at3e VBE Core Standard
VESA®
Video Electronics Standards Association
2150 North First Street, Suite 440 Phone: (408) 435-0333
San Jose, CA 95131-2029 FAX: (408) 435-8225

VESA BIOS EXTENSION (VBE)

Core Functions
Standard

Version: 2.0
Document Revision: 1.1

Ratification Date: November 18, 1994

Purpose

To standardize a modular, software interface fgaysand audio devices. The VBE interface is
intended to simplify and encourage the developofagplications that wish to use graphics, vidadja
audio devices without specific knowledge of therim&l operation of the evolving target hardware.

Summary

The VBE standard defines a set of extensions td@&ROM BIOS services. These functions c
be accessed under DOS through interrupt 10h,acallesl directly by high performance 32-bit
applications and operating systems other than DOS.

These extensions also provide a hardware-indepemeehanism to obtain vendor information, an
serve as an extensible foundation for OEMs and ig34cilitate rapid software support of emergihg
hardware technology without sacrificing backwatspatibility.

Pageii VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

Intellectual Property

Copyright © 1993, 1995 - Video Electronics Standassociation. Duplication of this document
within VESA member companies for review purposeersnitted. This document may be posted
online in its unmodified, read-only format only. Blwarges, other than standard connect or download
charges, may be assessed for this document. Al ights reserved.

While every precaution has been taken in the pa¢iparof this standard, the Video Electronics
Standards Association and its contributors assemesponsibility for errors or omissions, and make
no warranties, expressed or implied, of functidyali suitability for any purpose.

The sample code contained within this standardoaaged without restriction.

Trademarks
All trademarks used in this document are propéitysr respective owners.

« VESA, VBE, VESADDC, VBE/AI, VBE/PM, and VBE/DDC artrademarks of Video
Electronics Standards Association.

« MS-DOS and Windows are trademarks of Microsoft, In

« IBM, VGA, EGA, CGA, and MDA are trademarks of Intational Business Machines
« RAMDAC is a trademark of Brooktree Corp.

« Hercules s atrademark of Hercules Computer Tdoggonc.

Patents

VESA proposal and standards documents are adoptied Wideo Electronics Standards Association
without regard to whether their adoption may inegbatents on articles, materials, or processe Su
adoption does not assume any liability to any paiener, nor does it assume any obligation whatever
to parties adopting the proposal or standards dextum

Support for this Specification
Clarifications and application notes to suppog sitandard will be published as the need arises. To
obtain the latest standard and support documemtabotact VESA.

If you have a product which incorporates VBE, yoowdd ask the company that manufactured your
product for assistance. If you are a display atraier manufacturer, VESA can assist you with any
clarification you may require. All comments oragpd errors should be submitted in writing to VESA
using one of the following mechanisms:

World Wide Web: www.vesa.org Mail to:

E-mail: techsupport@vesa.org Video Electronics Standardscist®n

Fax: 408-435-8225 2150 North First Street, Suite 440

Voice: 408-435-0333 San Jose, California 95131-2029
VBE CORE FUNCTIONS VERSION 2.0 Page iii

DOCUMENT REVISION 1.1

SSC/VBE Workgroup Members

Any industry standard requires input from many sesir The people listed below were members of the
VBE Workgroup of the Software Standards Commitg&) which was responsible for combining all
of the industry input into this proposal:

CHAIRMAN
Kevin Gillett, S-MOS Systems, Inc.,
past chairman, Rod Dewell , Excalibur Solutions

MEMBERS

David Penley, AT&T Global Information Solutions
Rebecca Nolan, Chips and Technologies, Inc.
Brad Haakenson, Cirrus Logic, Inc.

Joe Rickson, Logitech, Inc.

Aaron Leatherman, LSI Logic Corporation

Jake Richter, Panacea Inc.

Raluca lovan, Phoenix Technologies Ltd.
Kendall Bennett, SciTech Software

Tom Ryan, SciTech Software

George Bystricky, S-MOS Systems, Inc.

Jason Li, Trident Microsystems, Inc.

Chris Tsang, ULSI Systems

Greg Moore, Video Electronics Standards Association
Andy Lambrecht, VLSI Technology, Inc.

