and Embedded Systems CHES 2014, volume 8731 of Lecture
Notes in Computer Science, pages 433–450. Springer Berlin Heidelberg, 2014.

25. Jérôme Lacan and Jérôme Fimes. Systematic MDS erasure codes based on Van-
dermonde matrices. IEEE Communications Letters, 8(9):570–572, 2004.

26. S. Ling and C. Xing. Coding Theory: A First Course. Coding Theory: A First
Course. Cambridge University Press, 2004.

27. F.J. MacWilliams and N.J.A. Sloane. The Theory of Error-Correcting Codes.
North-holland Publishing Company, 2nd edition, 1986.

28. M. Sajadieh, M. Dakhilalian, H. Mala, and P. Sepehrdad. Recursive Diffusion
Layers for Block Ciphers and Hash Functions. In FSE, pages 385–401, 2012.

29. M.i Sajadieh, M. Dakhilalian, H. Mala, and B. Omoomi. On construction of in-
volutory MDS matrices from Vandermonde Matrices in GF(2 q). Des. Codes
Cryptography, 64(3):287–308, 2012.

30. T. Shirai and K. Shibutani. On the diffusion matrix employed in the Whirlpool
hashing function. NESSIE Phase 2 Report NES/DOC/EXT/WP5/002/1.

31. François-Xavier Standaert, Gilles Piret, Gaël Rouvroy, Jean-Jacques Quisquater,
and Jean-Didier Legat. ICEBERG : An Involutional Cipher Efficient for Block
Encryption in Reconfigurable Hardware. In FSE, pages 279–299, 2004.

32. Shengbao Wu, Mingsheng Wang, and Wenling Wu. Recursive Diffusion Layers for
(Lightweight) Block Ciphers and Hash Functions. In Selected Areas in Cryptogra-
phy, volume 7707 of LNCS, pages 355–371. Springer Berlin Heidelberg, 2013.

33. A. M. Youssef, S. Mister, and S. E. Tavares. On the Design of Linear Transforma-
tions for Substitution Permutation Encryption Networks. In Workshop On Selected
Areas in Cryptography, pages 40–48, 1997.

A Maximum Distance Separable matrices

Maximum Distance Separable matrices are crucial components in cryptographic
designs, as they ensure a perfect diffusion layer. Since we will search among
many lightweight candidate matrices and only keep the MDS ones, we recall in
this subsection a few definitions and properties regarding these mathematical
objects. We denote by Ik the k × k identity matrix.

Definition 10 The branch number of a k × k matrix M over GF(2r) is the
minimum number of nonzero entries in the input vector v and output vector
v · M = u (denoted wt(v) and wt(u) respectively), as we range over all v ∈
[GF(2r)]k − {0}. I.e. the branching number is equal to minx6=0{wt(v) + wt(u)},
and when the optimal value k + 1 is attained, we say M is an MDS matrix.

Definition 11 A length n, dimension k and distance d binary linear code [n, k, d]
is called a MDS code if the Singleton bound k = n− d+ 1 is met.

From [16, Section 4], we have the following proposition to relate an MDS
matrix to a MDS code.

Proposition 2 A k×k matrix M is an MDS matrix if and only if the standard
form generator matrix [Ik|M] generates a (2k, k, k + 1)-MDS code.

There are various ways to verify if a matrix is MDS, in this paper we state
two of the commonly used statements that can be used to identify MDS matrix.

Proposition 3 ([27], page 321, Theorem 8 - [26], page 53, Theorem 5.4.5)
Given a k × k matrix M , it is an MDS matrix if and only if

1. every square submatrix (formed from any i rows and any i columns, for any
i = 1, 2, ..., k) of M is nonsingular,

2. any k columns of [Ik|M] are linearly independent.

The two following corollaries are directly deduced from the first statement of
Proposition 3 when we consider submatrices of order 1 and 2 respectively.

Corollary 2 All entries of an MDS matrix are nonzero.

Corollary 3 Given a k×k matrix M , if there exists pairwise distinct i1, i2, j1, j2 ∈
{0, 1, ..., k − 1} such that M [i1, j1] = M [i1, j2] = M [i2, j1] = M [i2, j2], then M
is not an MDS matrix.

B Searching for MDS and involutory matrices

In this section, using the previous properties and equivalence classes given in
Sections 3 and 4 for several matrix constructions, we will derive algorithms to
search for lightweight involutory MDS matrices. First, we show that the circulant
construction can not lead to such matrices, then we focus on the case of matri-
ces of small dimension using the Hadamard construction. For bigger dimension,
we add the Cauchy property to the Hadamard one in order to guarantee that
the matrix will be MDS. We recall that, similarity to a circulant matrix, an
Hadamard matrix will have the interesting property that each row is a permu-
tation of the first row, therefore allowing to reuse the multiplication circuit to
save implementation costs.

