
 The development library

1 Table of contents
The development library ... 1

1 Table of contents... 2
2 Introduction... 3
3 The tools of the development library ... 4
3.1 APEEK .. 4
3.2 PEEK ... 4
3.3 POKE .. 4
3.4 A→ ... 4
3.5 →A ... 4
3.6 →RAM... 4
3.7 A→H .. 5
3.8 H→A .. 5
3.9 CD→.. 5
3.10 →CD ... 5
3.11 →H .. 5
3.12 H→ .. 5
3.13 S→H ... 5
3.14 H→S ... 6
3.15 SREV .. 6
3.16 MAKESTR ... 6
3.17 SERIAL... 6
3.18 →S2 .. 6
3.19 XLIB~.. 6
3.20 CRC .. 6
3.21 S~N... 7
3.22 R~SB .. 7
3.23 SB~B .. 7
3.24 LR~R .. 7
3.25 LC~C .. 7
3.26 COMP→ ... 7
3.27 →ALG... 7
3.28 →PRG .. 8
3.29 →LST ... 8

4 CRLIB .. 9
4.1 Extension program ... 9

5 ASM...11
5.1 Introduction...11
5.2 Saturn ASM mode...17
5.3 ARM mode..26
5.4 System RPL mode...32
5.5 Examples of program using the MASD compiler ...34

6 ASM→...38
7 ARM→ ..39
8 The Entry point library: extable...40
8.1 nop..40
8.2 GETNAME ...40
8.3 GETADR ..40
8.4 GETNAMES ..40

2 Introduction
Built in the HP49+ stands a set of function not accessible to the user by default. This library contains lots of low
level development tools mainly aimed at system RPL and assembly development.

In order to enable this library, you must attach it (256 ATTACH).
Note: You can also set the flag –86. This will cause the library to attach itself on the next warmstart.
Note: When the library is attached, it appears in the APPS menu.

Note: The tools and programs in this library are extremely powerful, and misusing them may cause memory lost.

3 The tools of the development library

3.1 APEEK

Address PEEK command: Read the address stored at an address.

Example: #80711h APEEK returns the address of the home directory.

Level 1 -> Level 1
Binary integer -> Binary integer

3.2 PEEK

Memory read: reads nibbles from a specified address in memory.
Note: Due to bank switching, the data read from address #40000h to #7FFFFh may not be accurate.

Level 2 Level 1 -> Level 1

Binary integer (address) Binary Integer (number of nibbles to read) -> String

3.3 POKE

Memory write command: Writes nibbles in memory.
Note: you can not write data in the Flash ROM using this command.

Note: Writing data in memory randomly will cause memory lost.

Level 1 Level 2 ->
Binary integer (Address where to write) String (Data to write) ->

3.4 PEEKARM

Memory read: reads nibbles from a specified address in memory in the ARM address space.

Level 2 Level 1 -> Level 1
Binary integer (address) Binary Integer (number of byte to read) -> String

3.5 POKEARM

Memory write command: Writes bytes in ARM memory address space.
Note: you can not write data in the Flash ROM using this command.
Note: Writing data in memory randomly will cause memory lost.

Level 1 Level 2 -> Level 1
Binary integer (Address where to write) String (Data to write in hex) ->

3.6 A→→→→

Address out: Returns the object stored at a specific address.

Level 1 -> Level 1

Binary integer -> Object

3.7 →→→→A

Get Address: Returns the address of an object.

Level 1 -> Level 1

Object -> Binary integer

3.8 →→→→RAM

Improved NEWOB: This command makes a copy of an object in RAM, wherever the object is.

This commands allows you to copy a ROM object in RAM.

Level 1 -> Level 1
Object -> Object located in RAM

3.9 A→→→→H

Address to string: Returns the hex representation of an address (you can then use this with the POKE command).

The hex representation of an address is a 5 character string where the address is written backwards.

Level 1 -> Level 1
Binary integer -> string

3.10 H→→→→A

String to address: Returns the address represented by a 5 character string.
The hex representation of an address is a 5 character string where the address is written backwards.

Level 1 -> Level 1
String -> binary integer

3.11 CD→→→→

Code to hex: Returns the hex representation of a code (Assembly program) object.

Level 1 -> Level 1
Code -> string

3.12 →→→→CD

hex to Code: Returns the code (Assembly program) object represented by an hex string.
A hex string is a string that only contains the characters ‘0’ to ‘9’ and ‘A’ to ‘F’.

Level 1 -> Level 1

String -> Code

3.13 →→→→H

Object to hex: Returns the hex representation of an object.

Level 1 -> Level 1
Object -> string

3.14 H→→→→

hex to object : Returns the object represented by a hex string.
A hex string is a string that only contains the characters ‘0’ to ‘9’ and ‘A’ to ‘F’.
Note: if the string does not represent a valid object, this can corrupt your memory;

Level 1 -> Level 1

String -> Object

3.15 S→→→→H

String to hex: Returns the hex representation of the characters of a string.

Example: “A” S→H → “14”

Level 1 -> Level 1
String -> String

3.16 H→→→→S

hex to String : Returns the string which data are represented by a hex string.
A hex string is a string that only contains the characters ‘0’ to ‘9’ and ‘A’ to ‘F’.

Example: “14” H→S → “A”

Level 1 -> Level 1
String -> String

3.17 SREV

String reverse: gives the mirror image of a string.

Example: “14” H→S → “A”

Level 1 -> Level 1
String -> String

3.18 MAKESTR

Create a string of the given size.

Example: 10 MAKESTR -> “ABCDEFG<cr>AB”

Level 1 -> Level 1
Real -> String

3.19 SERIAL

Retrieve the calculator serial number

Level 1 -> Level 1
 -> String

3.20 →→→→S2

Decompile an object in system RPL mode.

Example: << >> →S2 -> “!NO CODE !RPL :: x<< x>> ; <cr>@”

Level 1 -> Level 1
Object -> String

3.21 XLIB~

Convert reels to an XLIB.

Level 2 Level 1 -> Level1
Real Real -> Xlib
Binary Real -> Xlib

Real Binary -> Xlib
Binary Binary -> Xlib

3.22 CRC

CRC computation: gives the CRC of a library or a string.
This command gives you the CRC of the data in a library object or string (the CRC computation starts on the
size of the object and finishes 4 nibbles before the end of the object)

Level 1 -> Level 1

String/Library -> System integer

3.23 S~N

String to name conversions: This command converts strings to names and names to strings.
This command allows you to create invalid names.
Note: Do not purge or move the null directory in home. Do not modify data in this directory.

Level 1 -> Level 1
String -> Global name
Global name -> String

3.24 R~SB

Real to System binary conversions: This command allows to convert system binary to real and real to system
binary.

Level 1 -> Level 1
Real -> System binary
integer -> System binary
System binary -> Real

3.25 SB~B

Binary integer to System binary conversions: This command allows to convert system binary to binary integer
and binary integer to system binary.

Level 1 -> Level 1

Binary integer -> System binary
System binary -> Binary integer

3.26 LR~R

Long real to real : This command allows to convert long real to real and real to long real.

Level 1 -> Level 1
Long real -> Real
Real -> Long real

3.27 LC~C

Long complex to complex: This command allows to convert long complex to complex and complex to long
complex.

Level 1 -> Level 1

Long complex -> Complex
Complex -> Long complex

3.28 COMP→→→→

Composite out: This is equivalent to the RPL LIST→ command, but it also works on Program and Symbolic
objects.

Level 1 -> Level n+1..2 Level 1
List/Program/Symbolic -> Objects n (real)

3.29 →→→→ALG

Create symbolic: This is equivalent to the RPL →LIST command, but it creates a symbolic object.
Note: this command will also convert a program or a list in a symbolic object.

Level n+1..2 Level 1 -> Level 1

List/Program/Symbolic -> Symbolic
Objects real (n) -> Symbolic

3.30 →→→→PRG

Create program: This is equivalent to the RPL →LIST command, but it creates a program object.
Note: this command will also convert a symbolic or a list in a program object.

Level n+1..2 Level 1 -> Level 1

List/Program/Symbolic -> Program

Objects real (n) -> Program

3.31 →→→→LST

Create symbolic: This is equivalent to the RPL →LIST command, but it can also convert a program or symbolic
in a list.

Level n+1..2 Level 1 -> Level 1

List/Program/Symbolic -> List
Objects real (n) -> List

4 CRLIB
Create library command.
A library is one of the most complex object in the HP49. One of the basic uses of a library is to group all the files

of an application.

In order to create a library, you must store in a directory all the variables that will be part of this library. Then,

you must store configuration information in some special variables.

The $TITLE variable must contain a character string defining the title of the library. This string must be less than
256 characters long. The first five characters will be used for the name that is shown in the library menu.

The $ROMID variable must contain the library number or your library. This number must be in the range 769 to
1791. In order to avoid conflicts, you should go to www.hpcalc.org to check whether the number is already in
use.
This variable may contain either a real or an integer.

The $CONFIG variable contains the library configuration object which is run at warmstart. The basic action that
this program should perform is to attach the library to the home directory. Placing a real or an integer in the

$CONFIG variable will cause the CRLIB command to generate a default CONFIG object. This Program must
leave the stack intact and is not allowed to produce errors.

The $VISIBLE variable contains a list of all the variables in the current directory that you want to have visible in

the library menu.

The $HIDDEN variable contains a list of all the variables in the current directory that you want to have invisible
in the library. They are generally subprograms of your application.

The $EXTPRG variable contains the name of the extension program of the library. This program must be either
a visible or an hidden object of the library. See the Extension program for more information.

Then, once you have specified the required variables, you can type CRLIB to create the library.

-> Level 1
-> Library

4.1 Extension program

It is possible to enhance some of the statistics menu using a user library. The HP49 does not provide every
possible functions in every area, but let you customise the built in menu in order to add your functions 'as if they
were built in'.

 Example: customise the main statistic menu.

 Go in RPL mode (MODE, +/-, ENTER) and attach the development library (256 ATTACH).

 In a directory, create the following variables:

$ROMID 1324
$CONFIG 1

$TITLE "Statistic enhancements"
$VISIBLE { ABOUT }
$HIDDEN { MessageHandler }
$EXTPRG 'MessageHandler'
ABOUT "This library is a statistic enhancement example"
MessageHandler

<<
IF DUP 1 R~SB ==

THEN
SWAP

{ { "7.New entry" << "My Stats" 1 DISP 7 * FREEZE >> } } +
SWAP

END
>>

Create the library (CRLIB) and store it in an extension port (0 STO)

Now, run the statistic menu (Shift 5)!

How does it work?
Each time the stat menu pops up, the HP49 executes every Extension Program of the library in the system. This
extension Program takes on the stack a message number (and let it on the stack!). Each message number has a

specific meaning, as described below.

