
EasyCrypt: A Tutorial?

Gilles Barthe1, François Dupressoir1, Benjamin Grégoire2, César Kunz3??,
Benedikt Schmidt1, and Pierre-Yves Strub1

1 IMDEA Software Institute, Madrid, Spain
{gilles.barthe,francois.dupressoir,benedikt.schmidt,pierre-yves.strub}@imdea.org

2 INRIA Sophia-Antipolis Méditerranée, France
benjamin.gregoire@inria.fr

3 FireEye
cesar.kunz@gmail.com

1 Introduction

Cryptography plays a key role in the security of modern communication and
computer infrastructures; therefore, it is of paramount importance to design
cryptographic systems that yield strong security guarantees. To achieve this
goal, cryptographic systems are supported by security proofs that establish an
upper bound for the probability that a resource-constrained adversary is able to
break the cryptographic system. In most cases, security proofs are reductionist,
that is, they construct from an (arbitrary but computationally bounded) adver-
sary that would break the security of the cryptographic construction with some
reasonable probability another computationally bounded adversary that would
break a hardness assumption with reasonable probability. This approach, known
as provable security, is in principle able to deliver rigorous and detailed math-
ematical proofs. However, new cryptographic designs (and consequently their
security analyses) are increasingly complex, and there is a growing emphasis
on shifting from algorithmic descriptions to implementation-level descriptions
that account for implementation details, recommendations from standards when
they exist, and possibly side-channels. As a consequence, cryptographic proofs
are becoming increasingly error-prone and difficult to check. One promising so-
lution to address these concerns is to develop machine-checked frameworks that
support the construction and automated verification of cryptographic systems.
Although many such frameworks exist for the symbolic model of cryptography,
comparatively little work has been done to develop machine-checked frameworks
supporting direct reasoning in the computational model commonly used by cryp-
tographers.

EasyCrypt4 is an interactive framework for verifying the security of crypto-
graphic constructions in the computational model. EasyCrypt adopts the code-
based approach, in which security goals and hardness assumptions are modelled
? An up-to-date and living version of this document and the EasyCrypt formalization
and proofs it refers to can be found at https://www.easycrypt.info/Tutorial.

?? Work performed while the author was working at IMDEA Software Institute.
4 See https://www.easycrypt.info.

https://www.easycrypt.info/Tutorial
https://www.easycrypt.info

as probabilistic programs (called experiments or games) with unspecified ad-
versarial code. EasyCrypt uses formal tools from program verification and pro-
gramming language theory to rigorously justify cryptographic reasoning. Con-
cretely, EasyCrypt supports common patterns of reasoning from the game-based
approach, which decomposes reductionist proofs into a sequence (or possibly
tree) of small transitions that are easier to understand and to check. As each
step relates two programs, one central component of EasyCrypt is a relational
Hoare logic for probabilistic programs. The logic, called pRHL, reasons about
judments of the form

[c1 ∼ c2 : Φ =⇒ Ψ]
where c1 and c2 are probabilistic programs, and Φ and Ψ are relational asser-
tions, that is, first-order formulae which relate two memories; an instance of a
relational assertion is x〈1〉 = x〈2〉, which states that the value of x coincides in
both memories. Although pRHL judgments do not explicitly refer to probabili-
ties, it is possible to derive probability claims from valid judgments. Indeed, the
validity of pRHL judgments is based on a notion of lifting, inspired from proba-
bilistic process algebra, and from which one can derive equalities and inequalities
between two probabilities.5 Specifically, one can derive from valid pRHL judg-
ments of the form

[c1 ∼ c2 : Φ =⇒ E〈1〉 → F 〈2〉]
that Pr [c1,m1 : E] ≤ Pr [c2,m2 : F] for every initial memories m1 and m2 that
are related by Φ and events E and F .6 Clearly, pRHL subsumes reasoning about
equivalence of probabilistic programs: given a valid judgment of the form[

c1 ∼ c2 : Φ =⇒
n∧

i=1
xi〈1〉 = xi〈2〉

]
we have Pr [c1,m1 : A] = Pr [c2,m2 : A] for every initial memories m1 and m2
that are related by Φ and event A that only depends on {x1, . . . , xn}.

A useful generalization of observational equivalence is observational equiva-
lence up to a failure event F :[

c1 ∼ c2 : Φ =⇒ ¬F 〈2〉 →
n∧

i=1
xi〈1〉 = xi〈2〉

]
It follows from the above judgment that for every initial memories m1 and m2
that are related by Φ and event A that only depends on {x1, . . . , xn}, we have:

Pr [c1,m1 : A] ≤ Pr [c2,m2 : A] + Pr [c2,m2 : F]

In addition to relating the probability of events in different games, cryptographic
proofs therefore require the computation of concrete upper bounds on the prob-
ability of some event, typically a failure event, in a game. A second component
5 Formal details were described by Barthe, Grégoire and Zanella-Béguelin [5].
6 Where Pr [c, m : E] denotes the probability of E in the distribution (on memories)
produced by running c on initial memory m.

of EasyCrypt is a probabilistic Hoare logic to reason about the probability of
events in games. The logic, called pHL, reasons about judgments of the form

[c : ς =⇒ ϕ] � p

where c is a probabilistic program, ς and ϕ are (non-relational) assertions, � is
a comparison operator (≤, ≥, <, >, or =) and p is a probability expression.