Rex Wolfe, Western Digital Imaging

Page iv VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

Table of Contents

INTELLECTUAL PROPERTY ...ttt ettt ettt ettt e st e e s aasne +1seessee s s smmmmms e e+ 41 2se £ 2ase e se e b e ean s e e e e e e sas s e e s emommmm s e e e e e ean iii
TRADEMARKSooeititeieiiititttteeees setteessesesimmmmms e e eeaee sateeassteesaseeesaaaeesssssssns mmmm——teeseeessessasnnsss seessseesnsenssnnsssmmmnnss senssesenensenees i
I TSSO i
SUPPORT FOR THIS SPECIFICATION ...ttt et st siee sttt e e s e e e s e msee e e e eessnesnnesaneessanssmmmmm s iii
SSC/VBE WORKGROUP MEMBERS..........cotitetieieeiie seeneetesteseeeeasteesteesseean sesesss st e 15 e e sseeens 2sessessensesessseensesssesssnnmnes iv
TABLE OF CONTENTS ...ttt ettt e e s s £t ess e e et e e e s smmmmmr e e+ o x £eenmeesReeasee e e anse e e e e e 1nns e e < mmmmm e+ 2 e s et e e e annnn an v
L.OINTRODUGCTION ... cetitiitieeeeiitete e e e set e see e s st e e sssee +rseesseesaeess s mmmm s es £ 2ssees et ease e se st e e e aasse e e e e s e e et e e e e mnn e e e nenne 1
1.1 SCOPE OF THEVBE STANDARDc..utttiittttteaetiaiaiauet eesseesssessmmmmmsssseses sessseeasesessssssssssssssssess mmmmmsssssssseessesssesns seeessessnnnns 1
1.2 BACKGROUNDER......cciiittiiiiuuttetuetttees seuteessteessimmammseseeees ssessasessssseesaasessssasnnss mmmmm—sessssssesssssssssss sesnsesssssessnnssssmmmmnse sensenes 2
2.0VBE OVERVIEWottt ettt emmmmme e et e bt e sseesbe e s s et e e s 1asse e e e+ mmmmm 24428 e e 422 am R e et e nheesmeesbeennneeessmmmmmts srenns 5
2.1 VBE FEATURES.......ccciiieeiiititt e s sttt stte st e st smmmmme e e ses £ eseesaeesas e e s et e e s 2asse et e+ mnmmmm 4158 e £ 442428 E e et e ARt ease e st ebe e e s s ammmmmee sreesseen 5
2.2 V/BE AFFECTEDDEVICES. ...ttt iittttttttttetaae e e steeessteessimamams e e e seas eeestesassseassessassnssssssss mmmmmmessessassnssssssssns sensesesssessnnnnssnn 5.
2.3 FROVIDING VENDORINFORMATIONceiuttittesiiteeeeesstne srseesssesusssmmmmmt s s sasss s eseasseesseeanssssesssnssssess mmmmmmsesssssesessanssnees seesnns 5
3.0 VBE MODE NUMBERSottt omemr ettt e et e e e e e esee st e mmmms s e e e e e seesheesasesmse e e e s e ee e e e 2 ss s e st e e s nnne s 6
4.0 VBE FUNGCTIONS ...ttt ettt e e e e e et et e e s h e e rmmmmme e 4128 e sheesReesan e s s a R ee e e a2 s b s e e s e £ e e e e e nnnnne nes 10
4.1 VBE RETURNSTATUS ...t oteiiie e ittt e s et sateesse e bt s immmme s st e 2beeaseesaeeas b et e e s 2 anse et e e mmmmmm £ 2o R s e £ 242 4a s b e et e e feennnesnnesnneeessamnnn 10
4.2 FROTECTEDM ODE CONSIDERATIONS.......ceeiieiiuteeeeeiitrnes sreereassesimmmame s ssssee sseesseessessssseessansssssssss mmmmmmesssssesssnsnesesss 11
4.3 FUNCTIONOOH - RETURNVBE CONTROLLERINFORMATIONcoitiitieiitteieeesirees seeesieesseesimmmmms e snesnesneessnnneeessas 12
4.4 FUNCTIONOIH - RETURNVBE MODEINFORMATIONcttiiiiitriteeiiieeeee o eesreesieessemmmmmssse e e e eesseesseessssessnnnneesssnnnne - 16.
4.5 FUNCTIONOZH - SET VBE MODE.........ciiiiiiiitiiiie st cteestee st s smmmeme s s et s aseesmeeseesanee e e e s asnne e e e e mmmmm e e s et e e s ennne e e e eesneenn 25
4.6 FUNCTIONO3H - RETURNCURRENTVBE MODE........ccccoiiiiiiieiitiiee e et emmmms e eesseesnnssnea s s snnneeessannes e s 26
4.7 FUNCTIONOAH - SAVE/RESTORESTATE ..cutitirterieuieeteesteesseees srteseesessesemmmemssseesns ssessessensssessssansesssessnses mmmmmmsesseesssesnses 27
4.8 FUNCTIONOSH - DISPLAY WINDOW CONTROLuteitieteeeeeisirreees s sessssssessssmmmmsssee s e seesessseessessansssesssanssnes mmmmmmsnes 27
4.9 FUNCTIONO6BH - SET/GET LOGICAL SCANLINE LENGTH ..teviieeiieesteesteestieses seesesseseesssmmamms e esses sessessessssessesssesssesnsenns 28
4. 10 RUNCTIONOTH - SET/GET DISPLAY START ..eeietitirtteteeseeseeans seessssessesemmmmmesseesse seessesessessessessssssssesssess mmmmmmessseesnes 29
4.11 FUNCTIONO8BH - SET/GET DAC PALETTE FORMAToititiititietteitesitete st stesestesesssmmnmmss s sesesessssesesnesnesssesesseens o 30
4.12 FUNCTIONOGH - SET/GET PALETTE DATA ..o tiieeeteitt et eteestee eseesestesesiemnmsesseess ssseseesessasssssesanseansessses mommmmsesssseanes 30
4.13 RUNCTIONOAH - RETURNVBE PROTECTEDM ODEINTERFACE........cccititiiieeiiireee e e semmmmmseee s e sneennessnnes 31
5.0 VBE SUPPLEMENTAL SPECIFICATIONS ... oottt ettt e et smmmm st st e s s e e e e seenneenneennnns 34.
5.1 RJRPOSE OFSUPPLEMENTAL SPECIFICATIONS.ottitieittteeeaitrete e sreeresseesimmmms e e sreesseesseessneaessnsnnsessanss mmmmmmee s 34
5.2 BTAINING SUPPLEMENTAL VBE FUNCTIONNUMBERS........cccootteiitriteeiaiis ceresieessssmmmemee e s snns sesreesseesseesnnneeesssnssneeen s 34
5.3 REQUIREDVBE SUPPLEMENTAL SPECIFICATIONCOMPONENTS.....coicttiteieeiitrreees et sesreesseesseemmmnmseessss sesseessnssnnneeas 35
5.3.1 VBE Supplemental SpecifiCation FUNCLIONS........ccoiiiieiiiestieeiseei ettt 35
5.3.2 REIUMN STBLUS......coviiiiiiiriie et bbb bbbt 35
5.3.3 Subfunction 00h - Return VBE Supplemental Specification INfOrmationoccvenmnerneneneeeinesseenenns 35
5.4 SJPPLEMENTAL SPECIFICATIONPROTECTEDM ODEGUIDELINES........ocoiittiieeiiiieeee e eesree e ssemmmms e e nneesneee s 38
5.5 LOADING SUPPLEMENTAL DRIVERS.coitiitttteeiitteeee e eesteesseessemmmms e e e seesssesastaseaesannseeeesassss smmmmm s se e e e s annnneeesnans sns 39
5.6 IMPLEMENTATION QUESTIONS.....coittiitteiiutreteeeaites sareeseessessmmmmmse s sssse saseessessmeesssseeesaansseeee s e e s seeeeesassneeens neesnnennnes 39
VBE CORE FUNCTIONS VERSION 2.0 Page v

DOCUMENT REVISION 1.1

5.7 KNOWN SUPPLEMENTAL SPECIFICATIONS ..o it etteetitteteesasiis sesessieessssmmmmmeae s sass sesseeseasseesnsseeessanssseses mammmmeeeessnnnees 40

5.7.1 Function 10h - Power Management EXtENSIONS (PM)....c.oucurieeiniieerriereieeensisesc e seese s seseessssessesees 40
5.7.2 Function 11h - Flat Panel Interface EXtENSIONS (FP)......coueuriieeirinieeiniiieesisesessse et sesessssssesessssesessssesesenns 40
5.7.3 Function 12h - Cursor Interface EXtENSIONS (C) ..cvericeerreieeriecieinersereese et ssesse e sssesssss s ssssese s 40
5.7.4 Function 13h - Audio Interface EXIENSIONS (Al) c..cceieerriieerieereenissienesssesie s sssessesssesss s ssssessssesaees 40
5.7.5 FUNCLION 14N - OEM EXIENSIONSvuuieerirteeiristiessisesesssesessese et seese st sessesss sttt sse st ssss s senns 40
5.7.6 Function 15h - Display Data Channel (DDC)cccovuerriieiniiieieinesesese st sesssesssssses st sssssssssanssssenns 40
5.7.7 Function 16h - Graphics System Configuration (GC)c.cvueureiierrinereieerneineeeisesiessesese s eesseessesees 40
APPENDIX 1 - VBE QUICK REFERENCE ..ottt ettt she s mmmmmm e se bt as st saesenenneseese e sammn s 41
APPENDIX 2 - VBE DATA STRUGCTURES.coitiititietiittis sttt ettt se s st sbe e abesse et eees et ssese e st emmenn 47
APPENDIX 3 - VBE SUPPLEMENTAL SPECS. ..ottt sttt e seemmmms et st sbe e esesnesennennes 61

APPENDIX 4 - VBE IMPLEMENTATION CONSIDERATIONS

A4.1 MINIMUM FUNCTIONALITY REQUIREMENTSiiiitittitttititettereeees setessuesessammmns e s e e s e teesssesssesasssssassnsssssss mmmmmmsssees
A4.L1 REQUITEH VBE SEIVICES. ..ottt sttt sttt
A4.1.2 Minimum ROM IMPIEMENEALTIONcceuriieeiricieires ettt ses et
AL L3 TSR IMPIEMENLALIONScvuiecvicietrescieirer et es e sea st b bbbttt

AL.2 VGA BIOS IMPLICATIONSct ettt eittttettteeteeaeees steeesstessssammmams e e eesas eeaasseeeasseaaessesaassssssss smmmmmee s s e snnssssssssses senseeessenesesesn

A4.3 ROM GPACELIMITATIONSutieiiiieieiiuuttetteeetes sareeessesesimmmmmsesseees soseessssessssessssassssssssssss mmmmmmtesssssssssssassnsss eesssesssseeesees
F G R DT 1= (0] = o TSRO TP
A4.3.2 RemMOVAl Of UNUSEA VGA FOMES......ovuiiirireeceeieieieisisseseseesssssessasesesesesessssssssssssssssssssesssssssssssssssssessssssssssesesessssssesssnes
A4.3.3 Deleting VGA Parameter TaADIES..........cvieuiiiieiritieieeiseeeet s sese et sess s sesse sttt
A4.3.4 Increasing ROM SPACE.......cocvvvreeerreniecerennn.