Here are the I/O expected for the Extension program for different menus:

APPS menu
Input: { { "String" Action } ... } ZERO
Output: Modified list ZERO

Main Statistic menu
Input: { { "String" Action } ... } ONE
Output: Modified list ONE

Hypothesis statistic menu
Input: { { "String" Action } ... } TWO
Output: Modified list TWO

Confidence interval statistic menu
Input: { { "String" Action } ... } THREE
Output: Modified list THREE

Finance menu
Input: { { "String" Action } ... } FOUR
Output: Modified list FOUR

Numeric solver menu
Input: { { "String" Action } ... } FIVE
Output: Modified list FIVE

5 ASM
The Machine Language and system RPL Compiler (Masd)

5.1 Introduction

5.1.1 Warnings

The operating system can not control what a low level program is doing, therefore, any programming error is
likely to cause the calculator to crash (with eventual memory lost). A careful developer will always save his
source code in the internal flash rom or port 1 for protection before trying his programs,

This document does not intend to be a programming course, it just presents the syntax of the compiler. Ample
resources are available on the web (www.hpcalc.org) to learn how to program the Saturn CPU in assembler, how
to program in system RPL or how to program in ARM assembly.

With the instruction of the new ARM based series of calculator, some new things have been included that are not
backward compatible with previous calculators. The careful programmer should be weary of this.

5.1.2 Starting Masd

To compile a program, put the source code on the level 1 of the stack and type ASM (the development library
must be attached) or use the ASM menu of the Development library.
If you have a new version of MASD packaged as a library 259, the command to type is asm (note the
lowercase).

5.1.3 Modes

Masd can be used to compile program in 3 different languages: Saturn ASM, ARM ASM and System RPL.
Although some things are common to all modes, some are not. As a programmer, you should always know what

mode you are in.
Compilation directives instruction are used to switch from one mode to another:
!ASM (switch to Saturn ASM mode, referred in the rest of this document as the Saturn mode)
!RPL (switch to System RPL mode)

!ARM (switches to ARM ASM mode)
In addition, in RPL mode,
CODE
% here we are in ASM mode
ENDCODE
Switches from RPL mode to Saturn mode (and generates an assembly program object)

5.1.4 Syntax

Masd expects a character string (called source) on the stack level 1.
A source is a set of instructions, comments, and separation characters and ends with a carriage return and an @
character.
Masd is case sensitive, so be careful, as « loop » and « LOOP » are two different things for MASD.

Separation characters are those with an ASCII number below 32. They include spaces, tabs, line feed and
carriage return.
In Saturn mode, some instructions need a parameter. Separation characters between an instruction and the
parameter are spaces, tabs, and points. Therefore A+B.A can be used instead of A+B A.
In ARM mode, parameters for the instruction are separated by spaces and comas.
In Saturn or ARM mode, comments can be placed everywhere and begin with % or ; and finish at the end of the
current line.
In RPL mode, comments are delimited by ‘(‘ ‘)’ as isolated characters and can be multi line. A line that starts

with a ‘*’ on the first character will also be considered a comment.
Directives change the way Masd interprets your source. Theses directives begin with a ! and will be explained
later.

5.1.5 Errors

If Masd detects one or more syntax error, it will push a list describing all errors on the stack. The ER command
can help you make sense of that list, point you on the errors and let you correct them.
Masd will report a maximum of 16 errors before stopping compilation.
The ER command takes 2 objects as arguments:

The original source code (level 2)

The error list generated by MASD (level 1)
Normally, you should compile using a process similar to: IFERR ASM THEN ER END (this is what the
ASM2 command does BTW). Most peoples will just type the ASM command followed, if error by the
ER command.

a) Format of the error list:

It’s a list of at most 16 sub-lists.
Each sub-list contains 3 system-binary and 1 global-name.

The first system binary is an error message number.
The second is an extra system binary used to indicate how ‘too long’ a jump is.
The third one is the position in the source where the error is.
The global name is either a NULLNAME if the error was in the main source or the filename of the buggy
source.

b) Error messages

Invalid File The file is not a valid source or macro. (must end with a @@@@)
Too many You can not do this operation as you are limited to a certain

amount of them (for example, you can not have more than 64
simultaneous skips)

Unknown Instruction Unknown instruction

Invalid Field Incorrect field

Val betw 0-15 expected An integer between 0 and 15 is expected

Val betw 1-16 expected An integer between 1 and 16 is expected

Val betw 1-8 expected An integer between 1 and 8 is expected

Label Expected A label is expected

Hexa Expected An hexadecimal number is expected

Decimal Expected An decimal number is expected

Can't find This object can not be located

Label already defined This name is already in use

{ expected A { character was expected

} expected A } character was expected (this can happen if you do not close

all the open skips for example)

[or] expected A [or] character was expected

Forbidden This can not be done

Bad Expression This expression is invalid

Jump too long This jump is above the limit of the instruction (use a different
type of jump)

Matrix Error You can not do this thing here because you are creating a matrix
object

Define Error You can not do this operation in a DEFINE

ARM register expected No comments.

ARM invalid imediate In ARM mode, constants must be representable on 8 bit with an
even number of rotation

5.1.6 Links

Links are secondary source files that MASD can be directed to compile (equivalent to the {$I} directive in
PASCAL and #include in C). As there is no linking phase with MASD (like in C), a multi source project will
usually have the form of a main source file that contains a certain number of links.
An example of main source would be:
"
'Constante_definition
'initialization
'graphic_functions
'other
@"

When a link call is encountered, Masd suspends compilation of the current source, compiles the new source and
then continues compiling the first one.
Program and data in the final object will be in the order in which MASD encounter the links.

Syntax in ASM and ARM mode:
'FileName links the file called FileName.

Syntax in RPL mode:
INCLUDE FileName links the file called FileName.

Note 1: A link can call other links

Note 2: You can not use more than 64 links in your project
Note 3: To know how Masd looks for files, see the File search section
Note 4: Links are useful to cut projects in independent parts to allow fast and easy access to source code
Note 6: It is beneficial to place all constants definition at the beginning of the compilation process as this will

speed up compilation and give more flexibility

5.1.7 Labels

A label is a marker in the program. The principal use of labels is to determine jump destinations.
A label is a set of less than 64 characters different from space, ‘+’, ‘-‘, ‘*’ and ‘/’. A label begins with a star
‘*’ and ends with a separation character.
Syntax in ASM and ARM mode:
*BigLoop is the BigLoop label declaration.
Syntax in RPL mode:

LABEL BigLoop is the BigLoop label declaration.

Be careful about upper and lower cases!
Three types of labels can be used:

• Global labels

A global label is a label that can be used everywhere in the project, like global variables in Pascal or C.

• Local labels

A Local lab is a label that is only accessible in a local section like local variables in Pascal or C.
A local section starts at the beginning of a source, after a global label or after a link (see link section)..
A local section finishes at the end of a source, before a link or before a global label.
A local label is identified by a ‘.’ as the first character.

• Link labels

A link label is a label that exists only in the link where it is declared, like a private clause in Object Pascal.
A link label is identified by a ‘_’ as the first character.
Note 1: In projects, using less global labels is better because a global label takes longer to compile and because it
gives a better program structure. A good habit is to use global labels to cut the program in subroutines, and to use

local labels inside these subroutines.
Note 2: The command line editor is able to find labels in a source. See the GOTO selection in the command line
TOOL menu.
Note 3: labels in system RPL should only be used by people who know what they are doing. They are only used
for fixed address program (absolute mode) which is pretty advanced programming.
Note 4: Labels can not be given the same name as constants.

5.1.8 “extable”

“extable” is an external library that contains a list of constants.

This list can be used by the Masd as a basic list of constants and is especially useful to the System RPL
programmer as most entry points are defined there (like TURNMENUOFF for example).
In addition, it also contains a set of supported constants and ASM entry points for the ASM programmer.
Please read the extable section in this document to find more information about this library.

5.1.9 Constants

Constants are a way for the user to associate a value to an alphanumerical name. This is extremely useful as it
makes programs much easier to read and makes them more portable. One of the most popular ways to use
constants is to represent memory address for storage of variables.
For example, instead of typing D1=80100 every time it is needed, it is better to declare
DC Result 80100 at the beginning of the project and then to type D1=(5)Result when needed (it is
more portable, more readable and less likely to cause errors).

You can create a constant in ASM or ARM mode by doing:
DC CstName ExpressionHex or
DEFINE CstName ExpressionHex or
EQU CstName ExpressionHex
In RPL mode, the only valid way to define a constant is:
EQU CstName ExpressionHex

ExpressionHex is either an hexadecimal number or an expression (starting with a char that can not be
confused with the start an hex number (0..9,A..F). An expression starting with a hexadecimal number can be
typed with a leading $, an expression starting with a decimal number can be typed with a leading #### character.
For an expression starting with a constant that starts with a 0..9 or A..F character, you should put the constant in
brackets.

Note 1: A constant cannot be given the same name as a label.

Note 2: The name of a constant follows the same rules as the name of a label.
Note 3: A constant value is stored on 16 nibbles.
Note 4: having constants starting with something that can be interpreted as a hex number, or an ARM register is
not a good idea as the compiler might get confused. For example: DC SPFOO 4 MOV R4 SPFOO will
generate an error on FOO as the compiler will interpret the mov as a mov from SP to R4.

Masd introduces a ‘constant pointer’ called CP which helps to define constants. CP is defined by:
CP=ExpressionHex
CP is defined on 5 nibbles, its default value is 80100 (an area of memory that can be used freely by programmers).

EQUCP Increment ConstantName
Declares a constant with the current CP value and then increase CP by Increment.
Note 1: in ASM and ARM mode, DCCP Increment ConstantName is also valid
Note 2: Increment is a hexadecimal value, to use a decimal value, put a leading ####.
For example, if CP equals to $10
EQUCP 5 Foo
Defines a Foo constant with a value of $10 and then change the value of CP to $15.
Note:

Several constants can be defined at once using CP.
: Inc CstName0 CstName1 ... CstNameN-1 :
Defines N constants CstNamex with a value of CP+x*Inc and then changes the CP value to CP+N*Inc.
By default, Inc is a decimal number or an expression that can be immediately evaluated.

These features are extremely useful to define area of memory for storage of ASM program variables.

Note 1: If the entry point library (see related section) is installed on your calculator, all the values in the constant
library will be available in your programs the same way than constants are.
Note 2: you can define a constant in your program to override the value of an entry in the equation library.

5.1.10 Expressions

An expression is a mathematical operation that is calculated at compilation time.
Terms of this operation are hexadecimal or decimal values, constants or labels.
An expression stops on a separation character or a ‘]’.

DCCP 5 @Data
...
D1=(5)@Data+$10/#2
D0=(5)$5+DUP
LC(5)"DUP"+#5

are correct expressions (provided that the entry point library is installed).

Notes:

• A hexadecimal value must begin with a $....
• A decimal value may begin with a # or directly a number.

• A & or (*) equals the offset of the current instruction in the program (This value has no

meaning in itself, but may be used to calculate the distance between a label and the current
instruction). In absolute mode, this represents the final address of the instruction.

• The value of a label is the offset of the label in the program (This value has no meaning in itself,
but may be used to calculate the distance between a label and the current instruction). In absolute
mode, this represents the final address of the instruction.

