
Efficient Recursive Diffusion Layers for
Block Ciphers, and Hash Functions ?

Mahdi Sajadieh1, Mohammad Dakhilalian2, Hamid Mala3, and Pouyan Sepehrdad4

1 Department of Electrical Engineering , Islamic Azad University, Khorasgan Branch, Isfahan, Iran
2 Department of Electrical and Computer Engineering, Isfahan University of Technology, Isfahan, Iran

3 Department of Information Technology Engineering, University of Isfahan, Isfahan, Iran
4 EPFL, Lausanne, Switzerland
m.sajadieh@khuisf.ac.ir,

mdalian@cc.iut.ac.ir,

h.mala@eng.ui.ac.ir,

pouyan.sepehrdad@epfl.ch

Abstract. Many modern block ciphers use maximum distance separable (MDS) matrices as the main
part of their diffusion layers. In this paper, we propose a very efficient new class of diffusion layers
constructed from several rounds of Feistel-like structures whose round functions are linear. We investi-
gate the requirements of the underlying linear functions to achieve the maximal branch number for the
proposed 4 × 4 words diffusion layer, which is an indication of highest level of security with respect to
linear and differential attacks. We try to extend our results for up to 8 × 8 words diffusion layers. The
proposed diffusion layers only require simple operations such as word-level XORs, rotations, and they
have simple inverses. They can replace the diffusion layer of several block ciphers and hash functions
in the literature to increase their security, and performance. Furthermore, it can be deployed in the
design of new efficient lightweight block ciphers and hash functions in future.

Keywords: Block ciphers, Diffusion layer, Branch number, MDS matrix

1 Introduction

Block ciphers are one of the most important building blocks in many security protocols. Modern block ciphers
are cascades of several rounds where every round consists of confusion and diffusion layers. In many block
ciphers, while the confusion layer is often realized as a parallel application of non-linear substitution boxes (S-
boxes), the diffusion layer is built from a linear transformation. The diffusion layer plays an efficacious role in
providing resistance against the most well-known attacks on block ciphers, such as differential cryptanalysis
(DC) [2], and linear cryptanalysis (LC) [8].

When considering a word-based linear transformation, where the word size is equal to the input/output
size of the S-box, the branch number provides a lower bound on the number of active S-boxes throughout the
diffusion layer for differential and linear attacks. The goal for a designer is to maximize this number, in order
to diffuse the non-linear properties of the S-Boxes faster to the subsequent rounds of the cipher. The faster
this non-linearity spreads, the less number of rounds the cipher requires to become secure against linear and
differential attacks. It has been shown that the maximal branch number for a linear transformation of s
words is s+ 1 and diffusion layers with maximal branch number can be achieved by using MDS matrices [4].

An MDS matrix (Maximum Distance Separable) is a matrix representing a function with certain diffusion
properties that have useful applications in cryptography. Technically, an m × n matrix A over a finite field
K is an MDS matrix if it is the transformation matrix of a linear transformation f(x) = Ax from Kn to Km

such that no two different (m+n)-tuples of the form (x, f(x)) coincide in n or more components. Equivalently,
the set of all (m+ n)-tuples (x, f(x)) is an MDS code, i.e. a linear code that reaches the Singleton bound.

? This paper was solicited by the Editors-in-Chief as one of the best papers from FSE 2012, based on the recom-
mendation of the program committee.

In 1994, Vaudenay [11, 12] suggested using MDS matrices in cryptographic primitives to produce what
he called multipermutations, not-necessarily linear functions with the same property. These functions have
what he called perfect diffusion: changing t of the inputs change at least m− t+ 1 of the outputs. He showed
how to exploit imperfect diffusion to cryptanalyze functions that are not multipermutations. MDS matrices
were later used in many block ciphers such as Square, SHARK, AES, Twofish, Hierocrypt, and Camelia and
in the stream cipher MUGI and the cryptographic hash function Whirlpool.

The common approach to construct MDS matrices is to extract them from MDS codes such as Reed-
Solomon codes [7]. However, constructing MDS diffusion layers with low-cost implementations is a challenge
for designers. Another problem arises when MDS diffusion layers are exploited in substitution-permutation
networks (SPN), where the MDS matrix is used in the encryption and its inverse is used in the decryption
process. Thus, constructing MDS matrices with low-cost inverse is of great importance.

In this paper, we propose a new method to construct low-cost diffusion layers with an extra property
that their inverse can also be implemented efficiently. We call the proposed layer a recursive diffusion layer.
It is constructed from several rounds of Feistel-like structures whose round functions are linear. It consists
of simple linear operations such as shift, rotation and XOR with very similar inversion operations. We are
going to elaborate on the conditions for the underlying linear function to be an MDS matrix using one or
multiple such linear functions by proposing a systematic method to find them. We believe that our proposed
solution would be a rather simple recipe for designing a diffusion layer with maximal branch number and
will be useful for future designs of cryptographic algorithms.

1.1 Notations

Let x be an array of s n-bit elements x = [x0(n), x1(n), · · · , xs−1(n)]. The number of non-zero elements in x
is denoted by w(x), also known as the Hamming weight of x. The following notations are used throughout
this paper:

⊕ : The bit-wise XOR operation
& : The bit-wise AND operation
Li : Any linear function
Li : The linear operator corresponding to the linear function Li

(L1 ⊕ L2)(x) : L1(x)⊕ L2(x)
L1L2(x) : L1(L2(x))
L2
1(x) : L1(L1(x))

I(·) function : Identity function, I(x) = x
x� m (x� m) : Shift of a bit string x by m bits to the right (left)
x≫ m (x≪ m) : Circular shift of a bit string x by m bits to the right (left)
| · | : Determinant of a matrix in GF(2)
a||b : Concatenation of two bit strings a and b
x(n) : An n-bit value x

For a diffusion layer D applicable on x, we have the following definitions:

Definition 1 ([4]). The differential branch number of a linear diffusion layer D is defined as:

βd(D) = min
x6=0
{w(x) + w(D(x))}

We know that the linear function D can be shown as a binary matrix B, and Dt is a linear function
obtained from Bt, where Bt is the transposition of B.