4.35 SUPPOrt Of VGA TTY FUNCHOMS......oiutrinieeirictetrtssisiesssesti st ess s sese ettt

A4.4 IMPLEMENTATION NOTES BYFUNCTION
R €1 1 = I o) =P T
A4.4.2 Function 00h - Return VBE Controller Information
A4.4.3 Function 01h - Return VBE MO INfOIrMALiON......cueveieerirerireeeciseeessessesesesessssseseessesesesessesssssesessssesesssesssssssssssnes
A4.4.4 FUNCLioN 020 = SEt VBE IMOGE........ccucueureriririirierisesessessesesesessssssssesessssesssssssssssssessssssesssssssssssessssessessesssssssssssssesssnsnsnes
A4.45 Function 03h - Return CUrrent VBE MOUE..........cvuieeiiiiiciriiieeeiseieie s esssss st ssssss s 69
A4.4.6 Function 05h - Display WINAOW CONIOL........c.ueeerriiierricieieineieeses e sesese e ss s e 69
A4.4.7 Function 06h - Get/Set Logical Scan Line Length............coo e 70
A4.4.8 Function O07h - Get/Set DISPIAY SHAItcovcueeieeerireeeireeieeisei et 70
A4.4.9 Function 08h - Set/Get DAC Palette FOIMMBLoccviieeiriiieirieieeireies sttt seses e sesss e 70
A4.4.10 FuNCtion 09h - SEt/GEt PAlEE DatA........cccureieeerireieireeieeireiseesesess sttt 70
A4.4.11 Function 0Ah - Return VBE FUNCEON [NfOFMALION.......cccureririrriririresereeeeesesese st sesse e ssssssesssnsnenen 71

AAS FLUG AND PLAY [SSUES......ciiittieiiiiiiiiiities sestesesteessmmmmessseeses sasseeaaseeesssssseeeeesessssss mummmmsssssesseeesesssssns seeesseeesnseeseeses 1.7

A4.6 SUPPORTINGM ULTIPLE CONTROLLERS......ccttttittttttttteteeeeees steeessteesnsammmme e s sess eeesssessaseessessasssnssssssss mmmmmmeesessessnsses
AL.B.1 DUAI-CONLIOIEr DESIGNS.....couviuieirincretreseiessessesesse s sese et b e ses e ss sttt bbb eeb bbb
A4.6.2 Provision for Multiple Independent Controllers

A4.7 DISPLAY REFRESHRATES ANDINTERLACING ..ceecttteititeet e e e e eessit eesateesseesmmmmms s sbses sessteessssessassssssssseeeseses mmmmmmeees

A4.8 OEM EXTENSIONS TOVBE ...ttt ittt ettt ese stttk e bttt b et s e h et s mmn 12 h e eh e e ekt e e e bt ensen e b e

A4.9 CERTIFICATION REQUIREMENTS......cooiiiiirreeeeiiirene e e
A4.9.1 VBETESt ULHItY..ovoeeeeeevsreeeeeeeereiseere e sesnens
A4.9.2 CommuNiCation With VESA OffiCe.....ciirrerrririrircerssiseis s ssssss sttt essse e e sessessssesesssssssenssnns

Page vi VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

APPENDIX5 - APPLICATION PROGRAMMING CONSIDERATIONS oooiiiicee et ettt vemmmeme e s e e 74

A5.1 APPLICATION DEVELOPERSSAMPLE SOURCE.......uutttiiitiiieiiietiieees teeeeesiisssssmmmmms s s sssan sasssssssssesesssssnnsessssssnss mmmmmnsre 74
C LANQUAGE MOUUIE..........eeieieieetesiteet ettt ss bR E bbbttt 74
ASSEMDIY LANGUAGE MOUUIEcueeeitet it nb b 84

A5.2 IMPLEMENTATION NOTES BYFUNCTIONciiiiiiiiii et ettt e et es eeeeiteeeeeessmmmmmesaaees seeessassssssasassessssanssses mmmm——errnnnseses 84
YT R €10 1= = U N[0 == 84
Ab.2.2 Function 00h - Return VBE Controller INformation............cccciiiiireiiercinensieesess st essssess e snsssssssenas 84

A5.2.3 Function 01h - Return VBE Mode Information
A5.2.4 FUNCLioN 020 = SEt VBE MOUE..........coueiieeeiereeeceeteeeeeeetets et tee et esesessssssesssssssssesbe s sae e st esesasasssssasssessssasenssesnsatenees
A5.2.5 Function 03h - Return CUrrent VBE IMOUE.........c.coveueeereeeeeeieeeeteeseeeeeetesestesessssessesssesesssssessssssesssssssssesssssssassenseseses 86
A5.2.6 Function 05h - Display WINAOW CONIOL........c.ueeeuriiieiricieiniereieeset e sesess e sessse st ssse s
A5.2.7 Function 06h - Get/Set Logical Scan Ling Length............cooereieincnnenseceeeesesesesesiessses s
A5.2.8 Function 07h - Get/Set DiSPIAy SHAItcovcueeieerireeeireeieeirei ettt
A5.2.9 Function 08h - Set/Get DAC Palette FOrmatcccoverereveeeeniresseeseeesesenns

AB5.2.10 Function 09 - Set/GEt PAlEE DALA......c.cceeveveeerereeeeeeeeeteeseseee e teeseee et e sessssssssssse e e tesesssssssesessssssesesnsen

A5.2.11 Function 0Ah - Return VBE Function Information

APPENDIX 6 - DIFFERENCES BETWEEN VBE REVISIONS

6.1 WBE L0t b e 89
6.2 WBE L6 .o R e b e 89
6.3 VBE12..

6.4 VBE 2.0 s

VBE CORE FUNCTIONS VERSION 2.0 Page vii
DOCUMENT REVISION 1.1

Introduction

1.0 Introduction

This document contains the VESA BIOS Extension (V/&tecification for standard software access to
graphics display controllers which support resohgj color depths, and frame buffer organizations
beyond the VGA hardware standard. It is intendedd$e by both applications programmers and
system software developers.

System software developers may use this documsopfgdement the System and INT 10h ROM
BIOS functions to provide the VBE services. Apgtiion developers can use this document as a guide
to programming all VBE compatible devices.

To understand the VBE specification, some knowled@®x86 assembly language and the VGA
hardware registers may be required. Howeverseahgces described in this specification may be
called from any high-level programming languagephavides a mechanism for generating software
interrupts with the 80x86 registers set to usecibipd values.

In this specification, 'VBE' and 'VBE 2.0' are syymous with 'VBE Core Functions version 2.0'.

1.1 Scope of the VBE Standard

The primary purpose of the VESA VBE is to provétendard software support for the many unique
implementations of Super VGA (SVGA) graphics cdigrs on the PC platform that provide features
beyond the original VGA hardware standard. Thig ovide a feasible mechanism by which
application developers can take advantage ofdnistandard hardware in graphics applications.

The VBE specification offers an extensible softviatmdation which allows it to evolve as displagian
audio devices evolve over time, without sacrifidsagkward software compatibility with older
implementations. New application software shoeldtile to work with older hardware, and
application software that has already shipped shwaoik correctly on new hardware devices.

VBE services provide standard access to all rasakiind color depths provided on the display
controller, and report the availability and detaflall supported configurations to the applicatsn
necessary.

VBE implementations facilitate the field supporaatiio and display hardware by providing the
application software with the manufacturer's nancktlae product identification of the display
hardware.

Since graphics controller services on the PC preally implemented in ROM, the VBE services are
defined so that they should be implemented witerstandard VGA ROM. When ROM
implementations of VBE are not possible, or wheldfsoftware upgrades to the onboard ROM are
necessary, the VBE implementation may be alsoauifas a device driver or DOS Terminate and Stay
Resident (TSR) program.

VBE CORE FUNCTIONS VERSION 2.0 Page 1
DOCUMENT REVISION 1.1

Introduction

The standard VBE functions may be supplementeddi'©as necessary to support custom or
proprietary functions unigue to the manufactuféis mechanism enables the OEM to establish
functions that may be standard to the productdinptovide access to special hardware
enhancements.

Although previous VBE standards assumed that ttierlymg graphics architecture was a VGA
device, the display services described by VBE &1be implemented on any frame buffer oriented
graphics device.