• Entries from the EXTABLE may be used. As the EXTABLE does not have the label names

limitations with operators, in ambiguous case (DUP+#5 may either be an addition DUP + 5, or an
entry ‘DUP+#5‘), add "" around the word: "DUP"+#5.

• Calculations are done on 64 bits.

• X divide by 0 = $FFFFFFFFFFFFFFFF.

• In order to avoid wasting memory, Masd tries to compile Expressions as soon as it see them. If

Masd is not able to compile an expression directly, it’s compiled at the end of the compilation. In
order to use less memory, it’s a good idea to define your constants at the beginning of the sources so
Masd can compile expression using the constants directly.

• The only operator symbols not allowed in labels are +, -, * and /, therefore, if you want to use a
symbol operator after a label, you must put the symbol between “ in order to ‘limit’ the symbol.
Meaningless Example: "DUP"<<5.

• A label/constant with strange char may be ‘protected’ between “ chars.

• The evaluation stack of MASD allows you to have around 10 pending computations (parenthesis,

operator priority).

• Masd only works with integers, you can represent signed value using standard 2’s complement,
but be careful as all operators are unsigned.

Masd recognises the following operators

Operator priority Notes

<< 7 Left Shift: 1<<5 = $20
>> 7 Right shift $20>>5 = 1
% 6 Modulo (remainder of division) X%0=0

* 5 Multiplication

/ 5 Division X/0=$FFFFFFFFFFFFFFFF

+ 4 Addition

- 4 Subtraction

< 3 Is smaller (true=1, false = 0)

> 3 Is greater (true=1, false = 0)

<=, ≤ 3 Is smaller or equal (true=1, false = 0)

>=, ≥ 3 Is greater or equal (true=1, false = 0)

= 3 Is equal (true = 1, false = 0)

#, ≠ 3 Is different (true = 1, false = 0)

& 2 Logical and

! 1 Logical Or

^ 1 Logical Xor

Note: throughout this documentation, you will see talks about expressions that can be “immediately” evaluated.
This refers to any expression that contains only number and labels/constants that have already been declared.

5.1.11 Macros and includes

If data are to be included in a project, they can be entered in hex in a source file, using $.
But a simpler way is to include data from an external file, which is called a macro. The macro file must be a
character string, a graphic, a code object or a list.

- In case of a string or a code, Masd includes only the data part (after the length) of the object
- In case of a graphic, only the graphic data will be included (no length, no dimensions)
- In case of a list, only the first object of the list will be included following the previous rules

The syntax in ASM or ARM mode is:
/FileName
Note: To know how Masd looks for the FileName file, see the following section.

You can also include a complete object (prologue included) using INCLUDE or INCLOB.
In ASM or ARM mode, use INCLUDE or INCLOB followed by a filename to include an object, in RPL mode,
use INCLOB.

5.1.12 Filename conventions

Masd sometimes needs to find a file in the HP 49 memory.
The file can be found either by specifying the file name and location, or only the file name to be search in the
directory search list.

The initial directory search list contains the current directory, and all parents directory up to the HOME
directory.
You can add a directory in the directory search list using !PATH+ RepName where RepName identifies a

directory name using filename rules.

To specify a full path, use
H/ to specify HOMEDIR as the root.

x/ where x is a port number, to specify a port as root (note, you can not use 3 (SD card) here.
This root is followed by a list of directories, ending with the name of the file.
2/FOO/BAR/BRA specifies the BRA file in the BAR directory, stored in the FOO backup of the port 2.
H/ME/YOU specifies the YOU file in the ME directory, in the HOMEDIR.

Note 2: You cannot have more than 16 entries in the directory search path.

5.1.13 Compilation directive

The following instruction modifies the way Masd reacts and compile things. They are valid in all modes:

!PATH+ DirName Add the specified directory in the search path list.

!NO CODE Masd will not generate a $02DCC prologue but will

directly output the data. If the generated file is not a valid
object, an error will be generated.

!DBGON Masd will generate code when DISP or DISPKEY are
found in the source.

!DBGOFF Masd will not generate code when DISP or DISPKEY
are found in the source.

!1-16 Switch to 1-16 mode.

!1-15 Switch to 0-15 mode.

!RPL Switch to RPL mode.

!ASM Switch to ASM mode.

!ARM Switch to ARM mode.

!FL=0.a Clear the a compilation flag.

!FL=1.a Set the a compilation flag.

!?FL=0.a Compile the end of the line if flag a is set.

!?FL=1.a Compile the end of the line if flag a is clear.

!ABSOLUT Addr Switch to absolute mode. The program begins at the

address Addr. Note: Masd always consider the prolog
$02DCC and code length to be the beginning of the
program even if !NO CODE is set.

!ABSADR Addr If in absolute mode, add whites nibbles to continue at the
specified address. If not possible, errors.

!EVEN In absolute mode, cause an error if the directive is not on an
even address.

!ADR Masd will generate a source defining all constants and
labels used in the program instead of the program.

!COMPEXP Cause Masd to calculate all previous expressions.

!STAT Display/update compilation statistics

!DBGINF Causes MASD to generate debugging information (see next
section for more information)

!JAZZ See local variable documentation in RPL mode

!MASD See local variable documentation in RPL mode

a) The !DBGINF directive

If you put the !DBGINF directive into a MASD source, the assembler not only generates your compiled object,
but it also returns a string (on level 1) full of debug information. The structure of this string is as
follows:

5 DOCSTR
5 Length

5 Number of links (source files)

n*[
 2 Number of characters
 .. Name of link file
]

5 Number of symbols (labels and constants)
n*[
 2 Number of characters

 .. Name of symbol
 1 Type: 9=Label 2=Constant
 for labels: 5 Address of label
 for constants: 16 Value of constant

]

5 Number of source->code associations
n*[

 5 Offset in code (this list is sorted by offset)
 2 Number of link this instruction comes from
 5 Character offset in link where this instruction starts
]

Notes:

• If the source string is unnamed, i.e. in TEMPOB, the number of links is 00001 and the number of
characters is 00, immediately followed by the symbol table.

• The label symbol table is, according to Cyrille, supposed to be an *offset* table. However it seems that
the current (1.19-6) MASD has got a bug which makes it put *addresses* into this table. The
"associations" table correctly contains offsets.

This instruction is intended for the case where someone decides to create a source level debugger.

5.2 Saturn ASM mode

This section is only applicable to the Saturn ASM mode.

5.2.1 CPU architecture

This section has for only aim to familiarise experienced ASM programmers to the Saturn architecture, not to
teach anyone to program in Saturn ASM.

The Saturn CPU has 12 main registers:
A, B, C, D, R0, R1, R2, R3 and R4 are 64 bits register (see description bellow),
D0 and D1 are 20 bits pointers (you can only access memory through them, the Saturn is little endian),
PC, 20 bit program counter.

In addition, there are 16 flags ST0 to ST15 (12-15 being reserved for the system) 1 bit register accessible
separately, a carry that is set when operation overflow or tests are validated and can be tested using the GOC (Go
On Carry) and GONC (Go On No Carry) jump instruction, a decimal/hexadecimal mode (SETHEX and
SETDEC) that affects the way + and – instructions on the A, B, C and D register works (default Is HEX), and a 8
level return stack for GOSUBs (and RTN).

a) 64 bits register

Most operations on 64 bits register will act on a specific “field”. A field is a division in a 64 bit register.

If this represents the 16 nibbles of a 64 bit register, the fields cover the register as follows:

F E D C B A 9 8 7 6 5 4 3 2 1 0

 P

 WP

S M XS B

 A

 X

The P field location depends of the value of the 4 bit P register (ie: you can move it), and so does the WP field.
Please look at the instruction set to see what instructions are available to the programmer.

I usually write “Rf” to indicate a register (uppercase) and a field (lowercase) as in Am.

In addition, in the new simulated Saturn architecture, 7 new fields F1 to F7 have been introduced.
You can define the field mask by using the SETFDLn where n is a number between 1 and 7 to define the field

Fn using the mask in Cw as in this example:
LC FF000000000000FF SETFLD1
LA 123456789ABCDEF0
LC 0FEDCBA987654321
A=A!C.F1
A is now equal to:
1F3456789ABCDEF1

ie: the instruction on F fields equate to:

reg1= (reg1 & ~ mask) | ((reg1 & mask) operation (reg2 & mask))

These new fields are available for all instruction that previously used the so called ’f’ encoding and includes the
following instruction:

Reg=Reg&Reg.f, Reg=Reg!Reg.f, DATx=Reg.f, Reg=DATx.f, Reg=Reg+Cte.f, Reg=Reg-Cte.f, RegSRB.f,
RReg=Reg.f, Reg=RReg.f and RegRRegEX.f.

b) Other notes

You should read documentations on the internal structure of RPL objects (www.hpcalc.org has good
documentation)
D0, D1, Ba and Da are used by the system (next RPL instruction pointer, RPL stack pointer (@@object on level
1 of the stack), start of free memory and free memory in 5 nibble blocks). The SAVE instruction will save these
registers in dedicated memory areas, the LOADRPL instruction will restore them and continue the execution in
the system.
Please consult documentation on memory map for more information.

c) New instructions

In addition to the F fields, the following new instructions have been created:

r=s.f, r=r+s.f, r=r-s.f, r=r*s.f, r=r/s.f, r=r%s.f (modulo) r=-s-1.f (logical not), r=-s.f (mathematical not), r=r<s.f
(left shift), r=r>s.f (right shift), r=r^s.f (logical xor).

r=1.f (alias for r=r/r.f) has also been created.
Note 1: any combination of the A, B, C and D registers can be used (notted r and s here)
Note 2: all field (including F1-F7 fields) are valid
Note 3: Masd will always choose the shortest version of the instruction (ie: A=A+B.A will use the standard C0
encoding AND affect the carry)
Note 4: the carry is not affected by these instructions.

The following other new instructions have been added (see description in the ASM syntax section):

NATIVE? $hex GOSLOW REMON CONFIGD
HST=1.x WSCREEN SERIAL BIGAPP?
?HST=1.x { } SETTIME OUTBYT RESETOS
SETFLD(1-7) SETLNED MOVEUP REFRESHD
OFF SETOFFD MOVEDN AUTOTEST
RPL2 HSCREEN ARMSYS ACCESSSD
KEYDN UNCNFGD ARMSAT PORTTAG?
CRTMP GETTIME REMOFF MIDAPP?
BEEP2

5.2.2 Skips

Skips are a first step from ML to a third generation language, even if they are only another way to write ASM
instructions.
Skips are wonderful as they allow you to:

- structure your program

- avoid using goto’s
- make programs and piece of code that can be easily copied and past (because there is no label)

The foundation of Skips is the Block structure.

A block is enclosed in { and }, and can be nested within another block.
The following instructions deal with blocks.