Definition 2 ([4]). The linear branch number of a linear diffusion layer D is defined as:

βl(D) = min
x6=0
{w(x) + w(Dt(x))}

2

It is well known that for a diffusion layer acting on s-word inputs, the maximal βd and βl are s + 1 [4].
A diffusion layer D taking its maximal βd and βl is called a perfect or MDS diffusion layer. Furthermore, a
diffusion layer with βd = βl = s is called an almost perfect diffusion layer [4].

1.2 Our contribution

In this paper, we define the notion of a recursive diffusion layer, and propose a method to construct such
perfect diffusion layers.

Definition 3. A diffusion layer D with s words xi as the input and s words yi as the output is called a
recursive diffusion layer if it can be represented in the following form:

D :


y0 = x0 ⊕ F0(x1, x2, . . . , xs−1)
y1 = x1 ⊕ F1(x2, x3, . . . , xs−1, y0)
...
ys−1 = xs−1 ⊕ Fs−1(y0, y1, . . . , ys−2)

(1)

where F0, F1,. . . , Fs−1 are arbitrary linear functions.

An advantage of this structure is that the inverse of D is very similar to D, and does not require the inverse
of Fi functions. The inverse can be computed as:

D−1 :


xs−1 = ys−1 ⊕ Fs−1(y0, y1, . . . , ys−2)
xs−2 = ys−2 ⊕ Fs−2(xs−1, y0, . . . , ys−3)
...
x0 = y0 ⊕ F0(x1, x2, . . . , xs−1)

(2)

As an example, consider a 2-round Feistel structure with a linear round function L as a recursive diffusion
layer with s = 2. The input-output relation for this diffusion layer is:

D :

{
y0 = x0 ⊕ L(x1)
y1 = x1 ⊕ L(y0)

The quarter-round function of the stream cipher Salsa20 is an example of a non-linear recursive diffusion
layer [1].

D :


y1 = x1 ⊕ ((x0 + x3) ≪ 7)
y2 = x2 ⊕ ((x0 + y1) ≪ 9)
y3 = x3 ⊕ ((y1 + y2) ≪ 13)
y0 = x0 ⊕ ((y2 + y3) ≪ 18)

Also, the lightweight hash function PHOTON [5] and the block cipher LED [6] use MDS matrices based
on Eq. (1). In these ciphers, an m×m MDS matrix Bm was designed based on the following matrix B for
the performance purposes:

B =


0 1 0 · · · 0
0 0 1 · · · 0
...

. . .

0 0 0 · · · 1
1 Z1 Z2 · · · Zm−1


By matrix B, one element of m inputs is updated and other elements are shifted. If we use Bm, all inputs

are updated, but we must check if this matrix is MDS. One example for m = 4 is the PHOTON matrix
working over GF(28) :

3

B =


0 1 0 0
0 0 1 0
0 0 0 1
1 2 1 4

⇒ B4 =


1 2 1 4
4 9 6 17
17 38 24 66
66 149 100 11


In this paper, we propose a new approach to design linear recursive diffusion layers with the maximal

branch number in which Fi’s are composed of one or two linear functions and a number of XOR operations.
The design of the proposed diffusion layer is based on the invertibility of some simple linear functions in
GF(2). Linear functions in this diffusion layer can be designed to be low-cost for different sizes of the input
words, thus the proposed diffusion layer might be appropriate for resource-constrained devices, such as RFID
tags. Although these recursive diffusion layers are not involutory, they have similar inverses with the same
computational complexity.

This paper proceeds as follows: In Section 2, we introduce the general structure of our proposed recursive
diffusion layer. Then, for one of its instances, we systematically investigate the required conditions for the
underlying linear function to achieve the maximal branch number. In Section 3, we propose some other
recursive diffusion layers with less than 8 input words and only one linear function. We use two linear
functions to have a perfect recursive diffusion layer for s > 4 in Section 4. Finally, we conclude the paper in
Section 5.

2 The Proposed Diffusion Layer

In this section, we introduce a new perfect linear diffusion layer with a recursive structure. The diffusion
layer D takes s words xi for i = {0, 1, . . . , s− 1} as input, and returns s words yi for i = {0, 1, . . . , s− 1} as
output. So, we can represent this diffusion layer as:

y0||y1|| · · · ||ys−1 = D(x0||x1|| · · · ||xs−1)

The first class of the proposed diffusion layer D is represented in Fig. 1, where L is a linear function,
αk, βk ∈ {0, 1}, α0 = 1 and β0 = 0. This diffusion layer can be represented in the form of Eq. (1) in which
the Fi functions are all the same and can be represented as

Fi(x1, x2, . . . , xs−1) =

s−1⊕
j=1

αjxj ⊕ L

s−1⊕
j=1

βjxj



1: Input : s n-bit words x0, . . . , xs−1

2: Output : s n-bit words y0, . . . , ys−1

3: for i = 0 to s− 1 do
4: yi = xi
5: end for
6: for i = 0 to s− 1 do

7: yi = yi ⊕

 s−1⊕
j=0,j 6=i

α[(j−i) mod s]yj

⊕ L

 s−1⊕
j=0,j 6=i

β[(j−i) mod s]yj


8: end for

Fig. 1. The first class of the recursive diffusion layers

To guarantee the maximal branch number for D, the linear function L and the coefficients αj and βj
must satisfy some necessary conditions. Conditions on L are expressed in this section and those of αj ’s and

4

βj ’s are expressed in Section 3. The diffusion layer described by Eq. (3) is an instance that satisfies the
necessary conditions on αj , and βj with s = 4. In the rest of this section, we concentrate on the diffusion
layers of this form and show that we can find invertible linear functions L such that D becomes a perfect
diffusion layer.