B.1 Circulant MDS involution matrix does not exist

The reason why we do not consider circulant matrices as potential candidates
for MDS involution matrices is simple: it simply does not exist. In [22], the
authors proved that circulant matrices of order 4 cannot be simultaneously MDS
and involutory. And recently [21] proved that generic circulant MDS involutory
matrices do not exist.

B.2 Small dimension lightweight MDS involution matrices

The computation complexity for checking if a matrix is MDS and the huge search
space are two main complexity contributions to our exhaustive search algorithm
for lightweight Hadamard MDS matrices. The latter is greatly reduced thanks
to our equivalence classes and we now need an efficient algorithm for checking
the MDS property. In this section, using properties of Hadamard matrix, we
design a simple algorithm that can verify the MDS property faster than for usual
matrices. First, let us prove some results using Proposition 3. Note that Lemma 6
and Corollary 4 are not restricted to Hadamard matrices. Also, Corollary 4 is
the contra-positive of Lemma 6.

Lemma 6 Given a k × k matrix M , there exists a l × l singular submatrix if
and only if there exists a vector, v 6= 0, with at most l nonzero components such
that vM = u and the sum of nonzero components in v and u is at most k.

Corollary 4 Given a k × k matrix M , the sum of nonzero components of the
input and output vector is at least k + 1 for any input vector v with l nonzero
components if and only if all l × l submatrices of M are nonsingular.

One direct way for checking the MDS property is to compute the determi-
nant of all the submatrices of M and terminates the algorithm prematurely by
returning False when a singular submatrix is found. If no such submatrix has

been found among all the possible submatrices, the algorithm can return True.
Using the fact that the product of a Hadamard matrix with itself is a multiple
of an identity matrix, we can cut down the number of submatrices to be checked
with the following proposition.

Proposition 4 Given a k × k Hadamard matrix H with the sum c of first row
being nonzero (c 6= 0), if all submatrices of order l ≤ k

2 are nonsingular, then H
is MDS.

Fig. 1: The four quadrants of Hadamard matrix.

We can further reduce
the computation com-
plexity using the fact
that Hadamard matrices
are bisymmetric. Given
a Hadamard matrix, we
have four regions dis-
sected by the left and
right diagonal, namely
top, left, right and bot-
tom quadrant. For con-
vention, we let the diag-
onal entries to be in both quadrants. See Figure 1 for illustration, where the top
four entries ”a” belong to both top and left quadrants, while the bottom four
”a” belong to both bottom and right quadrant.

Proposition 5 Given a k × k Hadamard matrix H, if all submatrices L with
leading entry L[0, 0] in the top quadrant are nonsingular, then H is MDS.

Thanks to Propositions 4 and 5, our algorithm for checking the MDS property
of Hadamard matrices is now much faster than a naive method. Namely, given
a 2s × 2s Hadamard matrix, the algorithm to test its MDS property can be as
follows. First, we check that all entries are nonzero and for l = 2, . . . , 2s−1 we
check that the determinant of l×l submatrices with leading entry in top quadrant
is nonzero. If one submatrix fails, we output False. Once all the submatrices are
checked, we can output True.

Using this algorithm as the core procedure for checking the MDS property,
we can find the lightest-weight MDS involution Hadamard matrix by choosing a
set of elements that sum to 1 with the smallest XOR count, permute the entries
as mentioned in Section 4.1 and use this core procedure to check if it is MDS.
If all equivalence classes of Hadamard matrices are not MDS, we swap some
element in the set with another element with a slightly higher XOR count and
repeat the process until we find the first MDS involution Hadamard matrix with
the lowest possible XOR count. Eventually, we found the lightest-weight MDS
involution Hadamard matrix of order 4 and 8 over GF(24) and GF(28), which
can be found in the upper half of Table 1 in Section 6. We emphasize that our

results close the discussions on MDS involution Hadamard matrix of order 4 and
8, since our technique allows to take into account of all possible matrices.

B.3 Large dimension lightweight MDS involution matrices

The algorithm computation complexity grows exponentially with the matrix di-
mension, it is difficult to go to matrices of higher order. For that reason, we
reduce the search space from Hadamard to Hadamard-Cauchy matrices, which
guarantee the MDS property. Nevertheless, it is not feasible to generate and
store all possible Hadamard-Cauchy matrices. For 16 × 16 Hadamard-Cauchy
matrices over GF(28), by Lemma 5 we know there are almost a trillion distinct
candidates. This is where the idea of equivalence classes comes in handy again.
By Theorem 4, instead of storing over 9.7× 1011 matrices, all we need is to find
the 11811 equivalence classes. Even if memory space is not an issue, using Algo-
rithm 1 to exhaustively search for all Hadamard-Cauchy matrices requires about
239.9 iterations. In this subsection, we propose a deterministic and randomized
algorithm that only takes on average of 216.9 iterations to find all the equivalence
classes, which is equivalent to finding all possible Hadamard-Cauchy matrices.