SKIPS instructions Equivalents

{ ... } Defines a block (generates no code)

SKIP { ... } GOTO .S ... *.S
SKIPL { ... } GOTOL .S ... *.S
SKIPC { ... } GOC .S ... *.S
SKC { ... } GOC .S ... *.S
SKIPNC { ... } GONC .S ... *.S
SKNC { ... } GONC .S ... *.S
Test SKIPYES { ... } Test GOYES .S ... *.S
Test { ... } Test GOYES .S ... *.S

Test → { ... } /Test GOYES .S ... *.S

Test -> { ... } /Test GOYES .S ... *.S
SKUB { ... } GOSUB .S ... *.S
SKUBL { ... } GOSUBL .S ... *.S
STRING { ... } $/02A2C GOIN5 *.S ... *.S (to create a character string)
CODE { ... } $/02DCC GOIN5 *.S ... *.S (to create a code object)
STROBJ $PROLOG { ... } $(5)PROLOG GOIN5 .S ... *.S (to create a ‘prolog – length’ object)

/Test is the opposite of Test. For example if Test is ?A<C.A, /Test is ?A>=C.A. The test instructions dealing
with the hardware register (?HST=0, ?MP=0, ?SR=0, ?XM=0, ?SB=1, ?HST=1, ?MP=1,
?SR=1, ?XM=1 and ?SB=1) cannot be inverted.

Once blocks are defined, special instructions can be used in them. These instructions called EXIT and UP allow
to jump to the end or to the beginning of a block.

These instructions are equivalent to

{
 EXIT
 EXITC
 EXITNC
 ?A=0.A EXIT
 UP
 UPC
 UPNC
 ?A=0.A UP
}

*.Beginning
 GOTO.End
 GOC.End
 GONC.End
 ?A=0.A ¨.End
 GOTO.Beginning
 GOC.Beginning
 GONC.Beginning
 ?A=0.A ¨.Beginning
*.End

Note: in Saturn mode do not make confusion between EXIT and UP instructions, which are GOTOs, and EXIT

and UP after a test, which are GOYES’s.
EXIT and UP can jump to the beginning or to the end of an upper-level block by specifying the number of blocks to
exit, after the UP or EXIT instructions.

These
instructions

Are equivalent to

{
 {
 {
 UP2
 UP3
 EXIT1
 EXIT3
 }
 }
}

*.Beg3
 *.Beg2
 *.Beg1
 GOTO.Beg2
 GOTO.Beg3
 GOTO.End1
 GOTO.End3
 *.End1
 *.End2
*.End3

Note 1: EXIT1 is equivalent to EXIT, and UP1 is equivalent to UP.

Note 2: the same rules apply in ARM mode: EXITGE3 for example is a BGE for the exit label 3 blocks down

Using SKELSE, SKEC, SKENC, SKLSE instructions, two blocks create an IFNOT-THEN-ELSE structure.

These instructions Are equivalent to Or in high-level language

?A=0.A SKIPY
ES
{
 EXIT
 UP

?A=0.A GOYES.Beg2
*.Beg1
 GOTO.End2 % and not End1
 GOTO.Beg1
*.End1

IF NOT A=0 THEN
 BEGIN
 ...
 ...
 END

}
SKELSE
{
 A+1.A
 EXIT
 UP
}

GOTO.End2
*.Beg2
 A+1.A
 GOTO.End2
 GOTO.Beg2
*.End2

ELSE
 BEGIN
 ...
 ...
 ...
 END

Note: SKELSE places a GOTO between the 2 bocks, SKEC places a GOC,
SKENC a GONC and SKLSE places nothing.
Notes:
UPs are compiled directly when encountered while EXITs and block
opening are compiled later on. You can not have more than 64 pending
EXITs and block opening simultaneously.

5.2.3 Tests

A test instruction (?A=0.A) may be followed by:

• A GOYES Label, → Label or -> Label instruction
• A -> { or → { instruction. In this case, the test is inverted and a skip block is open.

• A RTY or RTNYES instruction.
• A SKIPYES { or { instruction. In this case, a skip block is open.
• A GOTO, GOTOL, GOVLNG, GOSUB, GOSUBL or GOSBVL. In this case, the test is inverted and a

proper jump instruction is generated (ie: ?A=B.A GOTO A is compiled as ?A#B.A { GOTO A }.
• A EXIT or UP.

5.2.4 SATURN instructions syntax

In this section:

x is a decimal number between 1 and 16. An expression can be used if its value can be determined at the first
encounter.
h is a hexadecimal digit.
a is a decimal number ranging from 1 to 16 or a 0 to 15 number depending of the current mode (0-15 or 1-16).
An expression can be used, if it’s value can be determined at the first encounter.
f is a field A, B, X, XS, P, WP, M, S, F1, F2, F3, F4, F5, F6 or F7.
Reg is a working register A, B, C or D.
RReg is a scratch register R0, R1, R2, R3 or R4.

Exp is an expression.
Cst is a decimal constant. An expression can be used if its value can be determined at the first encounter.
DReg is a pointer register D0 or D1.
Data is memory data pointed by D0 or D1. It means DAT0 or DAT1.

Note: For instructions that use two working registers, instruction using the pairs A-B, B-C, C-D and A-C are
smaller and faster (if the Fn fields are not used).
For instructions like Reg1=Reg1… you can write only Reg1… Example: A=A+C.A is the same as A+C.A.

Syntax Example Notes

Reg=0.f A=0.M Sets the specific field of the register to 0

Reg=1.f A=1.M Sets the specific field of the register to 1

LC hhh..hhh
LA hhh..hhh

LC 80100
LA #1024

The number of nibbles loaded in the register is the number of characters
necessary to write the value. So LC #12 will be equivalent to LC 00C.
Note: the less significant nibble is loaded in the nibble P (as in the value
of the register P) of the register, the next one into nibble p+1 mod 16,
and etcetera.

LCASC(x) chrs
LAASC(x) chrs

LCASC(4) MASD
LAASC(5) ROCKS

Loads the hexadecimal value of x characters into C.
x must be between 1 and 8.
See note on LC instruction

LC(x) Exp
LA(x) Exp

LC(5)@Buf+Off Loads the result of an expression into C or A, using x nibbles.
See note on LC instruction

Reg1=Reg2.f A=B.X Copies the value of a specific field of a register into the same field of

another register

Reg1Reg2EX.f ABEX.W Exchanges the value of 2 registers on the given field. Note: this is not
valid for the Fn fields

Reg1=Reg1+Reg2.f
Reg1+Reg2.f

A=A+B.A
C+D.A

Adds the value of the specific field of one register to the other register.
Note: If Reg1 and Reg2 are the same, this is a multiply by 2 instruction

Note: This instruction is affected by the DEC/HEX mode only if the

field is not a F field and the registers are AB, BC, CD or AC.

Reg1=Reg1-Reg2.f
Reg1-Reg2.f

A=A-B.A
C-D.A

The following instructions are also available (but not on the Fn fields):
A=B-A.f B=C-B.f
C=A-C.f D=C-D.f
see note on Reg1=Reg1+Reg2.f

Reg=Reg+Cst.f
Reg+Cst.f
Reg=Reg-Cst.f

Reg-Cst.f

A=A+10.A
A+10.A
A=A-10.A
A-FOO.A

Note 1: The Saturn processor is not able to add a constant greater than
16 to a register. If cst is greater than 16, Masd will generate as many
instructions as needed.

Note 2: Even if adding constants to a register is very useful, large
values should be avoided because this generates a large program. Prefer
another solution like LC(5) Cte A+C.A
Note 3: Adding a constant greater than 1 to a P, WP, XS or S field is a
bugged SATURN instruction (problem with carry propagation). Use
these instructions with care.
Note 4: After adding a constant greater than 16 to a register, the carry
should not be tested (because you do not know if the last generated

instruction generated the carry or not)
Note 5: You can put an expression instead of the constant (Masd must
be able to evaluate the expression right away). If the expression is
negative, Masd will invert the addition in a subtraction and vice versa.

Note 6: Be careful when using subtraction, it’s easy to be misled. A-5-
6.A is equivalent to A+1.A, not A-11.A because the instruction is: A-(5-
6).A
Note 7: If using Fn fields, be careful if non nibble bounded masks are
used.

RegSR.f ASR.W Shift register right by 4 bit on the specified field, set SB if bits are lost.
Note: this instruction is not available on the Fn fields

RegSL.f ASL.W Shift register left by 4 bit on the specified field, set carry if bits are lost.
Note: this instruction is not available on the Fn fields

Reg1=Reg1<Reg2.f
Reg1<Reg2.f

A=A<B.W Shift register left by n bits (as defined by the value of Reg2) on the
specified field

Reg1=Reg1>Reg2.f

Reg1>Reg2.f

A=A>B.W Shift register right by n bits (as defined by the value of Reg2) on the

specified field

RegSRB.f BSRB.X Shift register right by 1 bit on the specified field, set SB if bits are lost.

RegSRC ASRC Circular right shift by 1 nibble

RegSLC BSLC Circular left shift by 1 nibble

Reg1=Reg1&Reg2.f
Reg1&Reg2.f

A=A&B.X
A&C.B

Logical and on the specified field

Reg1=Reg1!Reg2.f
Reg1!Reg2.f

A=A!B.X
A!C.B

Logical or on the specified field

Reg1=Reg1^Reg2.f
Reg1^Reg2.f

A=A^B.X
A^C.B

Logical xor on the specified field

Reg1=-Reg1.f C=-C.A Mathematical not on the specified field

Reg1=-Reg1-1.f

Reg1=~Reg1.f

C=-C-1.A
C=~C.A

Logical not on the specified field

RReg=Reg.f R0=A.W Sets the specified field of RReg to the value of the specified field of
Reg
Only A and C are valid for Reg.
If f is W, the shorter encoding of the instruction is used

Reg=RReg.f A=R0.A Sets the specified field of Reg to the value of the specified field of

RReg
Only A and C are valid for Reg.
If f is W, the shorter encoding of the instruction is used

RegRRegEX.f AR0EX.A Exchanged the value of the specified field of RReg with the value of the
specified field of Reg
Only A and C are valid for Reg.
If f is W, the shorter encoding of the instruction is used

Data=Reg.f
Data=Reg.x

DAT1=C.A
DAT0=A.10

Write the content of the specified field of the specified register in the
memory location pointed by Data register (POKE)

Reg can only be A or C

Reg= Data.f

Reg Data.x

C=DAT1.A
A=DAT0.10

Read the content of the memory location pointed by Data register in the

specified field of the REG register (PEEK)
Reg can only be A or C

DReg=hh
DReg=hhhh
DReg=hhhhh

DReg=(2)Exp
DReg=(4)Exp
DReg=(5)Exp

D0=AD
D0=0100
D0=80100
D0=(2)label
D0=(4)lab+$10
D1=(5)Variable

Change the first 2, 4 or all nibbles of the Data register with the given
value

Dreg=Reg D0=A Reg can only be A or C

Dreg=RegS D0=CS Sets the first 4 nibbles of Dreg with the 4 first nibble of Reg

Reg can only be A or C

RegDRegEX AD0EX Reg can only be A or C

RegDRexXS AD1XS Exchange the first 4 nibbles of Dreg with the 4 first nibble of Reg
Reg can only be A or C

DReg=DReg+Cst
DReg+Cst
DReg=DReg-Cst

DReg-Cst

D0=D0+12
D1+25
D1=D1-12
D1-5

Note 1: The Saturn processor is not able to add a constant greater than
16 to a register but if cst is greater than 16, Masd will generate as many
instructions as needed.