Both pRHL and pHL are embedded into a higher-order logic in which one
can define operators and their associated axioms. Reasoning in this ambient
logic is supported by a core proof engine; the proof engine is heavily inspired
by the SsReflect extension of Coq, but also enables the use of SMT solvers to
automatically discharge low-level proof obligations.

A key challenge for the formalization of cryptographic proofs is to support
compositional reasoning. Indeed, many cryptographic systems achieve their func-
tionality by combining (often in intricate ways) different cryptographic construc-
tions, which may themselves be built from several cryptographic primitives. In
order to support reasoning about such cryptographic systems, EasyCrypt features
a module system which allows the construction of modular proofs that respect
the layered and modular design of the cryptographic system. The module sys-
tem is also useful for structuring large and complex proofs that involve a large
number of proof steps and perform reductions at different levels.

1.1 Outline

We first recall useful concepts and notations, before presenting a high-level,
mathematical overview of the construction and proof developed in this tuto-
rial (Section 2). The objective of the rest of this document is to illustrate our
preferred way of specifying cryptographic systems and their proof sketches by
constructing a pseudo-random generator (PRG) from a pseudo-random function
(PRF). We start by specifying the construction and the desired security notions
(Section 3). Finally, we prove formally that our construction is a secure PRG if
it is applied to a secure PRF (Section 4).

1.2 Preliminaries

Types, operators and data structures. EasyCrypt’s expression language is a higher-
order strongly typed functional language. We often view types as (non-empty)
sets and operators as mathematical functions, sometimes using these terms inter-
changeably. In addition to some basic types (unit, bool, int, real, . . .), EasyCrypt’s
libraries provide specifications for some more advanced data structures that can
be used when specifying cryptographic systems or when proving their security.
We only mention here the types and operators relevant to our formalization, and
invite the reader to explore the standard library distributed with EasyCrypt (in
theories/datatypes).

First, we consider inductive lists, that may be the empty list [], or a value
x::xs constructed inductively by prepending x to the list xs. We write |xs| to

mean the length (or number of elements) of a list xs. We sometimes denote
[x1;...;xn] the list x1::...::xn::[]. We define the boolean operator uniq: α list → bool
as the function that returns true if and only if its argument does not have any
duplicates.

Our formalization also uses finite maps, that may be indexed by arbitrary
types. We use mixfix notations for the map get (m[x]) and map set (m[x ← y])
operations, denoting fmap0 the map that is everywhere undefined. We call the
domain of a map m the (finite) set of indices dom m on which m is defined.

Discrete probability sub-distributions. EasyCrypt features a type of discrete prob-
ability sub-distributions that is used to model probabilistic operations, including
sampling from a distribution. A discrete probability distribution over a type A
is a function f : A→ R such that: i. for every a ∈ A, 0 ≤ f a; and ii. for every
finite subset X of A,

∑
x∈X f x ≤ 1. Formally, we equip every type A with the

type A distr of discrete sub-distributions over A, namely the subtype of A→ R
defined above. Given d ∈ A distr, we denote µx d the probability mass function
of d (when d is an injection of some valid probability mass function f into the
subtype, we have µx d = f), and define the probability of an event (or predicate)
E ∈ A→ bool in d as µ d E =

∑
{a∈A|E a} µx d a. We introduce some important

properties of discrete probability sub-distributions:
– we call full sub-distributions whose support is the entire carrier type; con-

versely, we call the empty sub-distribution for carrier type τ the sub-distribution
on τ whose support is the empty set,

– we call lossless sub-distributions in which the constantly true event has prob-
ability 1 (that is, proper distributions), and

– we call sub-uniform sub-distributions that give the same mass to all elements
in their support, using uniform to mean lossless and sub-uniform.

In the following, we often abuse terminology and use distribution to mean discrete
probability sub-distribution.

2 High level description

We start by giving a high level description of the proof described in this tutorial.
The idea is to prove that a concretely defined stateful random generator can-
not be computationally distinguished from a true random generator provided
it is constructed from a secure pseudo-random function. We first introduce the
construction, then the different security notions used in the proof.

A Stateful Random Generator. The stateful random generator we use in this
chapter is a generic construction parameterized by a function Fc : seed→ state→
state× output The type seed represent the set of seeds, state is the set of states
and output the set of the output returned by the random generator. The code
of the construction is described in Figure 1. It is composed of two procedures:
an initialization function that sample a seed and an initial state and a gener-
ator function generating an output. The generator uses Fc with the seed and

Game SRG =
procedure init()

s $← seed;
st $← state;

procedure next()
(st, r)← Fc s st;
return r;

Fig. 1. Stateful random generator

the current state to obtain a new state, which is stored in place of the current,
and an output which is returned to the caller. Concretely, one could, for exam-
ple, instantiate the function Fc with AES, using appropriately-sized fixed-length
bitstrings as seeds, states and outputs. The proof presented here would then
directly apply to obtain a security result for this concrete instance.

We would like to prove that the concrete SRG construction is a secure pseudo-
random generator (PRG) under reasonable assumptions on Fc. We now define
the notion of PRG-security and formalize our assumption on Fc.

Pseudo-Random Generators (PRG). The notion of security for pseudo-random
generators is expressed using games Realprg

Fc and Randprg
output defined in Figure 2.