First, we present two statements that are useful in designing the algorithm.

Lemma 7 Based on Algorithm 1, given a basis of s+1 ordered elements {x1, x2, x22 , ..., x2s−1 , z},
any permutation of the first s elements {σ(x1), σ(x2), σ(x22), ..., σ(x2s−1), z} will
form a Hadamard-Cauchy matrix that belongs to the same equivalence class.

Proposition 6 Given two positive integers s and r, where s < r, doing exhaus-
tive search through 1 ≤ x1 < x2 < x22 < ... < x2s−1 ≤ 2r and 1 ≤ z ≤ 2r is
sufficient to find all possible equivalence classes of involutory Hadamard-Cauchy
matrices.

We describe our search method in Algorithm 2 and one can see that it uses
most of Algorithm 1 as core procedure. We denote ConstructH-C* the proce-
dure ConstructH-C from Algorithm 2 where the values x1, x2, x22 , ..., x2s−1 and
z are given as inputs instead of chosen in the procedure. We first choose s + 1
linearly independent elements and apply Algorithm 1 to generate an involutory
Hadamard-Cauchy matrix. We initialise an array temp mat and a list list EC
to empty. Then, temp mat is the matrix considered at the current iteration, it
will be checked against list EC which is the list of equivalence classes of invo-
lutory Hadamard-Cauchy matrices that have been found. If temp mat is not a
permutation of any matrix in list EC, then a new equivalence class is found and
temp mat will be stored in list EC. When all the equivalence classes are found,
we terminates the algorithm, which will dramatically cut down the number of
iterations required.

From a representative of an equivalence class, one can obtain all the invo-
lutory Hadamard-Cauchy matrices of the same equivalence class through H-
permutations. Note that the H-permutation is also applicable to non-involutory
Hadamard-Cauchy matrices.

Algorithm 2 Finding all 2s × 2s equivalence classes of involutory Hadamard-
Cauchy matrices over GF(2r)/p(X).

INPUT: an irreducible polynomial p(X) of GF(2r), integers s, r satisfying s < r and
r > 1.

OUTPUT: a list of equivalence classes of involutory Hadamard-Cauchy matrix.

procedure GenECofInvH-C(r, p(X), s)

compute the total number of equivalence classes, EC =
∏s−1

i=0
2r−1−2i

2s−2i

initialize an empty set of arrays list EC
while (sizeof(list EC) 6= EC) do

select s linearly independent elements x1, x2, x22 , ..., x2s−1 from GF(2r)/p(X)
in ascending order

select element z as linearly independent of x1, x2, x22 , ..., x2s−1

temp mat = ConstructH-C*(r, p(X), s,True, x1, x2, x22 , ..., x2s−1 , z)
if temp mat is not a permutation of any matrix in list EC then

store temp mat into list EC
end if

end while
return list EC

end procedure

We remark that for 2× 2 and 4× 4 Hadamard-Cauchy matrices, any permu-
tation of the equivalence class is still an involutory Hadamard-Cauchy matrix.

Notice that Algorithm 2 is a deterministic search for the equivalence classes.
To further reduce the iterations needed, we propose to choose the s+ 1 elements
randomly. Using this randomized search, it takes about 216.9 iterations before
finding all the equivalence classes. Once all the equivalence classes of involu-
tory Hadamard-Cauchy matrices are found, we can check which matrix has the
lightest-weight.

Using the randomized search algorithm, we found the lightest-weight invo-
lution Hadamard-Cauchy matrix of order 16 and 32 over GF(28), which can be
found in the upper half of Table 1.

C Searching for MDS matrices

The disadvantage of using non-involution matrices is that its inverse may have a
high computation cost. But if the inverse is not required, non-involution matrices
might be lighter than involutory matrices. In this paper, we look at encryption
only and do not consider the reuse of component for encryption/decryption
(which can be studied in future work). Note that the inverse of the matrix
would not be required for popular constructions such as a Feistel network, or a
CTR encryption mode.

C.1 Circulant matrices

As the discussion on lightweight MDS circulant matrix is well-explored in [24],
we focus on Hadamard-based matrix and extend the exhaustive search for from
involutory to non-involutory lightest-weight MDS matrix.