Note 2: Even if adding constants to a register is very useful, big
constants should be avoided because this will slow down execution, and
generate a big program.
Note 3: After adding a constant greater than 16, the carry should not be
tested.
Note 4: You can put an expression instead of the constant (Masd must
be able to evaluate the expression right away). If the expression is
negative, Masd will invert the addition in a subtraction and vice versa.

Note 5: Be careful when using subtraction, it’s easy to be misled. D0-5-
6.A is equivalent to D0+1.A, not D0-11.A

Please read the section on test above for information on what MUST follow a test instruction.
f can NOT be a Fn field.
?Reg1=Reg2.f ?A=C.B

?Reg1#Reg2.f ?A#C.A The HP special character can also be used

?Reg=0.f ?A=0.B

?Reg#0.f ?A#0.A The HP special character can also be used

?Reg1<Reg2.f ?A<B.X

?Reg1>Reg2.f ?C>D.W

?Reg1<=Reg2.f ?A<=B.X The HP <= character can be used

?Reg1>=Reg2.f ?C>=D.W The HP >= character can be used

?RegBIT=0.a

?RegBIT=1.a

?ABIT=0.5
?ABIT=1.number

Test if a specific bit of A or C register is 0 or 1

Reg must be A or C

 A=PC
C=PC
PC=A
PC=C
APCEX
CPCEX
PC=(A)
PC=(C)

Sets Aa or Ca to the address of the next instruction

Set PC to the value contained in Aa or Ca
Exchange the value of PC with register Aa or Ca

Sets PC to the value read at the address contained in Aa or Ca

 SB=0
XM=0
SR=0
MP=0
HST=0.a
?SB=0
?XM=0
?SR=0
?MP=0
?HST=0.a

SB, XM, SR and MP are 4 bits in the HST register. They can be set to 0

by the specific instruction and tested.
SB is set to 1 by RegSR and RegSRB instruction, XM by RTNSXM
instruction and SR and MP should always be 0 (hardware related stuff).
HST=a sets all bits set to 1 in a to 0 in the HST register.

?HST=a test that all bits set to 1 in a are 0 in the HST register

 SB=1 See above. This is only valid in emulated Saturn

XM=1
SR=1
MP=1
HST=a
?SB=1
?XM=1
?SR=1
?MP=1
?HST=1.a

 P=a
P=P+1 P+1
P=P-1 P-1
?P=a ?P#a
P=C.a C=P.a
CPEX.a
C=C+P+1 C+P+1

The HP special character can be used instead of #

 GOTO label
GOTOL label
GOLONG Lab
GOVLNG hex
GOVLNG =Label
GOVLNG ="COMND"
GOSUB label
GOSUBL label
GOSBVL hex
GOSBVL =Label
GOSBVL ="COMND"
GOC label
GONC label
GOTOC label
GOTONC label

GOTO is limited to 1kb jumps
GOTOL can jump over 16KB of code

this jump to a specific address

GOSUB is limited to 1kb jumps
GOSUBL is limited to &6kb jumps

GOSBVL jumps to a specific address

GO if Carry set (limited to 64byte)

GO if no carry (limited to 64 bytes)
Equivalent to SKNC { GOTO label }
Equivalent to SKC { GOTO label }

 RTN
RTNSXM
RTNCC
RTNSC
RTNC
RTNNC
RTI

RTNYES RTY

Return from subroutine (GOSUB call)
RTN + XM=1
RTN + set carry
RTN + clear carry
RTN if carry set
RTN if carry not set

Return from interrupt
Return if test true (see test section)

 C=RSTK
RSTK=C

Pop value from RSTK in Ca
Push value from Ca in RSTK

 OUT=CS
OUT=C
A=IN
C=IN

Set the first 2 nibbles of the OUT register to the value of Cb
Set the OUT register to the value of C4

Copy the IN register in Ax or Cx (bugged instruction, do not use if you
do not know what you are doing)

 SETDEC SETHEX
UNCNGF CONFIG
RESET
SHUTDN
INTON INTOFF
RSI

Set the CPU in DECIMAL or HEXADECIMAL mode
Deconfigure/Configure memory modules
deconfigure ALL memory modules
STOP the CPU waiting for an interrupt
Enable/disable keyboard interrupts
Reset interrupt system

 GOINC label Equivalent to LC(5)label-&. (& is the address of the instruction)

 GOINA label Equivalent to LA(5)label-& (& is the address of the instruction)

 $hhh...hhh
NIBHEX hhh...hh

Includes hexadecimal data in the program. Example:
$12ACD545680B.

 $/hhhh...hhh Includes hexadecimal data in reverse order. Example: $/123ABC is
equivalent to $CBA321.

 $(x)Exp
CON(x)Exp
EXP(x)Exp

Places the value of Exp in the code, on x nibbles.

 ¢Ascii
"Ascii"

Includes ASCII data. The end of the string is the next ¢¢¢¢ or carriage
return. Example: ¢¢¢¢Hello¢¢¢¢. To output a ¢¢¢¢ character, put it twice. To put
a char from its number, use \xx where xx is an hex number. To put a \,

put the \ chr twice.

 GOIN5 lab
G5 lab
GOIN4 lab
G4 lab
GOIN3 lab
G3 lab
GOIN2 lab
G2 lab

Same as $(x)label-& with x=5, 4, 3 or 2. Useful to create a jump

table.

 SAVE Equivalent to GOSBVL SAVPTR
 LOAD Equivalent to GOSBVL GETPTR
 RPL or LOOP Equivalent to A=DAT0.A D0+5 PC=(A)
 LOADRPL Equivalent to GOVLNG GETPTRLOOP
 INTOFF2 Equivalent to GOSBVL DisableIntr
 INTON2 Equivalent to GOSBVL AllowIntr
 ERROR_C Equivalent to GOSBVL ErrjmpC
 A=IN2 Equivalent to GOSBVL AINRTN
 C=IN2 Equivalent to GOSBVL CINRTN
 OUT=C=IN Equivalent to GOSBVL OUTCINRTN
 RES.STR Equivalent to GOSBVL MAKE$N
 RES.ROOM Equivalent to GOSBVL GETTEMP
 RESRAM Equivalent to GOSBVL MAKERAM$
 SHRINK$ Equivalent to GOSBVL SHRINK$
 COPY<- COPY←

COPYDN
Equivalent to GOSBVL MOVEDOWN

 COPY-> COPY→
COPYUP

Equivalent to GOSBVL MOVEUP

 DISP Equivalent to GOSBVL DBUG (only if debug is on)
 DISPKEY Equivalent to GOSBVL DBUG.KEY (only if debug is

on)
 SRKLST Equivalent to GOSBVL SHRINKLIST
 SCREEN Equivalent to GOSBVL D0->Row1
 MENU Equivalent to GOSBVL D0->Sft1
 ZEROMEM Equivalent to GOSBVL WIPEOUT
 MULT.A Equivalent to GOSBVL MULTBAC
 MULT Equivalent to GOSBVL MPY
 DIV.A Equivalent to GOSBVL IntDiv
 DIV Equivalent to GOSBVL IDIV
 BEEP Equivalent to GOSBVL makebeep
 NATIVE? $hex Set carry if native function xx is undefined, clear it if defined.

 HST=1.x Sets bits in the HST register (XM=1, SB=1, SR=1 and MP=1 are also

available).
Note: the program ST=0.0 SB=1 ?SB=0 { ST=1.0 } will set
ST0 to 0 if the calculator is non emulated and to 1 if it is emulated.

 ?HST=1.x { } Test for HST bits. See HST=1.x comments

 SETFLD(1-7) See section 5.2.1

 OFF Turns the calculator off.

 RPL2 Simulates a LOOP (A=DAT0.A D0+5 PC=(A)).

 KEYDN (C[A]) kbd peeks with immediate rtn CS if keydn.
 Also - Sets DOUSEALARM flag if [ON][9] sequence.

 Entry: P=0, HEX Mode, C[A]: #kbd peeks (loop count)

 CRTMP Abstract: Creates a hole in the tempob area of the specified size
 + 6 (5 for the link field and 1 for marker nibble).
 Sets the link field of the "hole" to size+6 and adjusts
 AVMEM, RSKTOP and TEMPTOP.
Entry Conditions: RPL variables in system RAM
 C(A) contains desired size of hole
Exit Conditions: carry clear, RPL variables in system RAM
 D1 -> link field of hole, D0 -> object position

 B(A), C(A)= desired size+6

Error Exits: Returns with carry set when there's not enough memory

 to create a hole of size+6.

 BEEP2 Entry: C[A]: d ;d=Beep duration (msec)
 D[A]: f ;f=Beep frequency (hz)
 P=0
Exit: CARRY:0

 REMON Enables the remote control mode (ON+R).

 SERIAL Copy serial number to address pointed to by D1 in Saturn memory.

 OUTBYT Purpose: Send byte to IR printer

Entry: A[B]: Byte
Exit: CC, P=0, Byte Sent
Alters: P:0, CARRY:0, SETHEX.

 MOVEUP Abstract: Used to move block of memory to higher address.
No check is made to ensure that the source and destination do not

overlap. Code is moved from from high to low addresses.
Entry Conditions: D0 -> end of source + 1
 D1 -> end of destination + 1
 C(A) = number of nibs to move (unsigned)

Exit Conditions: HEX mode, P=0, carry clear
 D0 -> start of source
 D1 -> start of destination

 MOVEDN Abstract: Used to move block of memory to lower address.
No check is made to ensure that the source and destination do not
overlap. Code is moved from lower to higher addresses.
Entry Conditions: D0 -> start of source
 D1 -> start of destination
 C(A) = number of nibs to move (unsigned)

Exit Conditions: P=0, carry clear
 D0 -> end of source + 1
 D1 -> end of destination + 1

 ARMSYS Call a function at global dword address C[0-7]&~3.
The function takes should be of the form: U32 f(U32 pc, Chipset* c) {

/* put your code here */ return pc; }

 ARMSAT Call a function at Saturn address C.A&~7.
The function should have the following format:
U32 f(U32 pc, Chipset* c) { /* put your code here */ return pc; }
In RAM asm, this means that as you enter the function, pc is in R0,

@Chipset is in R1 and the return address is in LP. R2 and R3 are free to
use, and R0 should normally not be modified except if you want to
change the PC when exiting the function.

 REMOFF Stops the remote control (ON+S).

 GOSLOW Wait for (C[A]/183) ms.

 WSCREEN Return how many columns the screen contains in Ca

 SETTIME Sets the RTC time from C[W] in ticks.

 SETLNED Set number of lines of disp0 from C[B], refresh display.

 SETOFFD Set offset of display inside disp0 in bytes from C[X]&7FF.

 HSCREEN Return how many lines the screen contains. In Ca

 UNCNFGD Unconfigure the 4KB block containing the top 16-line header.
This will refresh the header on the display.