Both games are parameterized by an adversary: a distinguisher D that, given or-
acle access to a next oracle, returns a bit representing its guess as to whether it is
playing against the concrete PRG (game Realprg

Fc) or the ideal random generator
(game Randprg

output).

Game Realprg
Fc (D) Game Randprg

output(D)
procedure init() procedure init()

s $← seed;
st $← state;

procedure next() procedure next()
(st, r)← Fc s st; r $← output;
return r; return r;

procedure main() procedure main()
init(); init();
b← Dnext(); b← Dnext();
return b; return b;

Fig. 2. PRG security games

Definition 1 (PRG-advantage). Let Fc : seed→ state→ state× output be a
function. Let D be a distinguisher with an oracle access to a function next and
returning a bit. The PRG-advantage of D against Fc is defined as

Advprg
Fc (D) = Pr

[
Realprg

Fc (D) : res
]
− Pr

[
Randprg

output(D) : res
]

Intuitively, a function Fc yields a stateful random generator that is secure
when, for all “reasonable” distinguisher D, Advprg

Fc (D) is “small”. Formally defin-
ing the notions of “reasonable” and “small” is not the objective of EasyCrypt: we
rather aim at proving concrete bounds that can be used to prove security with
respect to chosen definitions (for example, parameterizing the system by a secu-
rity parameter η, “reasonable” adversaries might be algorithms that are p.p.t.
in η, and “small” advantages might be negligible as functions of η). However,
our proofs still require some restrictions to be placed on the adversaries consid-
ered. In particular, we will consider adversaries that make a bounded number of
queries to their oracles.

Pseudo-Random Functions (PRF). In our example, the bound for Advprg
Fc (D) is

expressed in terms of the PRF security of Fc. We now introduce this notion.
A function family from D to R indexed by K is a function F : K × D → R,

where K is the set (or type) of keys, D is the domain and R the range. We write
FK(x) for F (K,x).

A pseudo-random function is a function family that is computationally hard
to distinguish from a random function when its key is chosen at random. For-
mally, this property is expressed using the games Realprf and Randprf presented
in Figure 3. Both games are parameterized by a distinguisher D which is given or-
acle access to a procedure Fn and returns a bit representing its guess as to which
of the two games it is playing. In game Realprf, a key K is initially sampled in
K, and the procedure Fn is implemented using function FK . In game Randprf

the procedure Fn implements a lazily sampled random function: on each fresh
query x a random value is sampled and stored into the (initially empty) map
M , then the associated value is returned to the caller.

Game Realprf
F (D) Game Randprf

R (D)
procedure init() procedure init()

K $← K; M ← ∅;
procedure Fn(x) procedure Fn(x)

return FK(x); if M [x] = ⊥ then M [x] $← R;
return M [x];

procedure main() procedure main()
init(); init();
b← DFn(); b← DFn();
return b; return b;

Fig. 3. PRF security games

Definition 2 (PRF-advantage). Let F : K → D → R be a function family.
Let D be an adversary with oracle access to a procedure Fn and returning a bit.
The PRF-advantage of D against F is defined as

Advprf
F (D) = Pr

[
Realprf

F (D) : res
]
− Pr

[
Randprf

F (D) : res
]

High level description of the security proof. The objective of the security proof
is to bound, for all D in a certain class of algorithms, Advprg

Fc (D) as a function
of Advprf

Fc (D′) for some explicitly constructed adversary D’. More concretely, in
Section 4.1, we prove the following abstract probability bound.

Theorem 1 (Abstract Security of our SRG). For all PRG-distinguisher D,
we construct a PRF-distinguisher Dprf

D that uses Das a sub-procedure and such
that

Advprg
Fc (D) ≤ Advprf

Fc (Dprf
D) + Pr

[
Randprf

R (Dprf
D) : ∃x, 1 < x#Q

]
,

where Q is the multiset of queries made by Dprf
D to the PRF oracle, and x#X

is the number of occurrences of element x in multiset X .

In practice, the class of distinguishers considered is restricted to adversaries
with access to bounded resources, taking into account running-time and number
of queries to the oracles, and limiting the adversary’s access to the real and ideal
system’s memory spaces. In Subsection 4.2, we restrict the class of distinguishers
under consideration and compute concrete probability and resource bounds.

Theorem 2 (Concrete Security of our SRG). For all PRG-distinguisher D
that makes at most qn queries to its next oracle, the constructed adversary Dprf

D
from Theorem 1 makes at most qn queries to its PRF oracle, and we have

Pr
[
Randprf

R (Dprf
D) : ∃x, 1 < x#Q

]
≤ (qn + 1) · qn

2 · |state| ,

where |state| is the cardinal of the set state.

Remark. The bound from Theorem 2 could be made very slightly tighter (with
the bound becoming qn·(qn−1)

2·|state|). We choose to keep the weaker result from The-
orem 2 in this tutorial to keep the proof clear. The associated proof file hints at
a way of tightening the bound, left as an exercise to the advanced reader.

3 EasyCrypt specification

In this Section, we formalize in EasyCrypt the definitions given in Section 2. We
start by formalizing our concrete SRG construction. We then formalize what it
means for an abstract SRG to be a secure PRG, and what it means for a function
family to be be a secure PRF. Finally, we instantiate these abstract definitions
to our concrete construction and state our security theorem.