The majority of VBE services facilitate the setag aonfiguration of the hardware, allowing
applications high performance, direct access todhigured device at runtime. To further impridve
performance of flat frame buffer display devicesxtended resolutions, VBE 2.0 provides new
memory models that do not require the traditiaraahe buffer "banking" mechanisms.

VBE is expected to work on all 80x86 platformggal and protected modes.

Since some modern display devices are designeouweiny VGA support, two display controllers

may be present in the system. One display coatmbuld be used for VGA compatibility, and the
other used for graphic extensions to the basic Yf®#4es, resolutions, and frame buffer models.
Therefore, VBE must be able offer the applicatistomatic access to the appropriate device based on
the mode or resolution that is requested by thiscaipn.

Currently beyond the scope of the VBE specificasdhe handling of hardware configuration and
installation issues. It was originally considei@tdecome part of VBE 2.0, however we have deferred
the issues to the Graphics Configuration SuppleahBpecification. In addition, itis also possiae

an OEM to define their own extensions using the Gitiplemental Specification if required.

1.2 Backgrounder

The IBM VGA' has become a de facto standard in the PC grapbilcs A multitude of different

VGA offerings exist in the marketplace, each owiging BIOS or register compatibility with the IBM
VGA. More and more of these VGA compatible produafdement various supersets of the VGA
standard. These extensions range from higher tes@@and more colors to improved performance and
even some graphics processing capabilities. Intamspetition has dramatically improved the
price/performance ratio, to the benefit of the eset.

1 IBM and VGA are trademarks of International Businktschines Corporation.

Page 2 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

Introduction

However, several serious problems face a softveareloper who intends to take advantage of these
"Super VGA? environments. Because there is no standard hadwalementation, the developer is
faced with widely different Super VGA hardware detture. Lacking a common software interface,
designing applications for these environmentsstycand technically difficult. Except for applicats
supported by OEM-specific display drivers, very saftware packages can take advantage of the
power and capabilities of Super VGA products.

The VBE standard was originally conceived to entiidelevelopment of applications that wished to
take advantage of display resolutions and colaihddgeyond the VGA definition. The need for an
application or software standard was recognizeldoglevelopers of graphic hardware to encourage
the use and acceptance of their rapidly advancodypet families. It became obvious that the mgjori
of software application developers did not havedlseurces to develop and support custom device
level software for the hundreds of display boardhe market. Therefore the rich new features of
these display devices were not being used outiike relatively small CAD market, and only then
after considerable effort.

Indeed, the need for a standard for SVGA displaytets became so important that the VESA
organization was formed to seek out a solutiore drfginal VBE standard was devised and agreed
upon by each of the active display controller maciuirers, and has since been adopted by DOS
application developers to enable use of non-VGAreked display modes.

As time went along VBE 1.1 was created to add widke modes and increased logical line
length/double buffering support. VBE 1.2 was @dab add modes and also added high color
RAMDAC support.

In the three years since VBE 1.2 was approved we $een the standard become widely accepted
and many successful programs have embraced VBEeWw, it has become obvious that the need
for a more robust and extensible standard eXstHy extensions to the VGA standard continuedgusin
all of the original VGA I/O ports and frame buféetdress to communicate with the controller
hardware. As we've seen, the supported resol@imhsolor depths have grown, intelligent contrslle
with BITBLT and LineDraw Functions have become cannand new flat frame buffer memory
models have appeared along with display contrdletsare not based on VGA in any way. VBE 2.0
and future extensions will support non-VGA basetrctlers with new functions for reading and
writing the palette and for access to the flat &douffer models.

2 The term "Super VGA" is used in this document dographics display controller implementing any ssgeof the
standard IBM VGA display adapter.

VBE CORE FUNCTIONS VERSION 2.0 Page 3
DOCUMENT REVISION 1.1

Introduction
VBE 2.0, as designed, offers the extensibilitytiiedobustness that was lacking in the previous
specifications, while at the same time offeringdaaazds compatibility.

In the future, we see the need for adding supplatrgrecifications for issues like Multimedia;
Advanced Graphics Functions; and "Plug and Plajtifes.

Page 4 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

VBE Overview

2.0 VBE Overview
This chapter outlines the various features anddtions of the VBE standard.

2.1 VBE Features
Standard application interface to Graphics Coat®l|SVGA Devices).
Standard method of identifying products and marurfars.

- Provision for OEM extensions through Sub-functiéh.1
Simple protected mode interface.

- Extensible interface through supplemental spetidics.

2.2 VBE Affected Devices

All frame buffer-based devices in the PC platfomti{the exception of Hercules, Monochrome
(MDA), CGA and EGA devices) are suitable for usthimithe VBE standard to enable access to the
device by VBE-compliant applications.

2.3 Providing Vendor Information

The VGA specification does not provide a standadranism to determine what graphic device it is
running on. Only by knowing OEM-specific featurags @n application determine the presence of a
particular graphics controller or display boardsHiten involves reading and testing registeratiedt

at I/O addresses unique to each OEM. By not knowiraj hardware an application is running on,
few, if any, of the extended features of this hangcan be used.

The VESA BIOS Extension provides several functtomsturn information about the graphics
environment. These functions return system leY@inmation as well as graphics mode specific details
Function 00h returns general system level informatincluding an OEM identification string. The
function also returns a pointer to the supporte@&@¥Bd OEM modes. Function 01h may be used by
an application to obtain additional information ateach supported mode. Function 03h returns the
current VBE mode.

VBE CORE FUNCTIONS VERSION 2.0 Page 5
DOCUMENT REVISION 1.1

VBE Mode Numbers

3.0 VBE Mode Numbers
Standard VGA mode numbers are 7 bits wide andmitgsange from 00h to 13h. OEMs have
defined extended display modes in the range 14RHoValues from 80h to FFh cannot be used, since

VGA BIOS Function 00h (Set video mode) interprét3 las a flag to clear or preserve display
memory.

Due to the limitations of 7-bit mode numbers, thigamal VBE mode numbers are 14 bits wide. To

initialize a VBE mode, the mode number is pass#usiBX register to VBE Function 02h (Set VBE
mode).

The format of VBE mode numbers is as follows:

DO0-D8 = Mode number

If D8 == 0, this is not a VESA defined mode

If D8 == 1, this is a VESA defined mode
D9-D13 Reserved by VESA for future expansion (= 0)
D14 = Linear/Flat Frame Buffer Select

If D14 == 0, Use VGA Frame Buffer

If D14 == 1, Use Linear/Flat Frame Buffer
D15 = Preserve Display Memory Select

If D15 ==0, Clear display memory

If D14 == 1, Preserve display memory

Thus, VBE mode numbers begin at 100h. This moddarting scheme implements standard 7-bit
mode numbers for OEM-defined modes. Standard V@desmmay be initialized through VBE
Function 02h (Set VBE mode) simply by placing ttmsismnumber in BL and clearing the upper byte
(BH). 7-bit OEM-defined display modes may be ittitiad in the same way. Note that modes may only
be set if the mode exists in the VideoModeList fairio by the VideoModePTR returned in Function
00h. The exception to this requirement is the nmoheber 81FFh.