C.2 Small dimension lightweight MDS matrices

The results in Section 4.1 and B.2 can also be applied on non-involution Hadamard
matrices. Thus the method of finding a lightweight MDS involution matrix is ba-
sically the same. We pick a set of low XOR count nonzero elements that does not
sum to 0, else it would be non-MDS, and apply the permutation method which
is discussed at the end of Section B.2 to check through all equivalence classes of
Hadamard matrices.

C.3 Large dimension lightweight MDS matrices

After finding all the equivalence classes of involutory Hadamard-Cauchy matrices
using the Algorithm 2, we can conveniently use this collection of equivalence
classes to find lightest-weight non-involutory Hadamard-Cauchy matrix. That
is to multiply by a nonzero scalar to each equivalence classes to generate all
possible Hadamard-Cauchy matrices up to permutation. In this way, it is more
efficient than exhaustive search on all possible Hadamard-Cauchy matrices as
we eliminated all the permutations of the Hadamard-Cauchy matrices that have
the same XOR count.

D Proofs

D.1 Proof of Theorem 1

We are interested in multiplying an arbitrary element α by β where α, β ∈
GF(2r). This can be done using a multiplication matrix Mβ ∈ GF(2)r×r, which
by definition satisfies

(Xr−1, Xr−2, . . . , 1)Mβ = (Xr−1β,Xr−2β, . . . , β).

To count the number of XORs needed to multiply α by β, it is enough to count
the number of 1’s per column of Mβ : if there are i 1’s, the number of XORs
needed is i− 1.

Example 1 Set r = 2, with irreducible polynomial p(X) = X2 +X + 1. Then

Mβ =

[
b1 b0 + b1
b0 b1

]
for β = b1X + b0. Thus

• when (b1, b0) = (0, 0), the number of XORs is 0,
• when (b1, b0) = (0, 1), the number of XORs is 0,
• when (b1, b0) = (1, 0), the number of XORs is 1,
• when (b1, b0) = (1, 1), the number of XORs is 1.

This corresponds to the Table 4 in Appendix F.

Thus to count the total number of XORs needed when summing over all
elements β, it is enough to count the number of 1’s in the columns of Mβ when
summing over all possible β. The matrix Mβ of course depends on the irreducible
polynomial p(X), however when summing over all β, the number of 1’s that
appears in each column does not depend on p(X), as we prove next. The first
column of Mβ is (br−1, . . . , b0) for β = br−1X

r−1 + . . .+ b1X + b0.

Lemma 8 The set {(br−1, . . . , b0), bi ∈ GF(2), i = 0, . . . , r − 1} is in bijection
with every column of Mβ.

Proof. This follows from GF(2r) being a finite field, thus multiplication by any
nonzero element is invertible. ut

Corollary 5 The number of XORs needed when summing over all β is r times
the number counted in the first column of Mβ.

Lemma 9 The number of XORs counted in the first column of Mβ is
∑r
i=2

(
r
i

)
(i−

1).

Proof. It is enough to count the number of 1’s in the vector (br−1, . . . , b0) when
all the bi run through GF(2), i = 0, . . . , r− 1. There are

(
r
i

)
possible patters of i

1’s among the r coefficients, and whenever there are i 1’s, the number of XORs
needed is (i− 1). ut

Corollary 6 The total number of XORs needed when summing over all β is
r
∑r
i=2

(
r
i

)
(i− 1).

Lemma 10 We have that
∑r
i=2

(
r
i

)
(i− 1) =

∑r
i=2 2i−2(i− 1).

Proof. 1. It is known that
∑n
k=1 k

(
n
k

)
= n2n−1. Thus

∑r
i=2

(
r
i

)
(i−1) = r2r−1−

2r + 1.

2. It is known that
∑n
k=1 kx

k = x−(n+1)xn+1+nxn+2

(x−1)2 .

Thus, we have
∑r
i=2 2i−2(i− 1) = 1− r2r−1 + (r − 1)2r. ut

Corollary 7 The number of XORs needed when summing over all β is r
∑r
i=2 2i−2(i−

1).

D.2 Proof of Theorem 2

Proof. We already mentioned in the introduction that the finite field GF(2r)/p(X)
is isomorphic to polynomials in GF(2)[X] modulo the irreducible polynomial
p(X). Since p(X) = 0 in this field, we may alternatively describe GF(2r)/p(X)
as the field extension of GF(2), obtained by adding a root α of p(X) to GF(2),
in which case we write (and say) that GF(2r)/p(X) is isomorphic to GF(2)(α),
with p(α) = 0. Similarly GF(2r)/ 1

p (X) contains an element, say β such that
1
p (β) = 0, and GF(2r)/ 1

p (X) is isomorphic to GF(2)(β).