3.1 A Stateful Random Generator

First of all we need to declare the types and distributions on which our construc-
tion relies. As discussed in Section 2, those are kept abstract throughout this
document but can later be instantiated, for example with bitstrings of various

fixed lengths, without having to re-prove anything, simply by proving that the
concrete instantiations given to types and operators fulfill the axioms specified
in our formalization. We give an example of such an instantiation (although we
do so on other theories) in Section 3.4.

type seed.
op dseed: { seed distr | is_lossless dseed } as dseed_ll.

type state.
op dstate: { state distr | is_uniform dstate ∧ is_full dstate } as dstate_uffu.

type output.
op dout: { output distr | isuniform dout } as dout_uf.

op Fc: seed → state → state ∗ output.

Listing 1.1. Core Declarations

The first line declares a new abstract type seed representing the set of seeds.
The second line declares an abstract operator dseed: a sub-distribution over
seed, that we further restrict to be lossless (that is, a proper distribution) with
an axiom dseed_ll. The next lines introduce the types state and output, and
uniform distributions over them, also requiring the distribution dstate to be full.
Note that this combination of axioms defines dstate uniquely and restricts type
state to being finite. Finally, we declare an operator Fc representing a function
family from type state to type state ∗ output and indexed by the type seed.

Given these abstract symbols, we define our stateful random generator as
discussed in Section 2: during an initialization phase, a seed and an initial state
are sampled from the specified distributions. Each query for a new random out-
put then simply uses the function Fc applied to the seed and the old state to
produce a new state and some output. The new state is stored for use in the
next query, and the output is returned.

module SRG = {
var s : seed
var st : state

proc init(): unit = {
s $← dseed;
st $← dstate;

}

proc next(): output = {
var r;

(st,r) ← Fc s st;
return r;

}
}.

Listing 1.2. Our concrete Stateful Random Generator

These procedures are defined as part of a module, which also specifies a memory
space, here composed of two global variables: s of type seed and st of type state.
All procedures in a module may access the module’s entire memory space and
there is no need to pass the current state of global variables around through the
return values and arguments of the procedures that use them. EasyCrypt mod-
ules are used to formalize schemes, constructions and oracles, but also concrete
adversaries, games and security experiments.

We now give generic formalizations of PRG-security and PRF-security that
are independent of our concrete construction, as they might appear in Easy-
Crypt’s library of security notions.7 This library and the instantiation mechanism
discussed in Section 3.4 often makes it unnecessary to formalize security notions
anew for each particular proof. In this document, we define PRG and PRF as
subtheories of the top-level working environment. In the practical development,
they are defined as separated files (PRF_.eca and PRG_.eca) that are required
(or loaded) into the EasyCrypt proof environment.

3.2 Pseudo-Random Generators

We first formalize PRG-security. To allow this notion to later be instantiated to
the types declared in Listing 1.1 and our concrete SRG, we wrap the following
definitions inside a theory: a collection of declarations and definitions, including
types, operators, and modules, that can be restricted by axioms (assumptions)
and extended with lemmas (derived from the axioms and the language’s seman-
tics).

abstract theory PRG.
type output.
op dout: output distr.

module type RG = {
proc init(): unit
proc next(): output

}.

module type PRGA = { proc next(): output }.

Listing 1.3. Pseudo-Random Generators: Types

For any type output equipped with an arbitrary sub-distribution dout, we
use a module type to define a random generator as a pair of algorithmes G =
(init, next). A module type specifies a set of procedures that are expected to be
provided by a module implementing it. A module is said to implement a module
7 The definitions shown here are not from the EasyCrypt library, although this may
change once it stabilizes.

type if it provides at least all the procedures specified in the type, with the
correct types. In particular, our construction from Listing 1.2 implements the
PRG module type, but also the module type PRGA, that hides the existence
of the init oracle. Module types can be used to quantify over adversaries, or
prove generic results on abstract cryptographic constructions before applying
them to concrete instances. In addition to quantification in lemmas, module
types enable us to parameterize module definitions with abstract modules of a
given type. Such module parameters can be used to define generic constructions
of complex cryptographic schemes from abstract primitives, or to model that
an adversary has oracle access to some procedure (that is, that it can query
the procedure and get the corresponding reply, but may not interfere with that
procedure’s internal state or its execution). For example, we consider adversaries
that have only oracle access to the next algorithm. They can be formalized using
the following set of definitions.

module type Distinguisher(G:PRGA) = { proc distinguish(): bool }.

module IND(G:PRG,D:Distinguisher) = {
proc main(): bool = {

var b;

G.init();
b @← D(G).distinguish();
return b;

}
}.

module PRGi:PRG,PRGA = {
proc init(): unit = { }
proc next(): output = { var r; r $← dout; return r; }

}.
end PRG.

Listing 1.4. Pseudo-Random Generators: Security

A PRG-distinguisher is an algorithm distinguish that, given no inputs, and
oracle access to the next procedure of a PRG, returns a boolean. The module type
Distinguisher is parameterized with an abstract module G implementing module
type PRGA. This means that the implementation of its distinguish procedure may
call the procedure G.next.

Given these module type definitions, we can now define an indistinguisha-
bility experiment as a module IND, parameterized by a PRG G and a PRG-
distinguisher D. In this experiment, we first instantiate the distinguisher’s mod-
ule parameter, ensuring that any query it makes to next is answered using the
implementation G.next, we then initialize G and run the distinguisher, returning
its output. Security of a PRG G with respect to a given adversary D can then
be defined using the standard notion of advantage. Formally, the advantage of
an adversary D in distinguishing a PRG G from distribution dout in an initial

memory m is written as follows:

Advprg
G (D,m) =

Pr[IND(G,D).main() @ m: res] − Pr[IND(PRGi,D).main() @ m: res].