To date, VESA has defined one special 7-bit modelau, 6Ah, for the 800x600, 16-color, 4-plane

graphics mode. The corresponding 15-bit mode nufabtiris mode is 102h. The following VBE
mode numbers have been defined:

GRAPHICS TEXT

15-bit 7-bit Resolution Colors 15-bit 7-bit Columns Rows
mode mode mode mode

number number number number

100h - 640x400 256 108h - 80 60
101h - 640x480 256 109h - 132 25
102h 6Ah 800x600 16 10Ah - 132 43
103h - 800x600 256 10Bh - 132 50
104h - 1024x768 16 10Ch - 132 60
105h - 1024x768 256

106h - 1280x1024 16

Page 6 VBE CORE FUNCTIONS VERSION 2.0

DOCUMENT REVISION 1.1

VBE Mode Numbers

107h - 1280x1024 256

VBE CORE FUNCTIONS VERSION 2.0 Page 7
DOCUMENT REVISION 1.1

VBE Mode Numbers

GRAPHICS

15-bit 7-bit Resolution Colors
mode mode

number number

10Dh - 320x200 32K (1:5:5:5:)
10eh - 320x200 64K (5:6:5)
10Fh - 320x200 16.8M (8:8:8)
110h - 640x480 32K (1:5:5:5:)
111h - 640x480 64K (5:6:5)
112h - 640x480 16.8M (8:8:8)
113h - 800x600 32K (1:5:5:5:)
114h - 800x600 64K (5:6:5)
115h - 800x600 16.8M (8:8:8)
116h - 1024x768 32K (1:5:5:5:)
117h - 1024x768 64K (5:6:5)
118h - 1024x768 16.8M (8:8:8)
119h - 1280x1024 32K (1:5:5:5:)
11Ah - 1280x1024 64K (5:6:5)
11Bh - 1280x1024 16.8M (8:8:8)
81FFh Special Mode (see below for details)

Note: Starting with VBE version 2.0, VESA will no longgefine new VESA mode numbers and it will
not longer be mandatory to support these old mod#ears. However, it is highly recommended that
BIOS implementations continue to support these mad®ers for compatibility with older software.
VBE 2.0-aware applications should follow the guits in Appendix 5 - Application Programming
Considerations - for setting a desired mode.

Note: Mode 81FFh is a special mode designed to predeeirrent memory contents and give
access to the entire video memory. This mod@eoesly useful for saving the entire video memory
contents before going into a state that couldtlmseontents (e.g., set this mode to gain accedis to
video memory to save it before going into a vatgiibwer down state). This mode is required because
the entire video memory contents are not alwaysssdale in every mode. It is recommended that this
mode be packed pixel in format, and a ModelnfoBlodist be defined for it. However, it should not
appear in the VideoModelList. Look in the Modelnfoét to determine if paging is required and how
paging is supported ifitis. Also note that themeeno implied resolutions or timings associatial tiis
mode.

Note: Future display resolutions will be defined by VSsplay vendors. The color depths will not
be specified and new mode numbers will not beaedifpr these resolutions. For example, if the
VESA display vendors define 1600x1200 as a VES&lueisn, application developers should target
their display resolution for 1600x1200 rather tblaoosing an arbitrary resolution like 1550x1190.
The VBE implementation should be queried to geattadable resolutions and color depths and the

Page 8 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

VBE Mode Numbers

application should be flexible enough to work witis list. Appendix 5 gives a detailed summaref
way an application should go about selecting attitigenodes.

VBE CORE FUNCTIONS VERSION 2.0 Page 9
DOCUMENT REVISION 1.1

VBE Functions

4.0 VBEFunctions

This chapter describes in detail each of the fanstdefined by the VBE standard. VBE functions are
called using the INT 10h interrupt vector, passirggiments in the 80X86 registers. The INT 10h
interrupt handler first determines if a VBE funatimas been requested, and if so, processes that
request. Otherwise control is passed to the sta{aA BIOS for completion.

All VBE functions are called with the AH registet $0 4Fh to distinguish them from the standard VGA
BIOS functions. The AL register is used to indgoahich VBE function is to be performed. For
supplemental or extended functionality the BL tegis used when appropriate to indicate a specific
sub-function.

Functions 00h-OFh have been reserved for Standaiedihction numbers; Functions 10h-FFh are
reserved for VBE Supplemental Specifications.

In addition to the INT 10h interface, a Protecteablel Interface is available and is described below.

4.1 VBE Return Status

The AXregister is used to indicate the completiatus upon return from VBE functions. If VBE
support for the specified function is available,4fh value passed in the AH register on entry is
returned in the AL register. If the VBE functiaomapleted successfully, 00h is returned in the AH
register. Otherwise the AH register is set todat# the nature of the failure.

VBE RETURN STATUS

AL == 4Fh: Functionis supported

AL!= 4Fh: Functionis not supported

AH == 00h: Function call successful

AH==01h: Function call failed

AH == 02h: Function is not supported in the curremtiwvare configuration
AH==03h: Function call invalid in current video n@d

Note: Applications should treat any non-zero value@AHhi register as a general failure condition as
later versions of the VBE may define additionabecodes.

Page 10 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

VBE Functions
00h Return VBE Controller Information

4.2 Protected Mode Considerations
VBE services may be called directly from 32-bittpated mode only.

For 32-bit protected mode, 2 selector/segment gscs for 32-bit code and the data segment are
needed. These will be allocated and initializethbycaller. The segment limit fields will be sef#k.
These selectors may either be in the GDT or LDTirust be valid whenever the VBE is called in
protected mode. The caller must supply a stack lemgugh for use by VBE and by potential interrupt
handlers. The caller's stack will be active if bewinterrupts are enabled in the VBE routine esihe
VBE will not switch stacks when interrupts are dedjaincluding NMl interrupts. The 32-bit VBE
interface requires a 32-bit stack.

If the memory location is zero, then only I/O maghperts will be used so the application does not
need to do anything special. This should be tfeuttease for ALL cards that have I/0O mapped
registers because it provides the best performance.

If the memory location is nonzero (there can bg ong), the application will need to create a n2w 3
bit selector with the base address that pointettphysical” location specified with the specifigit.

When the application needs to call the 32-bit lsawitch function, it must then load the ES selector
with the value of the new selector that has bessted. The bank switching code can then directly
access its memory mapped registers as absolutésoffso the ES selector

(.e., mov [es:10],eax to put a value into thestegiat base+10).

It is up to the application code to save and restw previous state of the ES selector if this is
necessary (for example in flat model code).

When the VBE services are called, the current#@ssion bit map must allow access to the I1/0O
ports that the VBE may need to access. This céoupe in the Sub-Table (Ports and Memory)
returned by VBE Function OAh.

To summarize, it is the responsibility of the cglto ensure to that it has the appropriate 1/0O and
memory privileges, and a large enough stack an@ppate selectors allocated. Itis also the
responsibility of the calling application to pregeregisters if necessary.

Applications must use the same registers for tihetian 05h and Function 09h protected mode
interface that they would use in a real mode @dils includes the AX register.

Function 07h protected mode calls have a diffédcentat.
AX = 4F07h
BL = 00h SetDisplay CRTC Start
80h Set Display CRTC Start during Vertical Retrace
CX Bits 0-15 of display start address
DX = Bits 16-31 of display start address

VBE CORE FUNCTIONS VERSION 2.0 Page 11
DOCUMENT REVISION 1.1

VBE Functions
00h Return VBE Controller Information

The protected mode application must keep tradikeotolor depth and scan line length to calculate th
new start address. If a value that is out of rasgeogrammed, unpredictable results will occur.

4.3 Function 00h - Return VBE Controller Information
This required function returns the capabilitiethefdisplay controller, the revision level of tHBE/
implementation, and vendor specific informatioagsist in supporting all display controllers inftatl.

The purpose of this function is to provide inforimato the calling program about the general
capabilities of the installed VBE software and kaguek. This function fills an information block stture
at the address specified by the caller. The VbBIofk information block size is 256 bytes for VBE
1.x, and 512 bytes for VBE 2.0.

Input: AX =4F00h Return VBE Controller Information
ES:DI = Pointer to buffer in which to place
VbelnfoBlock structure
(VbeSignature should be set to 'VBE2' when
function is called to indicate VBE 2.0 information
is desired and the information block is 512 bytes i
size.)