Since

0 =
1

p
(β) = βrp(β−1),

it must be that p(β−1) = 0. Write a generic element of GF(2)(α) as a0 + a1α+
. . .+ar−1α

r−1, ai ∈ GF(2) by fixing {1, . . . , αr−1} as GF(2)-basis, and similarly
a generic element of GF(2)(β) as b0 + b1β + . . . + br−1β

r−1, bi ∈ GF(2), by
fixing {1, . . . , βr−1} as GF(2)-basis. Define ψ : GF(2)(α) → GF(2)(β) by ψ :∑r−1
i=0 aiα

i 7→
∑r−1
i=0 aiβ

−i, i = 0, . . . , r − 1. Then ψ is a field isomorphism.
Indeed

ψ(

r−1∑
i=0

aiα
i +

r−1∑
i=0

a′iα
i) = ψ(

r−1∑
i=0

(ai + a′i)α
i)

=

r−1∑
i=0

(ai + a′i)β
−i = ψ(

r−1∑
i=0

aiα
i) + ψ(

r−1∑
i=0

a′iα
i)

Also, to show that

ψ(

r−1∑
i=0

aiα
i
r−1∑
i=0

a′iα
i) = ψ(

r−1∑
i=0

aiα
i)ψ(

r−1∑
i=0

a′iα
i)

it is enough to show that ψ(αr) = ψ(α)r. Write p(X) = p0 + p1X + . . . +
pr−1X

r−1 +Xr. Now, recalling that α is a root of p(X)

ψ(αr) = ψ(p0 + p1α+ . . .+ pr−1α
r−1)

= p0 + p1ψ(α) + . . .+ pr−1ψ(α)r−1 = p0 + p1β
−1 + . . .+ pr−1β

−r+1,

while
ψ(α)r = β−r = p0 + p1β

−1 + . . .+ pr−1β
−r+1

since p(β−1) = 0. Note that ψ is necessarily injective since GF(2)(α) is a field,
ψ is then necessarily surjective since |GF(2)(β)| is finite. This shows that ψ is a
field isomorphism.

Now α may or not be a primitive element. Recall that α is primitive if it is
such that α2r−1 = 1 and there is no i, 0 < i < 2r − 1 such that αi = 1. Suppose
first that α is a primitive element of GF(2)(α) (this happens for example if 2r−1
is prime). Take again a generic element of GF(2)(α) as a0+a1α+ . . .+ar−1α

r−1,

ai ∈ GF(2) by fixing the same GF(2)-basis, that is {1, . . . , αr−1}. To compute
the XOR of αj in GF(2)(α) (or equivalently in GF(2r)/p(X)), compute

(a0 + a1α+ . . .+ ar−1α
r−1)αj , 1 ≤ j ≤ 2r − 1

since α is primitive. The distribution of XOR counts obtained that way is the
same as the distribution of XOR counts while computing instead

(a0 + a1α
−1 + . . .+ ar−1α

−(r−1))αj =

r−1∑
i=0

dijα
−i

where dij , 0 ≤ i ≤ r−1, decides the number of XOR of αj , 1 ≤ j ≤ 2r−1. Indeed,

the sets {
∑r−1
i=0 aiα

i+j , 1 ≤ j ≤ 2r − 1} and {
∑r−1
i=0 aiα

−i+j , 1 ≤ j ≤ 2r − 1}
are the same, up to relabeling the ai and recalling that α2r−1 = 1. Furthermore,
the computations of αi and α−i need the same number of XOR, since p(α) and
α−rp(α) have the same number of non-zero coefficients. Then

ψ((a0 + a1α
−1 + . . .+ ar−1α

−(r−1))αj) = (a0 + a1ψ(α)−1 + . . .+ ar−1ψ(α)−(r−1))ψ(αj)

= (a0 + a1β + . . .+ ar−1β
r−1)β−j

=

r−1∑
i=0

dijβ
i

thus the number of XOR of the element β−j in GF(2)(β) in the GF(2)-basis
{1, . . . , βr−1} is the same as the XOR count of αj in GF(2)(α).

If α is not primitive, take α′ a primitive element of GF(2)(α), write it in the
GF(2)-basis {1, α, . . . , αr−1} and apply the same argument on αi.

Consider for instance the finite field GF(24)/0x13 and GF(24)/0x19, corre-
sponding to the polynomials p(X) = X4+X+1 and 1

p (X) = X4+X3+1 respec-

tively. In GF(24)/0x13, 2 is a primitive element. In GF(24)/0x19, compute the
inverse of the polynomial X, which is X3+X2 since X(X3+X2) = X4+X3 = 1
(mod X4 +X + 1). The isomorphism ψ is thus sending 2 to 12. ut

D.3 Proof of Proposition 1

Proof. If two Hadamard matrices H1 and H2 are equivalent, H1 ∼ H2, then for
every pair of input and output vectors for H1, there is a corresponding pair of
vectors for H2 with the same sum of nonzero components. Therefore, by taking
the minimum over all pairs, we deduce that both matrices have the same branch
number. ut

D.4 Proof of Lemma 1

Proof. By definition of the Hadamard matrix, we can express the two matrices
as H = had(h0, h1, ..., hk−1) and H(α) = had(hα, hα⊕1, ..., hα⊕(k−1)). Let v =

(v0, v1, . . . , vk−1) and v(α) = (vα, vα⊕1, . . . , vα⊕(k−1)) be the input vector for H

and H(α), u and u(α) be the output vector respectively.