Given a module M implementing procedure f, and an initial memory m, the
expression Pr[M.f() @ m: res] is a real-valued expression whose value is the prob-
ability of procedure M.f() returning true when run in initial memory m. The
formula appearing after the colon can be arbirary and may mention the global
variables of any module currently in scope, as well as the special res variable,
which is bound to the procedure’s return value. In the rest of this document, we
omit memories where irrelevant8, and also omit the procedure name when it is
main, simply writing, say, Pr[IND(G,D): res] for Pr[IND(G,D).main() @ m: res].

3.3 Pseudo-Random Functions

In EasyCrypt, we define pseudo-random functions using the following declara-
tions, leading to the declaration of a function family F, and a module PRFr
wrapping F so that it can be queried as an oracle, with a fixed key initially
sampled in dK.

abstract theory PRF.
type D, R, K.

op dK: { K distr | is_lossless dK } as dK_ll.

op F: K → D → R.

module PRFr = {
var k:K
proc init(): unit = { k $← dK; }
proc f(x:D): R = { return F k x; }

}.

Listing 1.5. Pseudo-Random Functions

The security of a PRF F: K → D → R is defined, as shown below, with respect
to a random function from D to R. We write it as expected, using a uniform
distribution uR on some subset of R to sample output values. The standard
definition of a random function from D to R as a function sampled uniformly at
random in RD can be recovered if the domain D is finite.

op uR: { R distr | is_uniform uR } as uR_uf.

8 Formally, these probabilities may in fact depend on the initial memory. In practice,
it is always possible to make sure that advantage expressions are in fact independent
from the initial memory by initializing all variables before use, and we slightly abuse
notations by omitting initial memories.

module PRFi = {
var m:(D,R) map

proc init(): unit = { m ← map0; }

proc f (x:D): R = {
if (x ∈ dom m) m[x] ← uR;
return (oget m[x]);

}
}.

module type PRF = {
proc init(): unit
proc f(x:D): R

}.

module type PRFA = {
proc f(x:D): R

}.

module type Distinguisher (F:PRFA) = {
proc distinguish(): bool

}.

module IND(F:PRF,D:Distinguisher) = {
proc main(): bool = {

var b;

F.init();
b @← D(F).distinguish();
return b;

}
}.

end PRF.

Listing 1.6. Pseudo-Random Functions: Security

The advantage of a given D in distinguishing the given PRF F (from List-
ing 1.5) from a random function in an initial memory m can be expressed as:

Advprf
F (D) = Pr[IND(PRFr,D): res] − Pr[IND(PRFi,D): res].

3.4 Security of our Stateful Random Generator

We now have enough definitions to properly express our desired security theorem.
However, we first need to instantiate the abstract PRF and PRG theories with
the types and definitions used in our stateful random generator. We do so using
EasyCrypt’s theory cloning mechanism.

clone PRF as PRFa

with
type D ← state,
type R ← state ∗ output,
type K ← seed,
op dK ← dseed,
op F ← Fc,
op uR ← dstate ‘∗‘ dout (∗ product distribution ∗)

proof ∗.
(∗ Proofs omitted ∗)

module INDPRF
P = PRFa.IND(P).

module PRFc = PRFa.PRFr.
module PRFi = PRFa.PRFi.

Listing 1.7. Security of Fc

The clone instruction creates a copy of the PRF theory defined in Section 3.3,
renaming it PRFa, and instantiating some of its declared types and operators.
For example, we instantiate the abstract operator F from the theory with the
function family Fc used in the construction of our SRG, instantiating the domain,
range and keyspace accordingly. In addition to instantiating types and operators,
the cloning instruction allows us to discharge assumptions about them made in
the theory. Here, we discharge all axioms, ensuring that any lemma existing in
the PRF theory are unconditional lemmas of its PRFa instantiation. After cloning
and instantiating the PRF definitions, we define some shorthand notations for
its instantiated modules. In particular, we call PRFc the PRFr module where Fc
is used. PRF advantage notations in the rest of the paper refer to the advantage
in the INDprg game rather than the uninstantiated IND game. Also note that
parameterized modules can be partially applied: given a module P implementing
module type PRF, the partially applied module INDprf

P = INDprf(P) is such that,
given a PRF-distinguisher D, INDprf

P (D) = INDprf(P,D). From now on, we often
write the first parameter as an index when applying module expressions.

Similarly, we clone and instantiate the PRG theory with the types used in
our construction to easily express the fact that PRGc is a secure PRG. Likewise,
PRG advantage notations in the following refer to the instantiated INDprg game.

clone PRG as PRGa
with

type output ← output,
op dout ← dout.

module INDPRG
G = PRGa.IND(G).

module PRGi = PRGa.PRGi.

Listing 1.8. Security of PRGc

4 EasyCrypt proof sketch

4.1 Abstract Bounds for Arbitrary Distinguishers

We first bound the PRG advantage of D as abstract expressions that may not be
very meaningful but hold for all D. This proof itself is done in two hops: i. the
first hop transforms the SRG construction to make use of the random function
PRFi to implement the next oracle instead of Fc; ii. the second hop shows that
the PRFi-based implementation of the next oracle is equivalent, up to some well-
defined failure event, to the ideal random generator PRGi. We now discuss both
steps.