 GETTIME Emulates gettime function in ROM, and also updates the 8192Hz timer

accordingly.
Purpose:Get current time: (=NEXTIRQ)-Timer2
 Return CS iff time appears corrupt.
Entry: Timer2 Running

Exit: Timer2 Running
 CC - A:NEXTIRQ (ticks)
 C:Time (ticks)
 D:Timer2 (sgn extended ticks)

 P:0, HEX

 CS - Same as the non-error case but the time system

 is corrupt because of one of:
 (1) TIMESUM # CRC(NEXTIRQ) -- CheckSum Error
 (2) TIMER2 was not running on entry.
 (3) Time not in range: [BegofTime, EndofTime)

 MIDAPP? Carry=1 on HP48, 0 otherwise.

 CONFIGD Configure a 4KB block containing the top 16-line header.

C.A = Start address of the block (must be multiple of 4KB).
If already configured, unconfig, refresh and re-config.

 BIGAPP? Carry=1 on HP49, 0 otherwise.

 RESETOS Reset the calculator (including the OS).
This code doesn't return, the calculator restarts at 00000000.

 REFRESHD Force to refresh the header on the display.

 AUTOTEST - 003AA: AUTO_USER_TEST
- 003A3: MANU_USER_TEST

- 0039C: MANUFACTURE_TEST
- Other: signed index, OS-specific, see OS_API.doc.

 ACCESSSD SD Card functions (depending on P, see HP's vgeraccess for more
details.

 PORTTAG? Return port number depending on tag name.
Entry: D1: name (size+chars)

Exit: A[A]: port number (0-3)
 D1: after name
 Carry: clear if ok, set if wrong name

5.3 ARM mode

5.3.1 ARM architecture

For all user intents and purposes the ARM CPU has 16 32 bit registers noted R0 to R15 (R15 is also the program
counter, R14 is the link register (ie: a BL (GOSUB) instruction copies the return address in R14 before jumping,
a Return From Subroutine is performed by doing MOV PC, LR), and R13 is the Stack pointer).
Each instruction can be conditionally executed depending on the value of 5 flags.
Each instruction can be told to modify or not modify these 5 flags (add the S suffix to the instruction).
Please read the ARM ARM (ARM Architecture and Reference Manual for more information).
Please look at the ARMSAT Saturn instruction and the ARM mode documentation to see the instruction set and
the rules of calling ARM code from Saturn code.

5.3.2 Skips

Skips are a first step from ML to a third generation language, even if they are only another way to write ASM
instructions.
Skips are wonderful as they allow you to:

- structure your program
- avoid using goto’s
- make programs and piece of code that can be easily copied and past (because there is no label)

The basement of Skips is the Block structure.

A block is enclosed in { and }, and can be nested within another block.
The following instructions deal with blocks.

SKIPS instructions Equivalents

{ ... } Defines a block (generates no code)

SK<Cond> { ... } B<cond> .S ... *.S
SKUB<Cond> { ... } BL<cond> .S ... *.S

Once blocks are defined, special instructions can be used in them. These instructions called EXIT and UP allow
to jump to the end or to the beginning of a block.

These instructions are equivalent to

{
 EXIT<Cond>
 UP<Cond>
}

*.Beginning
 B<Cond> .End
 B<Cond>.Beginning
*.End

EXIT and UP can jump to the beginning or to the end of an upper-level block by specifying the number of
blocks to exit, after the UP or EXIT instructions.

These instructions Are equivalent to

{
 {
 {
 UP<Cond>2
 UP<Cond>3
 EXIT<Cond>1
 EXIT<Cond>3
 }
 }
}

*.Beg3
 *.Beg2
 *.Beg1
 B<Cond> .Beg2
 B<Cond> .Beg3
 B<Cond> .End1
 B<Cond> .End3
 *.End1
 *.End2
*.End3

Note 1: EXIT1 is equivalent to EXIT, and UP1 is equivalent to UP.

5.3.3 Instruction set

Note: for instruction names, the case does not matter.
Register names are:
R0, R1, R2, R3, R4, R5, R6, R7, R8, R9, R10, R11, R12, R13 (or SP), R14 (or LP or LR) and R15 (or PC).

Setting the S flag on an instruction causes the instruction to modify the flags.
Every instruction is evaluated ONLY of the attached condition is true. By default, the instruction is always
evaluated.
Separation between arguments can be either ‘,’ or spaces.

Operation Assembler Action S flags
Copy and shift MOV{cond}{S} Rd, <Oprnd> d:= <Oprnd> NZCR
Not MVN{cond}{S} Rd, <Oprnd> d:= ~<Oprnd> NZCR
Add ADD{cond}{S} Rd, Rn, <Oprnd> d:= Rn + <Oprnd> NZCVR
Add w carry ADC{cond}{S} Rd, Rn, <Oprnd> d:= Rn + <Oprnd> + Carry NZCVR
Sub SUB{cond}{S} Rd, Rn, <Oprnd> d:= Rn - <Oprnd> NZCVR

Sub w carry SBC{cond}{S} Rd, Rn, <Oprnd>

d:= Rn - <Oprnd> -
Not(Carry) NZCVR

Reverse Sub RSB{cond}{S} Rd, Rn, <Oprnd> d:= <Oprnd> - Rn NZCVR

Rev sub w carry RSC{cond}{S} Rd, Rn, <Oprnd>

d:= <Oprnd> - Rn –
Not(Carry) NZCVR

Multiply MUL{cond}{S} Rd, Rm, Rs d:= Rm * Rs NZR
Multiply Add MLA{cond}{S} Rd, Rm, Rs, Rn d:= (Rm * Rs) + Rn NZR
Compare CMP{cond} Rd, <Oprnd> flags:= Rn - <Oprnd> NZCV
Cmp Negative CMN{cond} Rd, <Oprnd> flags:= Rn + <Oprnd> NZCV
Test TST{cond} Rn, <Oprnd> flags:= Rn And <Oprnd> NZC
Tst equivalence TEQ{cond} Rn, <Oprnd> flags:= Rn Xor <Oprnd> NZC
And AND{cond}{S} Rd, Rn, <Oprnd> Rd:= Rn And <Oprnd> NZC
Xor EOR{cond}{S} Rd, Rn, <Oprnd> Rd:= Rn Xor <Oprnd> NZC
 XOR{cond}{S} Rd, Rn, <Oprnd> Rd:= Rn Xor <Oprnd> NZC
Or ORR{cond}{S} Rd, Rn, <Oprnd> Rd:= Rn Or <Oprnd> NZC
BitClear (ÑAnd) BIC{cond}{S} Rd, Rn, <Oprnd> Rd:= Rn And Not <Oprnd> NZC
Branch B{cond} label R15/PC:= address
Gosub BL{cond} label R14:=R15/PC, R15/PC:= address
Load Int LDR{cond} Rd, <a_mode>

LDR{cond} Rd, Label
Rd:= [address]
Rd:= data at label. The label address is
calculated relative to the PC. This does
not work with constants

Load Byte LDR{cond}B Rd, <a_mode>
LDRB{cond} Rd, Label

Rd:= [byte at address] 0 extended
Rd:= data at label. The label address is
calculated relative to the PC. This does
not work with constants

Multiple load Stack operations (Pop)
 Inc Before LDM{cond}IB Rd{!}, {reg list} ! sets the W bit (updates the base
 Inc After LDM{cond}IA Rd{!}, {reg list} register after the transfer)
 Dec Before LDM{cond}DB Rd{!}, {reg list}
 Dec After LDM{cond}DA Rd{!}, {reg list}
Store Int STR{cond} Rd, <a_mode>

STR{cond} Rd, Label
[address]:= Rd
data at label:= Rd. The label address is
calculated relative to the PC. This does
not work with constants

Store Byte STRB{cond} Rd, <a_mode>
STRB{cond} Rd, Label

[address]:= byte value from Rd
data at label:= Rd. The label address is
calculated relative to the PC. This does
not work with constants

Multiple Store Stack operations (Push)
 Inc Before STM{cond}IB Rd{!}, {reg list} ! Sets the W bit (updates the base
 Inc After STM{cond}IA Rd{!}, {reg list} register after the transfer
 De Before STM{cond}DB Rd{!}, {reg list}
 De After STM{cond}DA Rd{!}, {reg list}
multiplication MUL rd, r1 r2 rd=r1*r2
 MLA rd, r1, r2, r3 rd=r1*r2+r3

 SMULL rd1, rd2, r1, r2

Signed mul rd1=low r1*r2, rd2=high
r1*r2

 SMLAL rd1, rd2, r1, r2

Signed mul add rd1+=low r1*r2,
rd2+=high r1*r2

 UMULL rd1, rd2, r1, r2 rd1=low r1*r2, rd2=high r1*r2

 UMLAL rd1, rd2, r1, r2

mul add rd1+=low r1*r2, rd2+=high
r1*r2

*labelName Creates a label
$ See $ in ASM mode
“, ¢ See ASM mode

Where cond can be any of:

EQ NE CS
HS

CC
LO

MI PL VS VC HI LS GE LT GT LE

eq
u
al

N
o
n
 eq

u
al

C
arry

 set,

u
n
sig

n
ed
 >
=

C
arry

 clear

<

N
eg
ativ

e

P
o
sitiv

e o
r 0

O
v
erflo

w

N
o
 o
v
erflo

w

U
n
sig

n
ed
 >

U
n
sig

n
ed
 <
=

>
=

<
=

>

<
=

Oprnd can be of the form:

Immediate value Cte
Note, cte is encoded on 8 bits + a rotation right
encoded on 4 bits. This means that not every
value is possible.

Logical shift left Rm LSL Cte
Rm < Cte

Logical shift right Rm LSR Cte
Rm > Cte

Arithmetic shift right Rm ASR Cte
Rm >> Cte

Rotate right Rm ROR Cte
Rm >>> Cte

Register Rm
Logical shift left Rm LSL Rs

Rm < Rs
Logical shift right Rm LSR Rs

Rm > Rs
Arithmetic shift right Rm ASR Rs

Rm >> Rs
Rotate right Rm ROR Rs

Rm >>> Rs
In all cases, Cte must be a decimal value or an expression that can be evaluated immediately.

A_mode can be:

[Rn +/-Cte] Value of rn + or - constant
[Rn +/-Rm] Value of rn + or – value of rm
[Rn +/-Rm LSL Cte]
[Rn +/-Rm < Cte]

Value of rn + or – value of rm shifted left

[Rn +/-Rm LSR Cte]
[Rn +/-Rm > Cte]

Value of rn + or – value of rm shifted right

[Rn +/-Rm ASR Cte]
[Rn +/-Rm >> Cte]

Value of rn + or – value of rm shifted arithmetically right

[Rn +/-Rm ROR Cte]
[Rn +/-Rm >>> Cte]

Value of rn + or – value of rm rotated right

[Rn +/-Cte]! Value of rn + or – constante
Rn is updated with that value

[Rn +/-Rm]! Value of rn + or – value of rm
Rn is updated with that value

[Rn +/-Rm LSL Cte]!
[Rn +/-Rm < Cte]!

Value of rn + or – value of rm shifted left
Rn is updated with that value

[Rn +/-Rm LSR Cte]!
[Rn +/-Rm > Cte]!