From our example with σ1, we see that if the same permutation α is applied
to H and to the input vector v, the output vectors are equal, i.e. u(α) = u. This
is indeed true in general, it is known that the (j+1)-th component of the output
vector is the sum (or XOR as we are working over GF(2r)) of the product of the
input vector and (j + 1)-th column of the matrix. We can express the (j + 1)-th
component of u(α) as

u
(α)
j =

k−1⊕
i=0

v
(α)
i H(α)[i, j] =

k−1⊕
i=0

vα⊕ihα⊕i⊕j ,

since XOR is commutative, the order of XOR is invariant, therefore u
(α)
j = uj .

ut

D.5 Proof of Lemma 3

Proof. For simplicity, we see how the indices of the elements are permuted. As
mentioned, we need to map identity to itself, σ(0) = 0. After index 0 is fixed,
index 1 can be mapped to any of the remaining 2s−1 indices. Similarly for index
2, there are 2s − 2 choices. But for index 3, because of the linear relation, its
image is defined by the mapping of index 1 and 2: σ(3) = σ(1)⊕ σ(2).

Following this pattern, we can choose the permutation for index 4 among the
2s− 4 index, while 5, 6 and 7 are defined by σ(1), σ(2) and σ(4). Therefore, the
total number of possible permutations is

(2s − 1)(2s − 2)(2s − 4)...(2s − 2s−1) =

s−1∏
i=0

(2s − 2i). ut

D.6 Proof of Theorem 3

Proof. To prove this theorem, we use the double counting proof technique that
is commonly used in combinatorics. We count the total number of permutations
of Hadamard matrices for a given set of elements.
Counting 1: there is a total of (2s)! permutations for the given set of elements.
Counting 2: for each of the equivalence classes of Hadamard matrix, by Lemma 2
and 3, there are

∏s−1
i=0 (2s − 2i) linear permutations. For each of these permuta-

tions, by Lemma 1, there are 2s permutations by defining a new Hadamard from
one of the row. Therefore the total number of permutations is

{# of equivalence classes}

(
s−1∏
i=0

(2s − 2i)

)
(2s) .

Equating these two expressions together, we get

{# of equivalence classes} =
(2s − 1)!∏s−1
i=0 (2s − 2i)

. ut

D.7 Proof of Lemma 4

Proof. We first show that a H-permutation of the first row of a Hadamard-
Cauchy matrix is equivalent to choosing a different set of basis. Let K =
hc(1

z ,
1

z⊕x1
, 1
z⊕x2

, 1
z⊕x3

, ..., 1
z⊕x2s−1

) be an involutory Hadamard-Cauchy matrix.

Under the type 1 of H-permutation, for some α ∈ {1, ..., 2s − 1}, we have
K ′ = hc(1

z⊕xα ,
1

z⊕x1⊕xα ,
1

z⊕x2⊕xα ,
1

z⊕x3⊕xα , ...,
1

z⊕x2s−1⊕xα). From this, we can

see that z′ = z ⊕ xα while the first s elements {x2j},∀j = 0, 1, ..., s− 1, remain
unchanged. Since z′ is not a linear combination of the s elements, we have our
s + 1 linearly independent elements. Under the type 2 of H-permutation, since
σ(0) = 0, the last element z remain unchanged. Therefore, it is a linear permuta-
tion (w.r.t. XOR) on the set S and the new s elements {x′2j},∀j = 0, 1, ..., s− 1
are still linearly independent. Again, we have our s+ 1 linearly independent ele-
ments. Finally, as mentioned before in Lemma 1 and 3, there are 2s ·

∏s−1
i=0 (2s−2i)

ways of H-permutations. ut

D.8 Proof of Lemma 5

Proof. As we can see from Algorithm 1, we need to choose s+ 1 many linearly
independent ordered elements from GF(2r) to construct a Hadamard-Cauchy
matrix. For the (t + 1)-th element, where 0 ≤ t ≤ s, it cannot be a linear
combination of the t previously chosen elements, hence there are 2r − 2t many
choices. Therefore, there are (2r − 1)(2r − 2)(2r − 4)...(2r − 2s) ways to choose
s+ 1 linearly independent ordered elements. ut

D.9 Proof of Theorem 4

Proof. Again, we use the double counting to prove this theorem. We count the
total number of distinct Hadamard-Cauchy matrices that can be generated from
Algorithm 1.
Counting 1: by Lemma 5, the total number of distinct Hadamard-Cauchy ma-
trices generated from the algorithm is

∏s
i=0(2r − 2i).