A simple reduction. We want to relate the probability of a distinguisher D to
win the game INDprg to the probability of another distinguisher DPRF to win
the game INDprf. To do so we can simply use the game INDprg itself as PRF
distinguisher after rewriting SRG as a parameterized module PRGp that uses the
PRF oracles instead of calling Fc directly. Anticipating on later proof steps, we
also log the queries made by PRGp to the PRF oracle in a list Dprf.log.

module Dprf(D:PRGa.Distinguisher,F:PRFA) = {
var log: state list

module PRGp = {
proc init(): unit = {
SRG.st $← dstate;
log ← [];

}

proc next(): output = {
var r;

log ← SRG.st::log;
(SRG.st,r) @← F.f(SRG.st);
return r;

}
}.

proc distinguish = INDprg
PRGp(D).main

}.

Note that the module PRGp does not declare its own memory space, but
simply hijacks our initial SRG’s global variables. Although this is not necessary,
it simplifies invariants slightly by reducing the number of proof artefacts to
consider. The following fact is now easy to prove.

Fact 1 For any PRG distinguisher D whose memory space is disjoint from that
of SRG and PRFc, we have

Pr
[
INDprg

SRG(D) : res
]

= Pr
[
INDprf

PRFc(D
prf
D) : res

]

Proof (sketch). In EasyCrypt, the proof of this lemma makes use of the following
pRHL judgment:

INDprg
SRG(D).main ~ INDprf

PRFc(Dprf
D).main: ={glob D} =⇒ ={res}

The judgment itself is easily discharged by automated tactics after inlining all
procedures. Indeed, the procedures are identical except for the fact that the
program on the left uses variable SRG.s to store the seed whereas the one on
the right uses PRFc.k. The main trick is this proof is to be able to proof the
statement for all adversary D. Intuitively we have to compare two evaluations
of D, the first uses the next function provided by the module SRG whereas the
second uses the next function provided by the module PRGp. Assuming that
memory space of D is equal in both evaluations, they can diverge only if: i. D
can read values of variables SRG or PRFc but this is impossible due to memory
restriction; ii. the oracles return different results or dissimilar states even when
called on identical arguments and in similar states. So, the only point that need
to be proved is that both oracle behave identical.

Once proved, this judgment can be used to prove the probability statement
simply by using its semantic interpretation. ut

Fact 1 is written as follows in its full EasyCrypt notation.

lemma SRG_PRGp (D <: PRGa.Distinguisher {SRG,PRFc}) &m:
Pr[INDprg(SRG,D).main() @ &m: res] =
Pr[INDprf(PRFc,Dprf(D)).main() @ &m: res].

Note that the quantification over the PRG-distinguisher D is made explicit in
the lemma, the only restrictions on it being that it implements module type
PRGa.Distinguisher and that its memory space (denoted glob D in pRHL state-
ments) is disjoint from those of SRG and PRFc. We also prove this lemma for
any initial memory: the variable &m denotes a universally quantified memory.
We do not list full EasyCrypt notations for other lemmas, but rather refer the
reader to the formalization itself, which is made available from the web page
corresponding to this tutorial.9

Continuing the proof, and using Fact 1 we show:

Advprg
SRG(D) = Pr

[
INDprg

SRG(D) : res
]
− Pr

[
INDprg

PRGi(D) : res
]

by definition

= Pr
[
INDprf

PRFc(D
prf
D) : res

]
− Pr

[
INDprg

PRGi(D) : res
]

by Fact 1

= Pr
[
INDprf

PRFc(D
prf
D) : res

]
− Pr

[
INDprf

PRFi(D
prf
D) : res

]
+

Pr
[
INDprf

PRFi(D
prf
D) : res

]
− Pr

[
INDprg

PRGi(D) : res
]

= Advprf
Fc (Dprf

D)+ by definition
Pr
[
INDprf

PRFi(D
prf
D) : res

]
− Pr

[
INDprg

PRGi(D) : res
]

9 https://www.easycrypt.info/trac/Tutorial

https://www.easycrypt.info/trac/Tutorial

Considering failure events. We now wish to bound the last term

Pr
[
INDprf

PRFi(D
prf
D) : res

]
− Pr

[
INDprg

PRGi(D) : res
]
.

It is clear from their definitions that the two games will only show different
behaviours if a duplicate query is made to the PRF by Dprf

D . Indeed, in this
case, the value eventually returned to D is not sampled from dout but rather
recalled from the random function’s map, whereas the ideal random generator
always samples its output freshly. We therefore expect the bound to be the
probability of a duplicate query to the random function, which we expressed in
Section 2 as Pr

[
INDprf

PRFi(D
prf
D) : ∃x, 1 < x#Q

]
. Moving slightly away from this

high-level description, we use the inductive list Dprf.log to model multiset Q,
using the unique predicate (or rather its negation) to capture the desired event.