D :


y0 = x0 ⊕ x2 ⊕ x3 ⊕ L(x1 ⊕ x3)
y1 = x1 ⊕ x3 ⊕ y0 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ y0 ⊕ y1 ⊕ L(x3 ⊕ y1)
y3 = x3 ⊕ y1 ⊕ y2 ⊕ L(y0 ⊕ y2)

(3)

As shown in Fig. 2, This diffusion layer has a Feistel-like (GFN) structure, i.e.,

F0(x1, x2, x3) = x2 ⊕ x3 ⊕ L(x1 ⊕ x3)

The inverse transformation, D−1, has a very simple structure and does not require the inversion of the
linear function L. The inverse of D is:

D−1 :


x3 = y3 ⊕ y1 ⊕ y2 ⊕ L(y0 ⊕ y2)
x2 = y2 ⊕ y0 ⊕ y1 ⊕ L(x3 ⊕ y1)
x1 = y1 ⊕ x3 ⊕ y0 ⊕ L(x2 ⊕ y0)
x0 = y0 ⊕ x2 ⊕ x3 ⊕ L(x1 ⊕ x3)

D and D−1 are different, but they have the same structure and properties. To show that D has the
maximal branch number, first we introduce some lemmas and theorems.

If L(x) can be written as a · x in a finite field, then Eq. (3) can be expressed as a matrix representation
as below:

B =


0 1 0 0
0 0 1 0
0 0 0 1
1 a 1 a+ 1

⇒

y0
y1
y2
y3

 = B4


x0
x1
x2
x3

 (4)

We can construct MDS matrix similar to PHOTON matrix by the proposed diffusion layer. In Eq. (1), if
Fi(x1, x2, x3) = F0(x1, x2, x3) = L(x1) ⊕ x2 ⊕ L2(x3), where L(x) = 2x and x ∈ GF(28), PHOTON MDS
matrix is obtained [5]. If we change B to Eq. (3), and define L(x) = 2x, we have:

B =


0 1 0 0
0 0 1 0
0 0 0 1
1 2 1 3

⇒ B4 =


1 2 1 3
3 7 1 4
4 11 3 13
13 30 6 20


Theorem 4 ([4]). A Boolean function F has maximal differential branch number if, and only if it has
maximal linear branch number.

As a result of Theorem 4, if we prove that the diffusion layer D represented in Eq. (3) has the maximal
differential branch number, its linear branch number will be maximal too. Thus, in the following, we focus
on the differential branch number.

Lemma 5. A linear functions L(x)is invertible if, and only if for any non-zero value a, L(a) 6= 0.

Proof. For any linear function L(x), we have L(0) = 0. If there exists a 6= 0 such that L(a) = 0, then L(x)
is not invertible. On the other hand, suppose a = 0 is the unique zero of L(x), and L(x) is not invertible.
So, there exist two values b and c (b 6= c) such that L(b) = L(c). Since L(x) is a linear function, we have
L(b⊕ c) = L(b)⊕ L(c) = 0, while b⊕ c 6= 0. This contradicts the assumption that a = 0 is the unique zero
of L(x). ut

Lemma 6. Assume the linear operator Li corresponds to the linear function Li(x). If the linear operator L3

can be represented as the multiplication of two operators L1 and L2, then the corresponding linear function
L3(x) = L2(L1(x)) is invertible if, and only if the linear functions L1(x) and L2(x) are invertible.

5

L

L

L

L

x0 x1 x2 x3

y0 y1 y2 y3

Fig. 2. The proposed recursive diffusion layer of Eq. (3)

6

Proof. If L1(x) and L2(x) are invertible, clearly L3(x) is invertible too. On the other hand, if L3(x) is invert-
ible then L1(x) must be invertible, otherwise, there are distinct x1, and x2 such that L1(x1) = L1(x2). Thus,
L3(x1) = L2(L1(x1)) = L2(L1(x2)) = L3(x2) which contradicts the invertibility of L3(x). The invertibility
of L2(x) is proved in the same way.

ut

Example 1: We can rewrite the linear function L3(x) = L3(x) ⊕ x (L3 = L3 ⊕ I) as L3(x) = L2(L1(x)),
where L1(x) = L(x)⊕x (L1 = L⊕I) and L2(x) = L2(x)⊕L(x)⊕x (L2 = L2⊕L⊕I). Thus, the invertibility
of L3(x) is equivalent to the invertibility of the two linear functions L1(x) and L2(x).

Theorem 7. For the diffusion layer represented in Eq. (3), if the four linear functions L(x), x ⊕ L(x),
x⊕ L3(x) and x⊕ L7(x) are invertible, then this diffusion layer is perfect.

Proof. We show that the differential branch number of this diffusion layer is 5. First, the 4 words of the
output are directly represented as functions of the 4 words of the input:

D :


y0 = x0 ⊕ L(x1)⊕ x2 ⊕ x3 ⊕ L(x3)
y1 = x0 ⊕ L(x0)⊕ x1 ⊕ L(x1)⊕ L2(x1)⊕ x2 ⊕ L2(x3)
y2 = L2(x0)⊕ x1 ⊕ L(x1)⊕ L3(x1)⊕ x2 ⊕ L(x2)⊕ x3 ⊕ L2(x3)⊕ L3(x3)
y3 = x0 ⊕ L2(x0)⊕ L3(x0)⊕ L(x1)⊕ L2(x1)⊕ L3(x1)⊕ L4(x1)

⊕L(x2)⊕ L2(x2)⊕ L2(x3)⊕ L4(x3)

(5)

In the proof, we look at all different cases for the Hamming weight of the input. In other words, we show
that if the Hamming weight of the input is m = 1, 2, 3, 4, then the Hamming weight of the output is greater
than or equal to 5−m. Each case will pose different conditions on L which in the end can be summarized to
the condition given in the theorem. The diffusion layer represented in Eq. (3) is invertible. Consider m = 4,
then all of the 4 words in the input are active, and we are sure at least one of the output words is active
too. Thus, the theorem is correct for m = 4. The remainder of the proof is performed for the 3 cases of
w(∆(x)) = m, for m = 1, 2, 3 separately. In each of these cases, some conditions are forced on the linear
function L.