Output: AX = VBE Return Status
Note: All other registers are preserved.
The information block has the following structure:

VbelnfoBlock struc

VbeSignature db 'VESA' ; VBE Signature

VbeVersion dw 0200h ; VBE Version

OemStringPtr dd ? ; Pointer to OEM String
Capabilities db 4 dup (?) ; Capabilities of grapharstmller
VideoModePtr dd ? ; Pointer to VideoModeList
TotalMemory dw ? ; Number of 64kb memory blocks

: Added for VBE 2.0

OemSoftwareRev dw ? ; VBE implementation Softwaresieni

OemVendorNamePtr dd ? ; Pointer to Vendor Name String

OemProductNamePtr dd ? ; Pointer to Product NamegStrin

OemProductRevPtr dd ? ; Pointer to Product RevisiamgSt

Reserved db 222dup (?) ;Reserved for VBE implementstratch
, area

OemData db 256 dup (?) ; Data Areafor OEM Strings

VbelnfoBlock ends

Page 12 VBE CORE FUNCTIONS VERSION 2.0

DOCUMENT REVISION 1.1

VBE Functions
00h Return VBE Controller Information

Note: All data in this structure is subject to changéleywBE implementation when VBE Function
OOh s called. Therefore, it should not be usettiéapplication to store data of any kind.

Description of th&belnfoBlock structure fields:

TheVbeSignaturefield is filled with the ASCII characters 'VESA/ the VBE implementation.VBE

2.0 applications should preset this field withASCII characters 'VBEZ2' to indicate to the VBE
implementation that the VBE 2.0 extended infornmaisadesired, and the VbelnfoBlock is 512 bytes in
size. Upon return from VBE Function 00h, thisdishould always be set to 'VESA' by the VBE
implementation.

TheVbeVersionis a BCD value which specifies what level of tigB\standard is implemented in the
software. The higher byte specifies the major gansumber. The lower byte specifies the minor
version number.

Note: The BCD value for VBE 2.0 is 0200h and the BClgdor VBE 1.2 is 0102h. In the past we
have had some applications misinterpreting thedeBies. For example, BCD 0102h was
interpreted as 1.02, which is incorrect.

The OemStringPtr is a Real Mode far pointer to a null terminatedV@iefined string. This string may
be used to identify the graphics controller chi@&M product family for hardware specific display
drivers. There are no restrictions on the form#ti@string. This pointer may point into eitherlRGr
RAM, depending on the specific implementation. \ABEBIOS implementations must place this string
in the OemData area within the VbelnfoBlock if 'VBES preset in the VbeSignature field on entry to
Function 00h. This makes it possible to converRbalMode address to an offset within the
VbelnfoBlock for Protected mode applications.

Note: The length of the OEMString is not defined, busioace considerations, we recommend a
string length of less than 256 bytes.

The Capabilities field indicates the support of specific featurethie graphics environment. The bits
are defined as follows:

DO =0 DAC is fixed width, with 6 bits per primarglor
= DAC width is switchable to 8 bits per primaojor
D1 =0 Controller is VGA compatible
= Controller is not VGA compatible
D2 =0 Normal RAMDAC operation
=1 When programming large blocks of informatiothidRAMDAC,

use the blank bit in Function 09h.
D3-31 =Reserved

VBE CORE FUNCTIONS VERSION 2.0 Page 13
DOCUMENT REVISION 1.1

VBE Functions
00h Return VBE Controller Information

BIOS Implementation Note: The DAC must always be restored to 6 bits pergmyras default upon
amode set. Ifthe DAC has been switched to &kitprimary, the mode set must restore the DAC
to 6 bits per primary to ensure the applicatiorettiyer that he does not have to reset it.

Application Developer's Note: Ifa DAC is switchable, you can assume that tAEill be
restored to 6 bits per primary upon a mode satafrapplication to use a DAC, the application
program is responsible for setting the DAC to 8 pér primary mode using Function 08h.

VGA compatibility is defined as supporting all sfand IBM VGA modes, fonts and I/O ports;
however, VGA compatibility doesn't guarantee thiahades which can be set are VGA compatible, or
that the 8x14 font is available.

The need for D2 = 1 "program the RAMDAC using ttak bit in Function 09h" is for older style
RAMDACSs, where programming the RAM values durirgpthy time causes a "snow-like" effect on
the screen. Newer style RAMDACSs don't have thigéition and can easily be programmed at any
time, but older RAMDACSs require that they be blashke as not to display the snow while values
change during display time. This bit informs tbigare that it should make the function call with
BL=80h rather than BL=00h to ensure the minimizatitthe "snow-like" effect.

TheVideoModePtr points to a list of mode numbers for all disptaydes supported by the VBE
implementation. Each mode number occupies one (@6rbits). The list of mode numbers is
terminated by a -1 (OFFFFh). The mode numbehssrist represent all of the potentially supported
modes by the display controller. Refer to Chapfer 8 description of VESA VBE mode numbers.
VBE 2.0 BIOS implementations must place this mlél the Reserved area of the VbelnfoBlock or
have it statically stored within the VBE implemeiataif 'VBEZ2' is preset in the VbeSignature field
entry to Function 00h.

Note: Itis responsibility of the application to verifye actual availability of any mode returned by thi
function through the Return VBE Mode InformatiorB@Function 01h) call. Some of the returned
modes may not be available due to the actual arobom@mory physically installed on the display
board or due to the capabilities of the attacheaitmo

Note: If a VideoModeList is found to contain no entristarts with OFFFFh), it can be assumed that
the VBE implementation is a "stub" implementatidreve only Function 00h is supported for diagnostic
or "Plug and Play" reasons. These stub implemensadre not VBE 2.0 compliant and should only be
implemented in cases where no space is availainiptement the entire VBE.

TheTotalMemory field indicates the maximum amount of memory piafsi installed and available to
the frame buffer in 64KB units. (e.g. 256KB =42%B = 8) Not all video modes can address all
this memory, see the ModelnfoBlock for detailedinfation about the addressable memory for a given
mode.

The OemSoftwareReWield is a BCD value which specifies the OEM rexndevel of the VBE
software. The higher byte specifies the majoli@ersumber. The lower byte specifies the minor

Page 14 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

VBE Functions
00h Return VBE Controller Information

version number. This field can be used to idetiidyOEM's VBE software release. This field is/onl
filled in when 'VBEZ2' is preset in the VbeSignatiietl on entry to Function 00h.

The OemVendorNamePtris a pointer to a null-terminated string contagritme name of the vendor
which produced the display controller board prod(ithis string may be contained in the
VbelnfoBlock or the VBE implementation.) This @ias only filled in when 'VBEZ2' is preset in the
VbeSignature field on entry to Function 00Rofe: the length of the strings OemProductRev,
OemProductName and OemVendorName (including tetang)aummed, must fit within a 256 byte
buffer; this is to allow for return in the OemDa#gd if necessary.)

The OemProductNamePtris a pointer to a null-terminated string contagrifre product name of the
display controller board. (This string may be eomd in the VbelnfoBlock or the VBE
implementation.) This field is only filled in wh&/BEZ2' is preset in the VbeSignature field onyetatr
Function 00h. Nlote: the length of the strings OemProductRev, OemPtdEume and
OemVendorName (including terminators) summed, ftwgthin a 256 byte buffer; this is to allow for
return in the OemData field if necessary.)

The OemProductRevPtris a pointer to a null-terminated string contagrifme revision or manufacturing
level of the display controller board product. i€l$tring may be contained in the VbelnfoBlockar t
VBE implementation.) This field can be used t@dwetne which production revision of the display
controller board is installed. This field is ofiled in when 'VBEZ2' is preset in the VbeSignatiiete on
entry to Function 00h Npte: the length of the strings OemProductRev, OemPtdume and
OemVendorName (including terminators) summed, fitugthin a 256 byte buffer; this is to allow for
return in the OemData field if necessary.)

The Reservedield is a space reserved for dynamically buildivegVideoModelList if necessary if the
VideoModelist is not statically stored within thBK implementation. This field should not be used f
anything else, and may be reassigned in the futyplication software should not assume that
information in this field is valid.

TheOembDatafield is a 256 byte data area that is used tor&&M information returned by VBE
Function 00h when 'VBEZ2' is preset in the VbeSigredlield. The OemVendorName string,
OemProductName string and OemProductRevV strirgpaied into this area by the VBE
implementation. This area will only be used by \iBialementations 2.0 and above when 'VBE2' is
preset in the VbeSignature field.