Counting 2: for each of the equivalence classes of involutory Hadamard-Cauchy
matrices, by Lemma 4, there are 2s ·

∏s−1
i=0 (2s−2i) involutory Hadamard-Cauchy

matrices that are related. Moreover, for each of the involutory Hadamard-Cauchy
matrices, we can multiply by a nonzero scalar to obtain another related Hadamard-
Cauchy matrix, thus there are another factor 2r−1 of distinct Hadamard-Cauchy

matrices. Therefore, the total number of distinct Hadamard-Cauchy matrices is

{# of equivalence classes}

(
2s ·

s−1∏
i=0

(2s − 2i)

)
(2r − 1) .

Equating these two expressions together, we get

{# of equivalence classes} =

s−1∏
i=0

2r−1 − 2i

2s − 2i
. ut

D.10 Proof of Corollary 1

Proof. We count the number of distinct compact Cauchy matrices that can be
generated from one equivalence class. Taking the first row of an equivalence class
of involutory Hadamard-Cauchy matrices, we can multiply it by a nonzero scalar.
The inverse of these entries corresponds to a set of 2s nonzero elements. Each of
these elements can be defined to be z and we have a set S and z ∈ GF(2r) \ S.
Note that S is closed under XOR operation and in the context of [15], we can
regard S as a subgroup of GF(2r) defined under XOR operation. Finally, by
fixing the first element of S and z+S to be 0 and z repectively, we have (2s−1)!
permutation for each set S and z + S. Each arrangement generates a distinct
compact Cauchy matrix. Therefore, considering all equivalence classes, we can
obtain (

s−1∏
i=0

2r−1 − 2i

2s − 2i

)
(2r − 1)(2s) ((2s − 1)!)

2

distinct compact Cauchy matrices, which coherent to Theorem 3 of [15]. ut

D.11 Proof of Lemma 6

Proof. Suppose there exists a l× l singular submatrix, by the first statement of
Proposition 3, M is not MDS and thus from the second statement, there exists k
columns of [Ik|M] that are linearly dependent, in particular, k− l columns from
Ik and l columns from M . Let L be the square matrix comprising these k linearly
dependent columns. From linear algebra, there exists nonzero vector, v, such that
the output is a zero vector, vL = 0. For the columns from Ik, there is exactly one
1 and 0 for the other entries, this implies that the components of v corresponding
to these columns are zero, else the output will be nonzero. Therefore, there are
at most l nonzero components in v. Now, let us consider vM = u, for the l
columns of M that are also in L, the corresponding output components are zero,
as vL = 0. Thus, there are at most k − l nonzero components in u. Hence, the
sum of nonzero components in v and u is at most k. The converse is similar,
we consider v[Ik|M] = [v|u], since there are at most k nonzero components in
[v|u], we pick k− l columns of Ik and k columns of M corresponding to the zero
components in [v|u] to form a singular square matrix L. The determinant of L
is equal to some l × l submatrix of M , which is also singular. ut

D.12 Proof of Proposition 4

Proof. Suppose not, there exists submatrix of order l ≥ k
2 + 1 that is singular.

By Lemma 6, there exists a vector, v 6= 0, with at most l nonzero components
such that vH = u and u has at most k − l nonzero components. Right multiply
H to the equation and we get c2v = uH, where c 6= 0, hence the number of
nonzero component of c2v is the same as v. However, since u has k − l ≤ k

2
nonzero components, by Corollary 4, the sum of nonzero components is at least
k + 1. This contradicts that v has at most l nonzero components. ut

D.13 Proof of Proposition 5

Proof. It is known that the determinant of a matrix remains unchanged when
it undergoes left or right diagonal reflection. Thus, it is sufficient to show that
for any submatrix, it corresponds to some submatrix with the leading entry in
top quadrant. This can be shown by looking at the reflection through the left
and/or right diagonal. Consider the submatrices case by case:

• case A: the leading entry is in left quadrant. Through the left diagonal re-
flection, we can see that it is same as a submatrix with leading entry in
top quadrant. Refer to Figure 2a, the red submatrix is reflected at the blue
matrix with leading entry in top quadrant.