Case 1: w(4x) = 1

To study this case, first the subcase

(4x0 6= 0,4x1 = 4x2 = 4x3 = 0 or 4x = 4x0||0||0||0)

is analyzed. For this subcase, Eq. (5) is simplified to:

D :


4y0 = 4x0
4y1 = (I ⊕ L)(4x0)
4y2 = L2(4x0)
4y3 = (I ⊕ L2 ⊕ L3)(4x0)

If D is a perfect diffusion layer, then 4y0, 4y1, 4y2 and 4y3 must be non-zero. Clearly, 4y0 is non-zero
and based on Lemma 5, the conditions for 4y1, 4y2 and 4y3 to be non-zero are that the linear functions
I ⊕ L, L2 and I ⊕ L2 ⊕ L3 must be invertible. Note that based on Lemma 6, the invertibility of L yields
the invertibility of L2. Considering Lemma 6, if the other three sub-cases are studied, it is induced that the
linear functions x⊕ L(x)⊕ L2(x) and x⊕ L(x)⊕ L3(x) must also be invertible.

Case 2: w(4x) = 2

In this case, there exist exactly two active words in the input difference, and we obtain some conditions
on the linear function L to guarantee the branch number 5 for D. In the following, we only analyze the
subcase

(4x0,4x1 6= 0 and 4x2 = 4x3 = 0 or 4x = 4x0||4x1||0||0)

7

With this assumption, Eq. (5) is simplified to:

D :


4y0 = 4x0 ⊕ L(4x1)
4y1 = (I ⊕ L)(4x0)⊕ (I ⊕ L⊕ L2)(4x1)
4y2 = L2(4x0)⊕ (I ⊕ L⊕ L3)(4x1)
4y3 = (I ⊕ L2 ⊕ L3)(4x0)⊕ (L⊕ L2 ⊕ L3 ⊕ L4)(4x1)

(6)

To show that w(4y) is greater than or equal to 3, we must find some conditions on L such that if one
of the 4yi’s is zero, then the other three 4yj ’s cannot be zero. Let 4y0 = 0, then:

4x0 ⊕ L(4x1) = 0⇒4x0 = L(4x1)

If 4x0 is replaced in the last three equations of Eq. (6), we obtain 4y1, 4y2 and 4y3 as follows:4y1 = 4x1
4y2 = 4x1 ⊕ L(4x1)
4y3 = L2(4x1)

Obviously, 4y1 is not zero. Furthermore, considering Lemma 5, for 4y2 to be non-zero, we conclude that
the function x ⊕ L(x) must be invertible. For 4y1 ⇒ 4y3, L2(x) is invertible. This condition was already
obtained in the Case 1. We continue this procedure for 4y1 = 0.

4y1 = 4x0 ⊕ L(4x0)⊕ x1 ⊕ L(4x1)⊕ L2(4x1) = 0⇒
4x0 ⊕ L(4x0) = x1 ⊕ L(4x1)⊕ L2(4x1)

From the previous subcase, we know that if 4y0 = 0, then 4y1 6= 0. Thus, we conclude that 4y0 and
4y1 cannot be simultaneously zero. Therefore, by contraposition, we obtain that if 4y1 = 0, then 4y0 6= 0.
So, we only check 4y2 and 4y3. From the third equation in Eq. (6), we have:

(I ⊕ L)(4y2) = L2(4x1)⊕ L3(4x1)⊕ L4(4x1)⊕4x1
⊕L2(4x1)⊕ L3(4x1)⊕ L4(4x1)

= 4x1

x⊕ L(x) is invertible, thus we conclude that with the two active words 4x0 and 4x1 in the input, 4y1
and 4y2 cannot be zero simultaneously. With the same procedure, we can prove that 4y1, and 4y3 cannot
be zero simultaneously.

Here we only gave the proof for the case (4x0,4x1 6= 0, 4x2 = 4x3 = 0). We performed the proof
procedure for the other cases, and no new condition was added to the previous set of conditions in Case 1.

Case 3: w(4x) = 3

In this case, assuming three active words in the input, we show that the output has at least 2 non-zero
words. Here, only the case

(4x0,4x1,4x2 6= 0 and 4x3 = 0 or 4x = 4x0||4x1||4x2||0)

is analyzed. The result holds for the other three cases with w(4x) = 3. Let rewrite Eq. (5) for 4x3 = 0 as
follows:

D :


4y0 = 4x0 ⊕ L(4x1)⊕4x2
4y1 = (I ⊕ L)(4x0)⊕ (I ⊕ L⊕ L2)(4x1)⊕4x2
4y2 = L2(4x0)⊕ (I ⊕ L⊕ L3)(4x1)⊕ (I ⊕ L)(4x2)
4y3 = (I ⊕ L2 ⊕ L3)(4x0)⊕ (L⊕ L2 ⊕ L3 ⊕ L4)(4x1)⊕ (L⊕ L2)(4x2)

(7)

When 4y0 = 4y1 = 0, from the first 2 lines of Eq. (7), 4x0 and 4x1 are obtained as the function of 4x2.

8

4y0 = 4x0 ⊕ L(4x1)⊕4x2 = 0
4y1 = 4x0 ⊕ L(4x0)⊕4x1 ⊕ L(4x1)

⊕L2(4x1)⊕4x2 = 0
⇒
{
4x1 = L(4x2)
4x0 = 4x2 ⊕ L2(4x2)

Now, replacing 4x0 = 4x2 ⊕ L2(4x2) and 4x1 = L(4x2) into 4y2 and 4y3 yields:4y2 = L2(4x0)⊕ (I ⊕ L⊕ L3)(4x1)⊕ (I ⊕ L)(4x2) = 4x2
4y3 = (I ⊕ L2 ⊕ L3)(4x0)⊕ (L⊕ L2 ⊕ L3 ⊕ L4)(4x1)⊕ (L⊕ L2)(4x2)

= (I ⊕ L)(4x2)

From Case 1, we know that the functions x⊕L(x) are invertible. Therefore, 4y2, and 4y3 are non-zero.
If the other sub-cases with three active words in the input are investigated, it is easy to see that no new
condition is added to the present conditions on L. Finally, we conclude that the diffusion layer D presented
in Fig. 1 is perfect if the linear functions