Value of rn + or – value of rm shifted right
Rn is updated with that value

[Rn +/-Rm ASR Cte]!
[Rn +/-Rm >> Cte]!

Value of rn + or – value of rm shifted arithmetically right
Rn is updated with that value

[Rn +/-Rm ROR Cte]!
[Rn +/-Rm >>> Cte]!

Value of rn + or – value of rm rotated right
Rn is updated with that value

[Rn] +/-Cte The value used is the value of rn, but rn is then updated with Value of rn
+ or – constante

[Rn] +/-Rm The value used is the value of rn, but rn is then updated with Value of rn
+ or – value of rm

[Rn] +/-Rm LSL Cte The value used is the value of rn, but rn is then updated with Value of rn

[Rn] +/-Rm < Cte + or – value of rm shifted left
[Rn] +/-Rm LSR Cte
[Rn] +/-Rm > Cte

The value used is the value of rn, but rn is then updated with Value of rn
+ or – value of rm shifted right

[Rn] +/-Rm ASR Cte
[Rn] +/-Rm >> Cte

The value used is the value of rn, but rn is then updated with Value of rn
+ or – value of rm shifted arithmetically right

[Rn] +/-Rm ROR Cte
[Rn] +/-Rm >>> Cte

Value of rn + or – value of rm rotated right
Rn is updated with that value

5.3.4 ARMSAT instruction

When using the ARMSAT instruction, the Saturn pc is in register r0 and the address chipset structure that
contains the state of the Saturn CPU is in r1.
That structure has the following elements at the following offsets:

0 P_U32 read_map[256+1]; read_map[x] points on the 2Kb of Saturn address space at Saturn
address x<<12

1028 P_U32 write_map[256+1]; read_map[x] points on the 2Kb of Saturn address space at Saturn
address x<<12 for write purpose (write_map[x]=0 if x points on some non readable memory)

2056 enum ModulePriority top_map[256+1]; // Type of block on top, to know if new configured

block takes over

2316 REG A;

2324 REG B;

2332 REG C;

2340 REG D;

2348 REG R0;

2356 REG R1;

2364 REG R2;

2372 REG R3;

2380 REG R4;

2388 U32 D0

2392 U32 D1;

2396 U32 P, P4, P4_32; // P4 = 4*P, P4_32 = 4*P-32, use setP() to modify P.

2408 U32 ST;

2412 U32 HST;

2416 U32 carry; // 0 or !0

3420 BOOL dec; // 0->hex or 1->dec

 U32 RSTK[NB_RSTK];

 U32 RSTK_i; // Index for next push.

 REG FIELD[32]; // Field masks.

 U32 FIELD_START[32]; // Lowest nibble of the field.

 U32 FIELD_LENGTH[32]; // Length of the field.

Therefore, LDR R2 [R1 2316] allows you to read the lower 32 bits of the Saturn register A.
LDR R2 [R1 1]
LDR R3 [R2 1]
allows you to read the first 8 nibbles at Saturn address 01008
The following file can be used to declare your saturn chipset structure.
"!ASM
CP=0
DCCP #1028 SREAD
DCCP #1028 SWRITE
DCCP #260 SPRIORITY
DCCP 8 SRA
DCCP 8 SRB
DCCP 8 SRC
DCCP 8 SRD
DCCP 8 SR0
DCCP 8 SR1
DCCP 8 SR2
DCCP 8 SR3
DCCP 8 SR4
DCCP 4 SD0
DCCP 4 SD1
DCCP 4 SRP
DCCP 4 SRP4

DCCP 4 SRP32
DCCP 4 SST
DCCP 4 SHST
DCCP 4 SCARRY
DCCP 4 SDEC
DCCP #32 SRSCK
DCCP 4 SRSTKP
DCCP #256 SFMASK
DCCP #128 SFSTART
DCCP #128 SFLENGTH
@"

5.4 System RPL mode

Masd can also compile SysRPL programs (you should read the book “An Introduction to System RPL” before
trying to write system RPL programs).
The !RPL directive will switch MASD in RPL mode.
Note: if the Flag –92 is Set, Masd starts in !RPL and !NO CODE mode.

5.4.1 Instructions

In RPL mode, Masd interprets instructions/tokens in the following order.

a) Reals and system binary

If the instruction is a decimal number, a system binary is created (MASD will try, if possible to use the internally
defined system binary)
It that number has a decimal point (in the middle, or starts with the decimal point), a real number is created.

b) Unnamed local variables

If the instruction is a recall or a set of a local variable defined by {{ the correct instruction is generated.

A local environment is created using:

{{ var1 var2 ... varN }} with N<23
These variables have names during compile time, but they are implemented as unnamed local variables, which
are faster to access than named local variables.
A local variable is recalled by typing its name or with an optional ending @.
Data can be stored in a local variable by typing its name, with a leading or ending ! or a leading ====.
Note 1: Local variable are available until the next local definition.
Note 2: The local environment is not closed automatically, use ABND or other provided words.
Example:

{{ label1 label2 .. labelN }} will become:
' NULLLAM <#N> NDUPN DOBIND (or 1LAMBIND if there is only one variable)
And:

label1 → 1GETLAM
label1@ → 1GETLAM
=label1 → 1PUTLAM
!label1 → 1PUTLAM
label1! → 1PUTLAM

Program example

::
 {{ A B }}
 B A!
 ABND
;

::
' NULLLAM TWO NDUPN DOBIND
2GETLAM 1PUTLAM
ABND
;

Note that it is your responsibility to destroy the local environment using ABND and that Masd does not handle
multiple level of definition of local variables, nor it is destroying the current environment, even if ABND is used.
Variables defined this way will be valid until a new set of variables are defined.

c) Defines

If the instruction matches a define, the correct code is inserted (see the DEFINE instruction)

d) Labels

If the instruction matches the name of a constant or a label, the value of the said constant or label is inserted (if
you insert a label, be sure to know what you are doing and to be in absolute mode).

e) extable

If the instruction matches an entry in the extable (see appropriate section at the end of this document) the value
associated with this entry is used.
DUP
Will produce
88130
Note: Using an external table is much faster than using constants. On the other hand, constants are project

dependant, which is not the case of an external table.

f) Tokens

Then, the following instruction are tested:

:: Program prologue $02D9D

; or END List, Program or Algebraic end $0312B

{ List prologue $02A74

} List end $0312B

MATRIX Algebraic matrix object

SYMBOLIC Algebraic prologue $02AB8

UNIT Unit prolog $02ADA

FPTR2 ^constant flash pointer from constant

FPTR bank value flash pointer from value

cst System Binary of cst value, given in hexadecimal. If there is no spaces
between the # and the cst, MASD will try, if possible to use the internally

defined system binary

PTR cst Address. PTR 4E2CF generates FC2E4.
ACPTR cst1 cst2 Extended pointer with given hexadecimal values for the address and switch

address

ROMPTR2 ~xlib_name XLIB object from constant

ROMPTR LibN ObjN XLIB object from value

% real Real number

%% real Long real number

C% real1 real2 Complex number

C%% real1 real2 Long complex number

"..." Character string. Special characters can be included by typing \\\\ and the
ASCII value on two hexadecimal characters. \ can be inserted by typing \\

ZINT decimalvalue Integer

ID name Global name (see " for info on character encoding)
LAM name Local name (see " for info on character encoding)
TAG chrs Tagged object

XxlibName XLIB identified by its name. If it is a standard HP48 command (like xDUP),
the address is used instead of an XLIB object.

HXS Size Data Binary integer ($02A4E), Size is in hexadecimal and Data is a set of

hexadecimal characters. Example: HXS 5 FFA21
GROB Size Data GROB ($02B1E).
LIBDAT Size Data Library data ($02B88).

BAK Size Data Backup ($02B62).

LIB Size Data Library ($02B40).

EXT3 Size Data Extended3 ($02BEE).

ARRAY Size Data Array ($029E8).

LNKARRAY Size Data Linked Array ($02A0A).

MINIFON Size Data Minifont object

ARRY2 Size Data Array object

ARRY [...]
ARRY [[.] [.]]

Array object, they can have 1 or 2 dimension.
All objects in the array must be of same type

xRplName If RplName is a RPL instruction, compiles the RPL instruction (or xlib
depending)

CHR character Character object. See rules on " for more information

LABEL labelname Creates a label at this position. Use carefully

EXTERNAL name xlib
name

Equivalent to DEFINE name ROMPTR2 xlibname

FEXTERNAL name fpt Equivalent to DEFINE name FPTR2 fptrname

rname
CODE Size Data Code object ($02DCC).

CODE
Assembly stuff
ENDCODE

Include a code object, change to ASM mode and closed the code object on
the next ENDCODE.

NIBB Size Data or
NIBHEX Data or
NIBBHEX Data or
CON(Size) Expr

Includes directly hexadecimal data (no prolog).

INCLOB FileName Includes the content of the file FileName.

INCLUDE FileName Includes the source of the file FileName to be compiled (Like '''' in ASM
mode).

LABEL label Defines a label (like **** in ASM mode).

EQU CstName ExpHex Defines a constant (Like DCDCDCDC in ASM mode).

EQUCP Interleave C
stName

Defines a constant (Like DCCPDCCPDCCPDCCP in ASM mode).

DEFINE name ... Associate the data compiled between the name and the end of the line with
the name. After that, if the name is used again, the associated data is placed
in the compiled file

DIR
VARNAME name1 obj1
VARNAME name2 obj2
...
ENDDIR

Creates a directory containing the objects in the given variables.

5.5 Examples of program using the MASD compiler

"!NO CODE !RPL
* This program display a 131*64 graphic in a pretty way :-)
* DO LCD->, run it, and enjoy!
* This program has been created by Philippe Pamart
::
* remove the menu and test for a grob
CK1&Dispatch grob
::
TURNMENUOFF
CODE

% R0a: X
% R1a: Y
% R2a: @ grob

SAVE GOSBVL DisableIntr % No interrupts
A=DAT1.A D0=A LC 00014 A+C.A R2=A.A % adr 1st pixels of the grob
D0+10 A=0.W A=DAT0.10 C=0.W LC 8300040 ?A=C.W % test the size
{ *.End GOSBVL AllowIntr LOADRPL } % if not ok, return to RPL

GOSBVL "D0->Row1" D1=A D0-15 C=DAT0.A C-15.A GOSBVL WIPEOUT % erase s
creen
LC 0003F R1=C.W % initial position in Z

{
 LC 00082 % we are ready to scan right to left
 {
 R0=C.A % save the counter
 LC 001 GOSBVL OUTCINRTN ?CBIT=1.6 -> .End % If backspace, then stop
 GOSUB .PointAndLine % test the current point
 C=R0.A C-1.A UPNC % go one pixel on the right
 }
 A=R1.W A-1.A R1=A.A % go one line higher
 { % ready to scan from right to left
 LC 001 GOSBVL OUTCINRTN ?CBIT=1.6 -> .End % If backspace, then stop
 GOSUB .PointAndLine % test the current point
 A=R0.A A+1.A R0=A.A LC 83 ?A#C.B UP % go one pixel on the left
 }
 A=R1.A A-1.A R1=A.A UPNC % go one line higher (if not finish)
}

GOTO .End

*.PointAndLine % This test the current pix, returns
 % if the pixel is white, draw a line
 % if it is black
A=R1.A A+A.A C=R2.A C+A.A ASL.A A+C.A % Aa: @ line of pixel in the grob
C=R0.A P=C.0 CSRB.A CSRB.A A+C.A D0=A % D0: point on the pixel to test
,
 % P = number of the pixel to test in
 % nibble (in Z/4Z)
LC 2481248124812481 P=0 % Cp: pixel mask
A=DAT0.B A&C.P ?A=0.P RTY % test the pixel. if white, return
GOSUB LIGNE GOSUB LIGNE % else, draw line twice in Xor mode
GOSBVL "D0->Row1" D0-20 % and draw the pixel in black.
A=R0.A C=R1.A GOVLNG aPixonB

*LIGNE
GOSBVL "D0->Row1" D0-20 % D0 point on the screen
A=R0.A B=A.A LA 00041 % A/B: X coordinates
C=R1.A D=C.A C=0.A % C/D: Y coordinates
GOVLNG aLineXor % draw the line!