VBE CORE FUNCTIONS VERSION 2.0 Page 15
DOCUMENT REVISION 1.1

VBE Functions
00h Return VBE Controller Information

4.4 Function 01h - Return VBE Mode Information

This required function returns extended informagibaut a specific VBE display mode from the mode
list returned by VBE Function 00h. This functidls the mode information block, ModelnfoBlock,
structure with technical details on the requesteden The ModelnfoBlock structure is provided by
the application with a fixed size of 256 bytes.

Information can be obtained for all listed modeb@VideoModelList returned in Function 00h. &th
requested mode cannot be used or is unavailditeyitl be set in the ModeAttributes field to irdite
that the mode is not supported in the current gardtion.

Input: AX =4F01h Return VBE mode information

CX = Mode number

ES:DI = Pointer to ModelnfoBlock structure
Output: AX = VBE Return Status

Note: All other registers are preserved.
The mode information block has the following stiuet

ModelnfoBlock struc

; Mandatory information for all VBE revisions

ModeAttributes aw ? ; mode attributes
WinAAttributes db ? ; window A attributes
WinBAttributes db ? ; window B attributes
WinGranularity dw ? ; window granularity

WinSize dw ? ; window size
WinASegment dw ? ; window A start segment
WinBSegment dw ? ; window B start segment
WinFuncPtr dd ? ; pointer to window function
BytesPerScanLine daw ? ; bytes per scan line

; Mandatory information for VBE 1.2 and above
XResolution daw ? - horizontal resolution in pixel€baracters

YResolution daw ? ; vertical resolution in pixels oachcters
XCharSize db ? ; character cell width in pixels
YCharSize db ? ; character cell height in pixels
NumberOfPlanes db ? ; number of memory planes

%pixels in graphics modes, characters in text modes.

Page 16 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

VBE Functions
03h Return Current VBE Mode

BitsPerPixel db ? ; bits per pixel
NumberOfBanks db ? ; number of banks
MemoryModel db ? ; memory model type

BankSize db ? ; bank size in KB
NumberOfimagePages db ? ; number of images

Reserved db 1 ; reserved for page function

; Direct Color fields (required for direct/6 and YIJ memory models)

RedMaskSize db ? ; size of direct color red maskis bi
RedFieldPosition db ? ; bit position of Isb of red knas
GreenMaskSize db ? ; size of direct color green nmelsits
GreenFieldPosition db ? ; bit position of Isb of grewsk
BlueMaskSize db ? ; size of direct color blue madktis
BlueFieldPosition db ? ; bit position of Isb of bluask
RsvdMaskSize db ? ; Size of direct color reserved rinetsiks
RsvdFieldPosition db ? ; bit position of Isb of reselmask
DirectColorModelnfo db ? ; direct color mode attrilsite

; Mandatory information for VBE 2.0 and above

PhysBasePtr dd ? ; physical address for flat memamyetbuffer
OffScreenMemOffset dd ? ; pointer to start of off sarenemory
OffScreenMemSize dw ? ; amount of off screen menmaki« units
Reserved db 206 dup (?) ; remainder of ModelnfoBlock

ModelnfoBlock ends
The ModeAttributes field describes certain important characteristicke graphics mode.

The ModeAttributes field is defined as follows:

DO Mode supported by hardware configuration
Mode not supported in hardware

= Mode supported in hardware

1 (Reserved)

TTY Output functions supported by BIOS

= TTY Output functions not supported by BIOS
= TTY Output functions supported by BIOS
Monochrome/color mode (see note below)
= Monochrome mode

Color mode

Mode type

Text mode

Graphics mode

VGA compatible mode

Yes

I = O Il
|

D1
D2

D3

D4

D5

Ol POl PO Il R Ol
I

VBE CORE FUNCTIONS VERSION 2.0 Page 17
DOCUMENT REVISION 1.1

VBE Functions
00h Return VBE Controller Information

1= No

Page 18 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

VBE Functions
03h Return Current VBE Mode

D6 VGA compatible windowed memory mode is avaéabl
= Yes

No

Linear frame buffer mode is available

No

Yes

= Reserved

D7

0
1
0
1
D8-D15
Bit DO is set to indicate that this mode can k&iized in the present hardware configurationsHit is

reset to indicate the unavailability of a graphncgle if it requires a certain monitor type, morenogy
than is physically installed, etc.

Bit D1 was used by VBE 1.0 and 1.1 to indicatettmabptional information following the
BytesPerScanLine field were present in the datatstie. This information became mandatory with
VBE version 1.2 and above, so D1 is no longer aseldshould be setto 1. The Direct Color fields
are valid only if the MemoryModel field is set t6 éDirect Color) or 7 (YUV).

Bit D2 indicates whether the video BIOS has sugpodutput functions like TTY output, scroll, etc.
in this mode. TTY support is recommended butegaired for all extended text and graphic modes.
If bit D2 is set to 1, then the INT 10h BIOS mugpsort all of the standard output functions listed
below.

All of the following TTY functions must be suppaterhen this bit is set:

01 Set Cursor Size

02 Set Cursor Position

06 Scroll TTY window up or Blank Window

07 Scroll TTY window down or Blank Window

09 Write character and attribute at cursor position
OA Write character only at cursor position

OE Write character and advance cursor

Bit D3 is set to indicate color modes, and clefmechonochrome modes.
Bit D4 is set to indicate graphics modes, and etbfor text modes.

Note: Monochrome modes map their CRTC address at 3B#lbr @odes map their CRTC address
at 3D4h. Monochrome modes have attributes in wamibit 3 (video) and bit 4 (intensity) of the
attribute controller output are significant. Theref monochrome text modes have attributes of off,
video, high intensity, blink, etc. Monochrome griaglmodes are two plane graphics modes and have
attributes of off, video, high intensity, and bliliktended two color modes that have their CRTC
address at 3D4h, are color modes with one bitigel@gnd one plane. The standard VGA modes, 06h
and 11h, would be classified as color modes, wistandard VGA modes 07h and OFh would be
classified as monochrome modes.

VBE CORE FUNCTIONS VERSION 2.0 Page 19
DOCUMENT REVISION 1.1

VBE Functions
00h Return VBE Controller Information

Bit D5 is used to indicate if the mode is compatibith the VGA hardware registers and I/O porfts. |
this bit is set, then the mode is NOT VGA compatdnid no assumptions should be made about the
availability of any VGA registers. If clear, thiére standard VGA I/O ports and frame buffer address
defined in WinASegment and/or WinBSegment can figrasd.

Bit D6 is used to indicate if the mode provides tldwing or Banking of the frame buffer into the
frame buffer memory region specified by WinASegnaet WinBSegment. If set, then Windowing of
the frame buffer is NOT possible. If clear, themdevice is capable of mapping the frame buiter i
the segment specified in WinASegment and/or WinB#ed. (This bit is used in conjunction with bit
D7, see table following D7 for usage).

Bit D7 indicates the presence of a Linear Framé&Buaiemory model. If this bit is set, the display
controller can be put into a flat memory modeldtyisg the mode (VBE Function 02h) with the Flat
Memory Model bit set. (This bit is used in conjumctwith bit D6, see following table for usage)

D7 | D6

Windowed frame buffer only 0 0
n/a 0 1

Both Windowed and Linear | 1 0

Linear frame buffer only 1 1

TheBytesPerScanLindield specifies how many full bytes are in eadidal scanline. Thelogical
scanline could be equal to or larger than thealysul scanline.

TheWinAAttributes andWinBAttributes describe the characteristics of the CPU windowaigme
such as whether the windows exist and are readakii, as follows:

DO Relocatable window(s) supported

= Single non-relocatable window only

= Relocatable window(s) are supported
Window readable

Window is not readable

Window is readable

Window writeable

Window is not writeable

Window is writeable

Reserved

O
[

),
N
I I

NOoOll ,OIll » Ol
I

D3-D7

*Use D14 of the Mode Number to select the Linearf@ubn a mode set (Function 02h).