L1(x) = L(x)
L2(x) = x⊕ L(x)
L3(x) = x⊕ L(x)⊕ L2(x)
L4(x) = x⊕ L(x)⊕ L3(x)
L5(x) = x⊕ L2(x)⊕ L3(x)

are invertible. We know that L3(L2(x)) = x ⊕ L3(x) and L5(L4(L2(x))) = x ⊕ L7(x). Thus, by Lemma 6,
we can summarize the necessary conditions on the linear function L as the invertibility of L(x), (I ⊕ L)(x),
(I ⊕ L3)(x) and (I ⊕ L7)(x).

ut

Next, we need a simple method to check whether a linear function L satisfies the conditions of Theorem 7
or not. For this purpose, we use the binary matrix representation of L. Assume that xi is an n-bit word.
Hence, we can represent a linear function L with an n× n matrix A with elements in GF(2). As a result of
Lemma 5, if L is invertible, A is not singular over GF(2) (|A| 6= 0). To investigate whether a linear function
L satisfies the conditions of Theorem 7, we construct the corresponding matrix An×n from L, and check the
non-singularity of the matrices A, I⊕A, I⊕A3, and I⊕A7 in GF(2).

In the following, we construct concrete functions L which are lightweight and satisfy the conditions
mentioned in Theorem 7. For example, the functions L(x) = x, L(x) = x � a and L(x) = x ≫ a are
the examples of the most lightweight linear functions. However, they do not satisfy Theorem 7 conditions,
because at least one of the two functions L(x) and x ⊕ L(x) are not invertible. A set of candidates for
lightweight linear functions can be expressed as:

L(x(n)) = (x(n) � a)⊕ (x(n) � b) . (8)

If (a+ b)|n, then L(x) is invertible [15]. The remaining conditions x⊕ L(x), x⊕ L3(x) and x⊕ L7(x) have
to be checked. Although the linear function in Eq. (8) has a complicated inverse, it does not require circular
shift which is considered as an advantage for this function. Note that circular shift is not supported by some
compilers. Another proposal for L(x) is:

L(x(n)) = (x(n) ⊕ (x(n) � a)) ≪ b (9)

The linear function in Eq. (9), for a > n/2, has a lightweight inverse L(x(n)) = (x(n) ≫ b)⊕ (x(n) ≫ b)� a
which will be used in diffusion layer proposed in Section 4.

We introduce some lightweight linear functions with n-bit inputs/outputs in Table 1 which satisfy the
conditions of Theorem 7. Note that for n = 8, there does not exist any linear function of the form Eq. (8) or
Eq. (9) satisfying conditions of Theorem 7.

9

Table 1. Some instances of the linear function L satisfying Theorem 7

n Some linear functions L

4 L(x) = (x⊕ x� 3) ≪ 1

8 L(x) = (x⊕ (x & 0x2) � 1) ≪ 1

16 L(x) = (x⊕ x� 15) ≪ 1

32 L(x) = (x⊕ x� 31) ≪ 15 or L(x) = (x≪ 24) ⊕ (x & 0xFF) or L(x) = (x� 3) ⊕ (x� 1)

64 L(x) = (x⊕ x� 63) ≪ 1 or L(x) = (x≪ 8) ⊕ (x & 0xFFFF) or L(x) = (x� 15) ⊕ (x� 1)

2.1 Application of the Proposed Diffusion Layer in Current Block Ciphers

Together with designing new lightweight block ciphers, the proposed diffusion layer can also be applied to
diffuse the non-linearity of big-size S-boxes. One of these block ciphers is MMB [3] that uses 32-bit S-boxes.
Each round of MMB is composed of four transformations:

– σ: bit-wise XOR of the intermediate value and the round key.

– γ: modular multiplication of each 32-bit word of the intermediate value with a fixed 32-bit constant Gi

modulo 232 − 1.

– η: an operation on two of the four input words.

– θ: the only diffusion operation in MMB which is an involutory binary matrix as below:

B =


1 1 0 1
1 1 1 0
0 1 1 1
1 0 1 1


We can use the proposed diffusion layer with L(x(32)) = (x(32) � 3) ⊕ (x(32) � 1) instead of the diffusion
layer used in the block cipher MMB. If we use the proposed diffusion layer in this cipher, it becomes stronger
against differential and linear attacks, because branch number of the binary matrix of MMB is 4 while
branch number of the proposed diffusion layer is 5. This change also prevents the attacks presented against
this block cipher in [13]. By computer simulations in C using a PC with CPU: 2.93 Ghz and RAM: 2GB, we
observed that this modification reduces the performance of MMB by making it 30% slower in the software
implementations. This was achieved by comparing the running time of the protocol for 1 million encryptions.

Another block cipher where we can replace the diffusion layer by the proposed one is Hierocrypt [9].
Hierocrypt does not explicitly use big size S-boxes, but it constructs 32 bit S-boxes by using nested SPN
structure together with four 8-bit S-boxes and the MDSL matrix. For diffusion within those 32-bit S-boxes,
a 16× 16 binary matrix called MDSH is used, which is MDS for four 32-bit inputs. If we use our proposed
diffusion layer with the same L(x), instead of the MDSH [9], we can achieve a 2 times faster implementation
with the same level of security.

AES Mix-column layer has a simple implementation. As another comparison, we decided to replace the
MDSH matrix in Hierocrypt with the MDS matrix of AES. But, since MDS code of AES is over GF(28) and
the inputs of MDSH are four 32-bit words, we modified the corresponding irreducible polynomial in AES
and replaced it with x32 +x7 +x5 +x3 +x2 +x+1 [10] to work over GF(232), which would still remain MDS.
We call this new construction, sch1. As another construction, we replaced the MDSH in Hierocrypt with the
MDS code we proposed above in our solution and we called it sch2. We observed that sch2 still brings on 5%
better performance compared to sch1.