• case B1: the leading entry is not in left quadrant and ending entry is in right
quadrant. Through the right diagonal reflection, the ending entry L[l−1, l−1]
of red submatrix is reflected to the leading entry in the top quadrant of the
blue submatrix, see Figure 2b. Since the determinant does not change, the
red submatrix will be nonsingular if the blue matrix is nonsingular.

• case B2: the leading entry is not in left quadrant and ending entry is in bot-
tom quadrant. From Figure 2c, we see that through left diagonal reflection,
the ending entry is now in the right quadrant, which is the case B1. ut

(a) Case A. (b) Case B1. (c) Case B2.

Fig. 2: Submatrices Reflections

D.14 Proof of Lemma 7

Proof. Since we are taking the span of the ordered set {x1, x2, x22 , ..., x2s−1} and
adding z to the span, it is obvious that permuting {x2i} will only permute the
order of the entries of K. ut

D.15 Proof of Proposition 6

Proof. Any linearly independent ordered set of elements {x1, x2, x22 , ..., x2s−1}
that are not in ascending order is simply some permutation of a set in ascending
order. By Lemma 7, it forms a Hadamard-Cauchy matrix of the same equivalence
class. ut

E Primitive mapping between finite fields

Table 2: Primitive mapping from GF(24)/0x13 to GF(24)/0x19

order
0x13 0x19

(10011) (11001)
x XOR x XOR

α 2 1 12 1

α2 4 2 6 2

α3 8 3 3 3

α4 3 5 13 5

α5 6 5 10 5

α6 12 5 5 5

α7 11 6 14 6

order
0x13 0x19

(10011) (11001)
x XOR x XOR

α8 5 6 7 6

α9 10 8 15 8

α10 7 9 11 9

α11 14 8 9 8

α12 15 6 8 6

α13 13 3 4 3

α14 9 1 2 1

Table 3: Primitive mapping from finite field to its reciprocal finite field

finite field p(X) 1
p
(X)

primitive
mapping

GF(22) 0x7 - φ : 2 7→ 3

GF(23) 0xb 0xd φ : 2 7→ 6

GF(24)
0x13 0x19 φ : 2 7→ 12
0x1f - φ : 3 7→ 5

GF(25)
0x25 0x29 φ : 2 7→ 20
0x3d 0x2f φ : 2 7→ 23
0x37 0x3b φ : 2 7→ 29

GF(26)

0x43 0x61 φ : 2 7→ 48
0x57 0x75 φ : 3 7→ 59
0x67 0x73 φ : 2 7→ 57
0x49 - φ : 3 7→ 37

GF(27)

0x83 0xc1 φ : 2 7→ 96
0xab 0xd5 φ : 2 7→ 106
0x8f 0xf1 φ : 2 7→ 120
0xfd 0xbf φ : 2 7→ 95
0xb9 0x9d φ : 2 7→ 78
0x89 0x91 φ : 2 7→ 72
0xe5 0xa7 φ : 2 7→ 83
0xef 0xf7 φ : 2 7→ 123
0xcb 0xd3 φ : 2 7→ 105

finite field p(X) 1
p
(X)

primitive
mapping

GF(28)

0x11d 0x171 φ : 2 7→ 184
0x177 0x1dd φ : 3 7→ 239
0x1f3 0x19f φ : 6 7→ 103
0x169 0x12d φ : 2 7→ 150
0x1bd 0x17b φ : 7 7→ 95
0x1e7 0x1cf φ : 2 7→ 231
0x12b 0x1a9 φ : 2 7→ 212
0x1d7 - φ : 7 7→ 116
0x165 0x14d φ : 2 7→ 166
0x18b 0x1a3 φ : 6 7→ 104
0x163 0x18d φ : 2 7→ 198
0x11b 0x1b1 φ : 3 7→ 217
0x13f 0x1f9 φ : 3 7→ 253
0x15f 0x1f5 φ : 2 7→ 250
0x1c3 0x187 φ : 2 7→ 195
0x139 - φ : 3 7→ 157

F Tables of XOR count

Table 4: XOR count for GF(22), GF(23) and GF(24)

x
GF(22) GF(23) GF(24)
0x7 0xb 0xd 0x13 0x19 0x1f

0 0 0 0 0 0 0

1 0 0 0 0 0 0

2 1 1 1 1 1 3

3 1 4 2 5 3 5

4 − 2 3 2 3 3

5 − 1 4 6 5 5

6 − 4 1 5 2 6

7 − 3 4 9 6 6

8 − − − 3 6 3

9 − − − 1 8 5

10 − − − 8 5 6

11 − − − 6 9 6

12 − − − 5 1 6

13 − − − 3 5 6

14 − − − 8 6 5

15 − − − 6 8 3

mean 1.88 1.88 4.25 4.25 4.25

σ 1.4569 1.4569 2.6800 2.6800 1.7075