ENDCODE
;
;
@"

"!NO CODE !RPL (turn into RPL mode)
:: (open a RPL program)
TURNMENUOFF (remove the menu line)

CODE
 % open an assembly program

% this program takes control of the screen and
% display a mandelbrot set using the standard algorythm
% ie: for each point from x=-1.5 to 0.5,
% for each point from y=-1 to 1
% if any an, n<256 in the serie
% a0=x+iy (complex number), an+1=a0+an²
% has an absolute value > 2, the point is not part of the set
% the numbers are stored on 32 bits.
% the numbers are shifted by 12 bits, the lower 12 bits representing
% the decimal part of the number (in 1/4096)

SAVE % save the RPL pointers
INTOFF % disable keyboard interrupts
SKUB { % jump over the ARM code
*start

!ARM % switch to ARM mode
STMDB sp! {R4 R5 R6 R7 R8 LP} % save registers in the stack

LDR R2, [R1, #2324] % load R2=x (content of saturn

% reg B, nibbles 0-7)
LDR R3, [R1, #2340] % load R3=y (content of saturn

% reg B, nibbles 0-7)

MOV R7 R2 % copy X in r7
MOV R8 R3 % copy Y in r8
MOV R6 256 % copy 256 in R6

{
 MUL R4, R2, R2 % r4= x² << 12
 MOV R4 R4 >> 12 % r4= x²
 MUL R5, R3, R3
 MOV R5 R5 >> 12 % r5= y²

 ADD LP R4 R5 % LP = x² + y²
 CMP LP $4000 % if abs² an > 4
 EXITGT % exit

 SUB R4 R4 R5 % r4= x²-y²

 MUL R3 R2 R3 % R3= X*Y

 ADD R2 R7 R4 % r2= X + x²-y² = new x

 MOV R3 R3 >> 11 % r3= x*y*2
 ADD R3 R8 R3 % r3= Y+2*x*y = new Y

 SUBS R6 R6 1 % decrement loop counter
 UPNE % up if not 0

 % we have looped 256 times and abs(An)<2, the point is in the set!
 LDRB R6 [R1 2408] % clear the flag ST0
 BIC R6 R6 1
 STRB R6 [R1 2408]
 LDMIA sp! {R4 R5 R6 R7 R8 PC} % restore all registers and return

}

% we have reached a An where abs(An)>2,the point is out of the set
LDRB R6 [R1 2408] % set the flag ST0
ORR R6 R6 1
STRB R6 [R1 2408]
LDMIA sp! {R4 R5 R6 R7 R8 PC} % restore all registers and return

!ASM % back in ASM mode
*end
}
C=RSTK D0=C % D0 points on ARM instruction
D1=80100 % D1 points at a place where

% I can copy the program
LC(5) end-start MOVEDN % copy n nibbles

C=0.B SETLNED % hide the header

D1=8229E % point on 2Kb free memory
LC A9 A=0.W A-1.W { DAT1=A.W D1+16 C-1.B UPNC } % paint it in black
D0=00120 LC 8229E DAT0=C.A % point the screen to that memory
D0=C % D0 point on that memory

LC FFFFEFFF D=C.W % D=Y=-1
LC 4F R3=C.B % loop 80 times
{
 C=0.W LC 1800 C=-C.W B=C.W % B=X=-1.5
 LC 82 % loop 131 times
 A=0.S A+1.S % set bit 0 in As
 {
 RSTK=C % save loop counter in RSTK
 LC 80100 ARMSAT % evaluate the ARM code
 ?ST=0.0 % if point is in the set, do nothing
 {
 C=DAT0.S C-A.S DAT0=C.S % else, turn the pixel off
 }

 A+A.S SKNC { D0+1 A+1.S } % next pixel

 C=0.W LC 40 B+C.W % increment X
 C=RSTK C-1.B UPNC % count down and loop
 }
 D0+2 % next graphic line
 C=0.W LC 66 D+C.W % increment Y
 C=R3.W C-1.B R3=C.W UPNC % count down and loop
}
LC FF OUT=C { C=IN2 ?C=0.B UP } % wait for no key down

{ C=IN2 ?C#0.B UP } % Wait for 1 key down
INTON % restore the keyboard interrupt
LC 10 SETLNED % restore the header size
SCREEN CD0EX D0=00120 DAT0=C.A % restore the screen pointer
LOADRPL % return to RPL
ENDCODE (end of ASM program)
; (end of RPL program)

@"

6 ASM→→→→
The disassembler converts Saturn assembly into a source string.

The syntax used is Masd syntax, in mode 0-15.
Each line contains an address and an instruction.
If the system flag -71 is set (with ----71 SF71 SF71 SF71 SF), addresses are not shown, except for the destinations of jumps. In
this case, the resulting source may be then reassembled if needed.
ASM-> can either disassemble a CODE object or the memory area between 2 given addresses (as binary integer)
Example:

----71 CF271 CF271 CF271 CF2 (default) ----71 SF271 SF271 SF271 SF2
AE734 GOSBVL 067AE734 GOSBVL 067AE734 GOSBVL 067AE734 GOSBVL 0679B9B9B9B
AE73B LC 01000AE73B LC 01000AE73B LC 01000AE73B LC 01000
AE742 CAE742 CAE742 CAE742 C----A AA AA AA A
AE744 GONC AE742AE744 GONC AE742AE744 GONC AE742AE744 GONC AE742
AE747 GOVLNG 138B9AE747 GOVLNG 138B9AE747 GOVLNG 138B9AE747 GOVLNG 138B9

GOSBVL 0679BGOSBVL 0679BGOSBVL 0679BGOSBVL 0679B
LC 01000LC 01000LC 01000LC 01000
*AE742*AE742*AE742*AE742
CCCC----A AA AA AA A
GONC AE742GONC AE742GONC AE742GONC AE742
GOVLNG 138B9GOVLNG 138B9GOVLNG 138B9GOVLNG 138B9

Level 2 Level 1 -> Level 1

Binary integer (start address of the
memory area to disassemble)

Binary integer end
address

-> String (disassemble between the 2
address)

 Code object -> String

7 ARM→→→→
The disassembler converts ARM assembly into a source string.

Each line contains an address and an instruction.
If the system flag -71 is set (with ----71 SF71 SF71 SF71 SF), addresses are not shown, except for the destinations of jumps. In
this case, the resulting source may be then reassembled if needed.
ARM-> can either disassemble a CODE object (which does not make much sense at this point in time) or the
memory area between 2 given Saturn addresses (as binary integer)
Example:

----71 CF271 CF271 CF271 CF2 (default) ----71 SF271 SF271 SF271 SF2
874FF LDMGEIA R0 ! { R5 R6 R7 874FF LDMGEIA R0 ! { R5 R6 R7 874FF LDMGEIA R0 ! { R5 R6 R7 874FF LDMGEIA R0 ! { R5 R6 R7
LP PC }LP PC }LP PC }LP PC }
 87507 STMDB R5 { R5 R12 PC } 87507 STMDB R5 { R5 R12 PC } 87507 STMDB R5 { R5 R12 PC } 87507 STMDB R5 { R5 R12 PC }
 8750F BL 875278750F BL 875278750F BL 875278750F BL 87527
 87517 BLGE 87527 87517 BLGE 87527 87517 BLGE 87527 87517 BLGE 87527
 8751F BGE 87527 8751F BGE 87527 8751F BGE 87527 8751F BGE 87527
 87527 ADD R0 R0 R0 87527 ADD R0 R0 R0 87527 ADD R0 R0 R0 87527 ADD R0 R0 R0
 8752F MOV 8752F MOV 8752F MOV 8752F MOV R0 R1 R0 R1 R0 R1 R0 R1
 87537 TST R4 R5 87537 TST R4 R5 87537 TST R4 R5 87537 TST R4 R5

LDMGEIA R0 ! { R5 R6 R7 LP LDMGEIA R0 ! { R5 R6 R7 LP LDMGEIA R0 ! { R5 R6 R7 LP LDMGEIA R0 ! { R5 R6 R7 LP
PC }PC }PC }PC }
STMDB R5 { R5 R12 PC }STMDB R5 { R5 R12 PC }STMDB R5 { R5 R12 PC }STMDB R5 { R5 R12 PC }
BL 876E3BL 876E3BL 876E3BL 876E3
BLGE 876E3BLGE 876E3BLGE 876E3BLGE 876E3
BGE 876E3BGE 876E3BGE 876E3BGE 876E3
*876E3*876E3*876E3*876E3
ADD R0 R0 R0 ADD R0 R0 R0 ADD R0 R0 R0 ADD R0 R0 R0
MOV R0 R1 MOV R0 R1 MOV R0 R1 MOV R0 R1
TST R4 R5 TST R4 R5 TST R4 R5 TST R4 R5
@@@@

Level 2 Level 1 -> Level 1

Binary integer (start address of the
memory area to disassemble)

Binary integer end
address

-> String (disassemble between the 2
address)

 Code object -> String

8 The Entry point library: extable
The entry points library is an external library (you can get it from the HP web site) that contains a table of entry
points names and address. This is used by the MASD compiler to get the value of system RPL entry points or

assembler constants (like TURNMENUOFF for example).

This library should be stored in port 0, 1 or 2.

If you want to program in system-RPL, you must install this library.

This library also contains 4 functions:

8.1 nop

This function is here for internal purpose and should not be used.

Running this function does nothing

8.2 GETNAME

Lookup for the name of an entry from its address.
Example: #054AFh GETNAME -> “INNERCOMP”
Note: as multiple entries might have the same address, GETNAME is not a bijective (one-to-one) function

Level 1 -> Level 1
Binary integer -> String

8.3 GETADR

Lookup for the address of an entry.
Example: “INNERCOMP” GETADR -> #054Afh

Level 1 -> Level 1
String -> Binary integer

8.4 GETNAMES

Find all the entry which name starts by a specific string.
Note: giving a null string as an input will return a list of all the entry points.

Level 1 -> Level 1
String -> List of entry names.