10

3 Other Desirable Structures for the Proposed Diffusion Layer

In Section 2, the general form of the proposed diffusion layer was introduced in Fig. 1. Then, by assuming a
special case of αi’s and βi’s, an instance of this diffusion layer was given in Eq. (3). In this section, we obtain
all sets of αi’s and βi’s such that the diffusion layer of Fig. 1 becomes perfect. We know some properties of
αi’s and βi’s; for instance if all the words of the output are directly represented as a function of input words,
a function of each xi (0 ≤ i ≤ s− 1) must appear in each equation. Another necessary condition is obtained
for two active words of the input. Assume there exist only two indices i, j such that xi, xj 6= 0. If we write
each two output words yp, yq in a direct form as a function of xi and xj , we obtain:{

yp = Lpi(xi)⊕ Lpj (xj)
yq = Lqi(xi)⊕ Lqj (xj)

If
Lpi

Lqi
=
Lpj

Lqj
or

∣∣∣ Lpi
Lpj

Lqi
Lqj

∣∣∣ = 0

then, yp = 0 is equivalent to yq = 0. Thus, the minimum number of active words in the input and output is
less than or equal to s and the branch number will not reach the maximal value s+ 1. This procedure must
be repeated for 3, and more active words in the input. As an extension, we can use Lemma 3 of [10].

Lemma 8. [10] Assume the diffusion layer has m inputs/outputs bits, and L is the linear operator of L(x),
and I is the linear operator of I(x). Moreover, MLD is an m×m matrix representation of the operator of
the diffusion layer. If D is perfect, then all the sub-matrices of MLD are non-singular.

If we construct the MLD of Eq. (3), we have:

MLD =


I L I I ⊕ L

I ⊕ L I ⊕ L⊕ L2 I L2

L2 I ⊕ L⊕ L3 I ⊕ L I ⊕ L2 ⊕ L3

I ⊕ L2 ⊕ L3 L ⊕ L2 ⊕ L3 ⊕ L4 L ⊕ L2 L2 ⊕ L4


when calculating 69 sub-matrix determinants of MLD, we observe that these submatrices are non-singular

only if L fulfills the condition of Theorem 7. However, by following this procedure, it is complicated to obtain
all sets of αi’s and βi’s analytically. So, by systematizing the method based on Lemma 8, we performed a
computer simulation to obtain all sets of αi’s, and βi’s in the diffusion layer in Fig. 1 that yield a perfect
diffusion. We searched for all αi’s and βi’s that make the diffusion layer of Fig. 1 a perfect diffusion layer.
This procedure was repeated for s = 2, 3, . . . , 8. We found one set of (αi, βi) for s = 2, four sets for s = 3,
and four sets for s = 4. The obtained diffusion layers along with the conditions on the underlying linear
function L are reported in Table 2. We observed that for s = 5, 6, 7, 8 the diffusion layer introduced in Fig. 1
cannot be perfect.

Note that some linear functions in Table 1 such as L(x(64)) = (x(64) � 15)⊕ (x(64) � 1) are not suitable
for diffusion layers, since x(64) ⊕ L15(x(64)) must be invertible.

As we can see in Fig. 1, and its instances presented in Table 2, there exists some kind of regularity in
the equations defining yi’s, in the sense that the form of yi+1 is determined by the form of yi, and vice versa
(Fi’s are all the same in Eq. (1)). However, we can present some non-regular recursive diffusion layers with
a more general form (Fi’s are different) as in Fig. 3, where Ai,j , Bi,j ∈ {0, 1}.

If Ai,j = α(j−i) mod s, and Bi,j = β(j−i) mod s, then Fig. 3 is equivalent to Fig. 1. The main property
of this new structure is that it still has one linear function L, and a simple structure for the inverse. For
example, if s = 4, then, the diffusion layer D is:

y0 = x0 ⊕A0,1 · x1 ⊕A0,2 · x2 ⊕A0,3 · x3 ⊕ L(B0,1 · x1 ⊕B0,2 · x2 ⊕B0,3 · x3)
y1 = x1 ⊕A1,0 · y0 ⊕A1,2 · x2 ⊕A1,3 · x3 ⊕ L(B1,0 · y0 ⊕B1,2 · x2 ⊕B1,3 · x3)
y2 = x2 ⊕A2,0 · y0 ⊕A2,1 · y1 ⊕A2,3 · x3 ⊕ L(B2,0 · y0 ⊕B2,1 · y1 ⊕B2,3 · x3)
y3 = x3 ⊕A3,0 · y0 ⊕A3,1 · y1 ⊕A3,2 · y2 ⊕ L(B3,0 · y0 ⊕B3,1 · y1 ⊕B3,2 · y2)

11

Table 2. Perfect regular recursive diffusion layers for s < 8 with only one linear function L

s Diffusion Layer D Function that must be invertible

2

{
y0 = x0 ⊕ L(x1)
y1 = x1 ⊕ L(y0)

L(x) and x⊕ L(x)

3


y0 = x0 ⊕ L(x1 ⊕ x2)
y1 = x1 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ L(y0 ⊕ y1)

L(x), x⊕ L(x) and x⊕ L3(x)

3


y0 = x0 ⊕ x1 ⊕ L(x1 ⊕ x2)
y1 = x1 ⊕ x2 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ y0 ⊕ L(y0 ⊕ y1)

L(x), x⊕ L(x), x⊕ L3(x) and x⊕ L7(x)

3


y0 = x0 ⊕ x2 ⊕ L(x1 ⊕ x2)
y1 = x1 ⊕ y0 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ y1 ⊕ L(y0 ⊕ y1)

L(x), x⊕ L(x), x⊕ L3(x) and x⊕ L7(x)

3


y0 = x0 ⊕ x1 ⊕ x2 ⊕ L(x1 ⊕ x2)
y1 = x1 ⊕ x2 ⊕ y0 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ y0 ⊕ y1 ⊕ L(y0 ⊕ y1)

L(x), x⊕ L(x) and x⊕ L3(x)