However, having the failure event occur only in the first (left) game of the
transition would not yield the expected inequality. Indeed directly applying the
semantics of equivalence upto failure as presented in Section 1 would lead to a
lower-bound rather than the desired upper-bound. Still, an upper-bound can be
obtained in this case if the failure event is known to happen with the same prob-
ability on both sides of the transitions. Therefore, we also instrument the PRGi
module to construct a log of “intermediate states” that it does not otherwise
use. In addition, we also make sure that the intermediate state and the output
are sampled in the product distribution dstate ∗ dout. This makes this complex
game transition easier to prove, by separating two concerns.

module PRGilog = {
proc init(): unit = {
SRG.st $← dstate;
Dprf.log ← [];

}

proc next(): output = {
var r;

Dprf.log ← SRG.st :: Dprf.log;
(SRG.st,r) $← dstate ∗ dout;
return r;

}
}.

First note that PRGilog is indistinguishable from PRGi. Indeed, the addi-
tional log and state variables do not alter its control-flow and its output is the
second component of a value sampled in the product distribution dstate ∗ dout.
In EasyCrypt, we in fact prove that oracles PRGilog and PRGi define the same
distribution on the type output regardless of initial state by proving

∀&m1 &m2 o,
Pr [PRGilog.next()@ &m1 : res = o] = Pr [PRGi.next()@ &m2 : res = o] .

This is in fact sufficient to prove that, for any PRG-distinguisher D, we have

Pr
[
INDprg

PRGilog
(D) : res

]
= Pr

[
INDprg

PRGi(D) : res
]

and we now only have to prove the following Fact.

Fact 2 (Equivalence upto failure) For all PRG-distinguisher D whose mem-
ory space is disjoint from that of Dprf and SRG, we have the following bound

Pr
[
INDprf

PRFi(D
prf
D) : res

]
− Pr

[
INDprg

PRGilog
(D) : res

]
≤

Pr
[
INDprf

PRFi(D
prf
D) : !uniq Dprf.log

]
Proof. We prove in EasyCrypt a single pRHL statement:

INDprf
PRFi(Dprf

D).main ~ INDprg
PRGilog

(D).main:
={glob D} =⇒
(uniq Dprf.log{1} = uniq Dprf.log{2}) ∧ (uniq Dprf.log{2} ⇒ ={res}).

This pRHL judgement implies two distinct probability relations. The first
conjunct in the postcondition implies that the probability of the failure event in
both games is equal

Pr
[
INDprf

PRFi(D
prf
D) : !uniq Dprf.log

]
=

Pr
[
INDprg

PRGilog
(D) : !uniq Dprf.log

]
(1)

whereas the second conjunct implies the expected inequality

Pr
[
INDprf

PRFi(D
prf
D) : res

]
− Pr

[
INDprg

PRGilog
(D) : res

]
≤

Pr
[
INDprg

PRGilog
(D) : !uniq Dprf.log

]
We then conclude easily. ut

Combining Fact 2 and Fact 1’s corollary concludes the proof of Theorem 1.
Note that this Theorem does not directly imply security in the concrete sense:
although we did take care to ensure that our constructed PRF-distinguisher
Dprf

D did not have access to the internal memory of PRFc or PRFi (with which it
could trivially distinguish the two constructions), we did not bound the number
of oracle queries it makes, which may lead to large values of the PRF-advantage
and to a large probability of the failure event occurring. We now bound these
two quantitites more concretely.

4.2 Application to Resource-Bounded Adversaries

All proof steps seen so far hold regardless of the adversary’s resource bounds
(running time or number of oracle queries) and only place restrictions on the
oracles the adversary can query (via its module type) and on the global variables
it may access (via restrictions in the module quantification). However, computing
probability and resource bounds requires us to restrict the adversary further, and
in particular requires us to limit the number of oracle queries it can make.

Counting oracle queries. First, consider the following module wrappers, that
simply count the number of queries made to the PRG (Cprg) or PRF (Cprf)
oracles.

module Cprg(G:PRG) = {
var c:int

proc init(): unit = {
c ← 0;
G.init();

}

proc next(): output = {
var r;

r @← G.next();
c ← c + 1;
return r;

}
}.

module Cprf(F:PRF) = {
var c:int

proc init(): unit = {
c ← 0;
F.init();

}

proc f(): output = {
var r;

r @← F.f();
c ← c + 1;
return r;

}
}.

This wrapper allows us to easily restrict the number of queries made by
an adversary to the oracle. In particular, all conditions of the form “D makes at
most q queries to the PRG oracle” appearing below can be expressed in EasyCrypt
using the following specification, which states that the distinguisher D playing
the INDprg game against any appropriate G (note the restrictions ensuring that
such a D exists) has a probability 1 of making at most q queries to the oracle
G.next.

∀ (G <: PRG {D,Cprg}),
islossless G.init ⇒ islossless G.next ⇒
Pr[INDprg(Cprg

G ,D): Cprg.c ≤ q] = 1

More complex conditions, for example relating the initial value of the counter to
its final value even when D(Cprg

G).distinguish is run independently of the experi-
ment, can also be expressed in similar ways.

Bounding the failure event. We can now bound the probability of the failure
event from Theorem 1 for any PRG-distinguisher D that makes at most q queries
to its next oracle.

Lemma 1 (Probability of the failure event). For all positive integer q,
and all PRG-distinguisher D whose memory space is disjoint from those of Cprg,
PRFc, PRFi and Dprf and that makes at most q queries to its next oracle, we
have

Pr
[
INDprf

PRFi(D
prf
D) : !uniq Dprf.log

]
≤ (q + 1) · q

2 · |state| ,

where |state| is the cardinal of type state.