4


y0 = x0 ⊕ x2 ⊕ x3 ⊕ L(x1 ⊕ x3)
y1 = x1 ⊕ x3 ⊕ y0 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ y0 ⊕ y1 ⊕ L(x3 ⊕ y1)
y3 = x3 ⊕ y1 ⊕ y2 ⊕ L(y0 ⊕ y2)

L(x), x⊕ L(x), x⊕ L3(x) and x⊕ L7(x)

4


y0 = x0 ⊕ x1 ⊕ x2 ⊕ L(x1 ⊕ x3)
y1 = x1 ⊕ x2 ⊕ x3 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ x3 ⊕ y0 ⊕ L(x3 ⊕ y1)
y3 = x3 ⊕ y0 ⊕ y1 ⊕ L(y0 ⊕ y2)

L(x), x⊕ L(x), x⊕ L3(x) and x⊕ L7(x)

4


y0 = x0 ⊕ x2 ⊕ L(x1 ⊕ x2 ⊕ x3)
y1 = x1 ⊕ x3 ⊕ L(x2 ⊕ x3 ⊕ y0)
y2 = x2 ⊕ y0 ⊕ L(x3 ⊕ y0 ⊕ y1)
y3 = x3 ⊕ y1 ⊕ L(y0 ⊕ y1 ⊕ y2)

L(x), x⊕ L(x), x⊕ L3(x), x⊕ L7(x)

and x⊕ L15(x)

4


y0 = x0 ⊕ x1 ⊕ x3 ⊕ L(x1 ⊕ x2 ⊕ x3)
y1 = x1 ⊕ x2 ⊕ y0 ⊕ L(x2 ⊕ x3 ⊕ y0)
y2 = x2 ⊕ x3 ⊕⊕y1 ⊕ L(x3 ⊕ y0 ⊕ y1)
y3 = x3 ⊕ y0 ⊕ y2 ⊕ L(y0 ⊕ y1 ⊕ y2)

L(x), x⊕ L(x), x⊕ L3(x), x⊕ L7(x)

and x⊕ L15(x)

1: Input : s n-bit words x0, . . . , xs−1

2: Output : s n-bit words y0, . . . , ys−1

3: for i = 0 to s− 1 do
4: yi = xi
5: end for
6: for i = 0 to s− 1 do

7: yi = yi ⊕

 s−1⊕
j=0,j 6=i

Ai,jyj

⊕ L

 s−1⊕
j=0,j 6=i

Bi,jyj


8: end for

Fig. 3. Non-regular recursive diffusion layers

12

We searched the entire space for s = 3 and s = 4 (the order of search is 22s(s−1)). For s = 3, we found
196 structures with branch number 4, and for s = 4, 1634 structures with branch number 5. The conditions
on linear functions that caused maximal branch number, are different for each structure. Among the 196
structures for s = 3, the structure with the minimum number of operations (only 7 XORs, and one L
evaluation) is the following:

D :

y0 = x0 ⊕ x1 ⊕ x2
y1 = x1 ⊕ x2 ⊕ L(y0 ⊕ x2)
y2 = x2 ⊕ y0 ⊕ y1

where L(x) and x⊕ L(x) must be invertible.

This relation is useful to enlarge the first linear function of the hash function JH for 3 inputs [14]. For
s = 4, we did not find any D with the number of L evaluations less than four. However, the one with the
minimum number of XORs is given as below:

D :


y0 = x0 ⊕ x1 ⊕ x2 ⊕ L(x3)
y1 = x1 ⊕ x3 ⊕ y0 ⊕ L(x2 ⊕ y0)
y2 = x2 ⊕ x3 ⊕ y0 ⊕ L(x3 ⊕ y1)
y3 = x3 ⊕ y1 ⊕ y2 ⊕ L(y0)

Searching the whole space for s = 5, 6, ... is too time consuming (note that for s = 5, the order of search
has complexity 240), and we could not search all the space for s ≥ 5.

4 Increasing the Number of Linear Functions

In Section 3, we observed that for s > 4 we cannot design a regular recursive diffusion layer in the form
of Fig. 1 with only one linear function L. In this section, we increase the number of linear functions to
overcome the regular structure of the diffusion layer of Eq. (3). A new structure is represented in Fig. 4,
where αk, βk, γk ∈ {0, 1}, k ∈ {0, 1, ..., s− 1}, α0 = 1, β0 = 0 and γ0 = 0.

1: Input : s n-bit words x0, . . . , xs−1

2: Output : s n-bit words y0, . . . , ys−1

3: for i = 0 to s− 1 do
4: yi = xi
5: end for
6: for i = 0 to s− 1 do

7: yi =

(
s−1⊕
j=0

α[(j−i) mod s]yj

)
⊕ L1

(
s−1⊕
j=0

β[(j−i) mod s]yj

)
⊕ L2

(
s−1⊕
j=0

γ[(j−i) mod s]yj

)
8: end for

Fig. 4. Regular recursive diffusion layers with two linear functions L

If L1 and L2 are two distinct linear functions, Fig. 4 is too complicated to easily obtain conditions on L1

and L2 that make it a perfect diffusion layer (the order of search for s input/output is 23(s−1)). To obtain
simplified conditions for a maximal branch number, let L1 and L2 have a simple relation like L2(x) = L2

1(x) or
L2(x) = L−11 (x). For the linear functions in Eq. (8), L2(x) is more complex in comparison to L(x). However,
there exist some linear functions in the form of Eq. (9) such that L−1(x) is simpler than L2(x). As an
example, for L(x(32)) = (x(32) ⊕ x(32) � 31) ≪ 1, we have L−1(x(32)) = ((x(32) ≫ 1)⊕ (x(32) ≫ 1)� 31),
but L2(x(32)) = (x(32) ⊕ (x(32) � 31) ≪ 1)⊕ ((x(32) ≪ 1)� 31) ≪ 1.

In Table 3, we introduce some recursive diffusion layers with (L1 = L and L2 = L−1) or (L1 = L and
L2 = L2) that have maximal branch numbers. These diffusion layers are obtained similar to that of Table 2.

13

In this table, for each case, only y0 is presented. Other yi’s can be easily obtained from Fig. 4, since Fi’s are
all the same.

Table 3. Some perfect regular diffusion layers for s = 5, 6, 7, 8 with two linear functions

s y0 in a perfect diffusion Layer

5 y0 = x0 ⊕ x2 ⊕ x3 ⊕ L(x4) ⊕ L2(x1)

5 y0 = L−1(x1 ⊕ x2) ⊕ x0 ⊕ x1 ⊕ L(x1 ⊕ x3 ⊕ x4)

6 y0 = x0 ⊕ x2 ⊕ x4 ⊕ x5 ⊕ L(x3 ⊕ x5) ⊕ L2(x1 ⊕ x2 ⊕ x3)

6 y0 = L−1(x1 ⊕ x3) ⊕ x0 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ L(x1 ⊕ x3 ⊕ x4 ⊕ x5)

7 y0 = x0 ⊕ x2 ⊕ L(x3 ⊕ x4) ⊕ L2(x1 ⊕ x2 ⊕ x4 ⊕ x5 ⊕ x6)

7 y0 = L−1(x1 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x6) ⊕ x0 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ L(x1 ⊕ x2 ⊕ x3 ⊕ x5)

8 y0 = x0 ⊕ x1 ⊕ x3 ⊕ x4 ⊕ L(x2 ⊕ x3 ⊕ x5) ⊕ L2(x1 ⊕ x5 ⊕ x6 ⊕ x7)

8 y0 = L−1(x1 ⊕ x2 ⊕ x3 ⊕ x5 ⊕ x7) ⊕ x0 ⊕ x2 ⊕ x3 ⊕ x4 ⊕ x5 ⊕ x7 ⊕ L(x1 ⊕ x3 ⊕ x5 ⊕ x6 ⊕ x7)

If the 14 linear functions:

L(x) I ⊕ L(x) I ⊕ L3(x)
I ⊕ L7(x) I ⊕ L15(x) I ⊕ L31(x)
I ⊕ L63(x) I ⊕ L127(x) I ⊕ L255(x)
I ⊕ L511(x) I ⊕ L1023(x) I ⊕ L2047

I ⊕ L4095(x) I ⊕ L8191(x)

are invertible (all irreducible polynomials up to degree 13), then all the diffusion layers introduced in Table 3
are perfect. One example for a 32-bit linear function satisfying these conditions is:

L(x(32)) = (x(32) ⊕ (x(32) � 31)) ≪ 29

5 Conclusion

In this paper, we proposed a new family of efficient diffusion layers (recursive diffusion layers) which are
constructed using several rounds of Feistel-like structures whose round functions are linear. The proposed
diffusion layers are very efficient and have simple inverses, thus they can be deployed to improve the security
or performance of some of the current block ciphers and hash functions and in the design of the future
lightweight block ciphers and hash functions, even providing provable security against differential and linear
attacks. For a fixed structure, we determined the required conditions for its underlying linear function to
be perfectly secure with respect to linear and differential attacks. Then, for the number of words in input
(output) less than 8, we extended our approach, and found all the instances of the perfect recursive diffusion
layers with the general form described in Fig. 1. Also, we proposed some other diffusion layers with non-
regular forms. Finally, diffusion layers with 2 linear functions were proposed. By using two linear functions,
we designed perfect recursive diffusion layers for higher number of words.

References

1. D.J. Bernstein. The Salsa20 Stream Cipher, 2005. http://www.ecrypt.eu.org/stream/salsa20p2.html.

2. E. Biham and A. Shamir. Differential Cryptanalysis of DES-like Cryptosystems. In CRYPTO’90, volume 537,
pages 2–21. Springer-Verlag, 1990.

3. J. Daemen. Cipher and Hash Function Design Strategies Based on Linear and Differential Cryptanalysis. PhD
thesis, Elektrotechniek Katholieke Universiteit Leuven, Belgium, 1995.

14

4. J. Daemen and V. Rijmen. The Design of Rijndael: AES - The Advanced Encryption Standard. Springer-Verlag,
2002.

5. J. Guo, T. Peyrin, and A. Poschmann. The PHOTON Family of Lightweight Hash Functions. In CRYPTO’11,
volume 6841, pages 222–239. Springer-Verlag, 2011.

6. J. Guo, T. Peyrin, A. Poschmann, and M. Robshaw. The LED Block Cipher. In CHES’11, volume 6917, pages
326–341. Springer-Verlag, 2011.

7. S. Lin and D. Costello. Error Control Coding: Fundamentals and Applications. Prentice Hall, 2004.
8. M. Matsui. Linear Cryptanalysis Method for DES Cipher. In EUROCRYPT’93, volume 765, pages 386–397.

Springer-Verlag, 1993.
9. K. Ohkuma, H. Muratani, F. Sano, and S. Kawamura. The Block Cipher Hierocrypt. In SAC’01, volume 2012,

pages 72–88. Springer-Verlag, 2001.
10. M. Sajadieh, M. Dakhilalian, and H. Mala. Perfect Involutory Diffusion Layers Based on Invertibility of Some

Linear Functions. IET Information Security Journal, 5(1):228–236, 2011.
11. C. Schnorr and S. Vaudenay. Black Box Cryptoanalysis of Hash Networks Based on Multipermutations. In

EUROCRYPT’94, volume 950, pages 47–57. Springer, 1994.
12. S. Vaudenay. On the Need for Multipermutations: Cryptanalysis of MD4 and SAFER. In FSE’94, volume 1008,

pages 286–297. Springer, 1994.
13. M. Wang, J. Nakahara, and Y. Sun. Cryptanalysis of the Full MMB Block Cipher. In SAC’09, volume 5867,

pages 231–248. Springer-Verlag, 2009.
14. H. Wu. The Hash Function JH, 2008. http://icsd.i2r.astar.edu.sg/staff/hongjun/jh/jh.pdf.
15. G. Zeng, K. He, and W. Han. A trinomial type of σ-LFSR oriented toward software implementation. In Science

in China Series F-Information Sciences, volume 50, pages 359–372. Springer-Verlag, 2007.

15