Proof. To prove this, we make use of the failure event lemma, that intuitively
states that, if an event occurs with probability at most pi, regardless of state
and adversary inputs, during the ith oracle query, and if the adversary may call
this oracle at most q times, then the probability of the event occurring during a
full run of the adversary is bounded by

∑
0≤i<q pi.

To ease the computation of the probability that the failure event is triggered
during a given execution of the oracle, we first overapproximate it, triggering a
failure as soon as a colliding response is sampled, even if it is not used. This
weakens the bound, since a collision in the qth response would not give any
distinguishing advantage, but makes the formal proof slightly easier. Formally,
we prove the following::

Pr
[
INDprg

PRGilog
(D) : !uniq Dprf.log

]
≤

Pr
[
INDprg

PRGilog
(D) : !uniq (SRG.st::Dprf.log)

]
.

The probability of this generalized failure event during the ith query is much
easier to compute, as it is simply the probability that a freshly sampled output
already appears in a duplicate-free list of size i. Since dstate is uniform and full,
the probability of the generalized failure event being triggered during the ith
query is exactly i

|state| . ut

Bounding the resources of the PRF-distinguisher. Finally, we prove that for any
bounded PRG-distinguisher D with no access to the memory of the primitive
modules, the generic construction Dprf and both Cprg modules, the constructed
PRF-distinguisher Dprf

D makes at most as many queries to the PRF as D did to
the PRG.

Lemma 2 (Number of PRF queries). For all positive integer q, and all
PRG-distinguisher D whose memory space is disjoint from those of Cprg, Cprf,
PRFc, PRFi and SRG, and that makes at most q oracle queries, the constructed
PRF-distinguisher Dprf

D makes at most q oracles queries.

Proof (Sketch). Given an integer q and PRG-distinguisher Das constrained above,
we prove the following equality, which states that (for all initial memory) the

probability that the constructed Dprf
D makes at most q queries to PRFc.f during

a run of the INDprf experiment is 1.

Pr
[
INDprf

Cprf(PRFc)(D
prf
D) : Cprf.c ≤ q

]
= 1.

We do so by proving the following statement, inlining all functions and noting
that the counters remain synchronized through the execution.

Pr
[
INDprf

Cprf(PRFc)(D
prf
D) : Cprf.c ≤ q

]
= Pr

[
INDprg

Cprg(SRG)(D) : Cprg.c ≤ q
]

We conclude by applying the assumption on D, rewriting the right-hand-side of
this equality into 1. ut

This concludes the proof of Theorem 2.

5 Further reading and concluding remarks

EasyCrypt provides tool-assisted support for building and verifying machine-
checked cryptographic proofs. Its foundations are based on a probabilistic re-
lational Hoare logic, pRHL, that was first introduced in [5], and a verification
condition generator that was first presented in [4]. Another key component of
EasyCrypt is its module system, which supports the formalization of complex
and layered proofs and has been used for instance to verify the security of pro-
tocols for secure function evaluation and verifiable computation [2]. One main
motivation for the development of EasyCrypt is to close the gap between se-
curity proofs and implementations; an approach based on certified compilers
is presented in [1]. Beyond EasyCrypt, it is possible to develop and apply fully
automated verification techniques for analyzing the security of classes of cryp-
tographic constructions; for instance, one can use customized logics to reason
about the security of padding-based encryption schemes, i.e. public-key encryp-
tion schemes built from one-way trapdoor permutations and random oracles [3].
Deduction rules of the logic capture high-level reasoning principles that can be
formalized in EasyCrypt, and contribute to building an extensive library of com-
mon reasoning patterns in cryptography. It is our hope that the development
of the library will somewhat shift the focus of EasyCrypt proofs to reduce the
emphasis on proving pRHL judgments and to bring them closer to the high level
reasoning steps used by cryptographers.

References

1. José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, and François Dupressoir.
Certified computer-aided cryptography: efficient provably secure machine code from
high-level implementations. In ACM Communications and Computer Security
(CCS), pages 1217–1230. ACM, 2013. 20

2. José Bacelar Almeida, Manuel Barbosa, Gilles Barthe, Guillaume Davy, François
Dupressoir, Benjamin Grégoire, and Pierre-Yves Strub. Verified implementations
for secure and verifiable computation. Cryptology ePrint Archive, Report 2014/456,
2014. http://eprint.iacr.org/. 20

3. Gilles Barthe, Juan Manuel Crespo, Benjamin Grégoire, César Kunz, Yassine
Lakhnech, Benedikt Schmidt, and Santiago Zanella Béguelin. Fully automated anal-
ysis of padding-based encryption in the computational model. In ACM Communi-
cations and Computer Security (CCS), pages 1247–1260. ACM, 2013. 20

4. Gilles Barthe, Benjamin Grégoire, Sylvain Heraud, and Santiago Zanella Béguelin.
Computer-aided security proofs for the working cryptographer. In Advances in
Cryptology — CRYPTO, volume 6841 of Lectures Notes in Computer Science, pages
71–90. Springer-Verlag, 2011. 20

5. Gilles Barthe, Benjamin Grégoire, and Santiago Zanella-Béguelin. Formal certi-
fication of code-based cryptographic proofs. In ACM Principles of Programming
Languages (POPL), pages 90–101. ACM, 2009. 2, 20

http://eprint.iacr.org/

	EasyCrypt: A Tutorial