Page 20 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

VBE Functions
03h Return Current VBE Mode

Even if windowing is not supported (bit DO = 0 lfmth Window A and Window B), then an
application can assume that the display memorghg$ides at the location specified by
WinASegment and/or WinBSegment.

WinGranularity specifies the smallest boundary, in KB, on whighwindow can be placed in the
frame buffer memory. The value of this field is efiged if Bit DO of the appropriate WinAttributesitl
iS not set.

WinSize specifies the size of the window in KB.

WinASegmentandWinBSegmentaddress specify the segment addresses wherattiews are
located in the CPU address space.

WinFuncPtr specifies the segment:offset of the VBE memorylaiving function. The windowing
function can be invoked either through VBE Funcibh, or by calling the function directly. A direct
call will provide faster access to the hardwareémqaggisters than using VBE Function 05h, and is
intended to be used by high performance applicatlotiis field is NULL, then VBE Function 05h
must be used to set the memory window when pagjspported. This direct call method uses the
same parameters as VBE Function 05h including AXarnVBE 2.0 implementations will return the
correct Return Status. VBE 1.2 implementationseamiier, did not require the Return Status
information to be returned. For more informatiorttee direct call method, see the notes in VBE
Function 05h and the sample code in Appendix 5.

TheXResolution andYResolutionspecify the width and height in pixel elementsharacters for this
display mode. In graphics modes, these fieldsatelihe number of horizontal and vertical pixeds th
may be displayed. In text modes, these fieldsateithie number of horizontal and vertical character
positions. The number of pixel positions for texides may be calculated by multiplying the returned
XResolution and YResolution values by the charaetéwidth and height indicated in the XCharSize
and YCharSize fields described below.

TheXCharSize andYCharSize specify the size of the character cell in pix&lsis value is not zero
based (e.g. XCharSize for Mode 3 using the 9 fpamiwill have a value of 9).

TheNumberOfPlanesfield specifies the number of memory planes abtalo software in that mode.
For standard 16-color VGA graphics, this wouldétgs 4. For standard packed pixel modes, the
field would be setto 1. For 256-color non-chaimedes, where you need to do banking to address
all pixels, this value should be set to the nurobeanks required to get to all the pixels (typictidis
would be 4 or 8).

TheBitsPerPixelfield specifies the total number of bits allocatedne pixel. For example, a standard
VGA 4 Plane 16-color graphics mode would haveretHis field and a packed pixel 256-color
graphics mode would specify 8 in this field. Thenbver of bits per pixel per plane can normally be
derived by dividing the BitsPerPixel field by tharNberOfPlanes field.

VBE CORE FUNCTIONS VERSION 2.0 Page 21
DOCUMENT REVISION 1.1

VBE Functions
00h Return VBE Controller Information

TheMemoryModel field specifies the general type of memory orgation used in this mode. The
following models have been defined:

00h = Text mode

01h = CGA graphics

02h = Hercules graphics

03h = Planar

04h = Packed pixel

05h = Non-chain 4, 256 color
o6h = Direct Color

O7h = YUV

08h-0Fh = Reserved, to be defined by VESA
10h-FFh= Tobe defined by OEM

VBE Version 1.1 and earlier defined Direct Col@yrics modes with pixel formats 1:5:5:5, 8:8:8, and
8:8:8:8 as a Packed Pixel model with 16, 24, &bit$ per pixel, respectively. In VBE Version 1.2
and later, the Direct Color modes use the Diretdi@oemory model and use the MaskSize and
FieldPosition fields of the ModelnfoBlock to deberthe pixel format. BitsPerPixel is always defiteed
be the total memory size of the pixel, in bits.

NumberOfBanks. This is the number of banks in which the scagslare grouped. The quotient from
dividing the scan line number by the number of Basthe bank that contains the scan line and the
remainder is the scan line number within the beokexample, CGA graphics modes have two banks
and Hercules graphics mode has four banks. Forstibdedon't have scanline banks (such as VGA
modes 0Dh-13h), this field should be set to 1.

TheBankSizefield specifies the size of a bank (group of direes) in units of 1 KB. For CGA and
Hercules graphics modes this is 8, as each b&i0&bytes in length. For modes that do not have
scanline banks (such as VGA modes 0Dh-13h), #s$hould be setto 0.

TheNumberOflmagePagedield specifies the "total number minus one (-i¢@mplete display

images that will fit into the frame buffer memofe application may load more than one image o t
frame buffer memory if this field is non-zero, andve the display window within each of those pages.
This should only be used for determining the aolakti display pages which are available to the
application; to determine the available off screemory, use the OffScreenMemOffset and
OffScreenMemSize information.

Note: If the ModelnfoBlock is for an IBM Standard VGA a®and the NumberOflmagePages field
contains more pages than would be found in a 2560R2mentation, the TTY support described in
the ModeAttributes must be accurate. i.e., iflti¥ functions are claimed to be supported, theytmus
be supported in all pages, not just the pages tigfimand in the 256KB implementation.

Page 22 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

VBE Functions
03h Return Current VBE Mode

TheReservedield has been defined to support a future VBEesand will always be set to one in
this version.

VBE CORE FUNCTIONS VERSION 2.0 Page 23
DOCUMENT REVISION 1.1

VBE Functions
00h Return VBE Controller Information

TheRedMaskSize, GreenMaskSize, BlueMaskSize, and RsvdigkSizefields define the size, in
bits, of the red, green, and blue components inéatatolor pixel. A bit mask can be constructexiir

the MaskSize fields using simple shift arithmeim. example, the MaskSize values for a Direct Color
5:6:5 mode would be 5, 6, 5, and 0, for the reskgrblue, and reserved fields, respectively. Nhate

in the YUV MemoryModel, the red field is used fortkle green field is used for Y, and the blue figld
used for U. The MaskSize fields should be settmibdes using a memory model that does not have
pixels with component fields.

TheRedFieldPosition, GreenFieldPosition, BlueFieldPoson, and RsvdFieldPositiorfields

define the bit position within the direct color @ior YUV pixel of the least significant bit of the
respective color component. A color value canigaedl with its pixel field by shifting the valudtlby

the FieldPosition. For example, the FieldPositialugs for a Direct Color 5:6:5 mode would be 11, 5,
0, and 0, for the red, green, blue, and resere&tfirespectively. Note that in the YUV
MemoryModel, the red field is used for V, the gréell is used for Y, and the blue field is useddo
The FieldPosition fields should be set to 0 in rsaggng a memory model that does not have pixels
with component fields.

TheDirectColorModelnfo field describes important characteristics of dicetor modes. Bit DO
specifies whether the color ramp of the DAC isdige programmable. If the color ramp is fixed, then
can not be changed. If the color ramp is prograrntendis assumed that the red, green, and blue
lookup tables can be loaded by using VBE Funct@in it D1 specifies whether the bits in the Rsvd
field of the direct color pixel can be used bydbglication or are reserved, and thus unusable.

Bits in Rsvd field are reserved
Bits in Rsvd field are usable by the applicatio

DO = Color ramp is fixed/programmable
0= Colorrampis fixed
1= Color ramp is programmable

D1 = Bits in Rsvd field are usable/reserved
0
1

ThePhysBasePtiis a 32-bit physical address of the start of fraoféer memory when the controller
is in flat frame buffer memory mode. If this mosgl@ot available, then this field will be zero.

The OffScreenMemOffsetis a 32-bit offset from the start of the frame bufhemory. Extra off-
screen memory that is needed by the controllefomaéycated either before or after this off screen
memory, be sure to check OffScreenMemSize to detertime amount of off-screen memory which is
available to the application.

The OffScreenMemSizecontains the amount of available, contiguous@ften memory in 1k units,
which can be used by the application.

Page 24 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

VBE Functions
03h Return Current VBE Mode

Note: Version 1.1 and later VBE will zero out all unugettis in the Mode Information Block, always
returning exactly 256 bytes. This facilitates uph@mpatibility with future versions of the stardjas
any newly added fields will be designed such thiates of zero will indicate nominal defaults or+fion
implementation of optional features. (For exangfeeld containing a bit-mask of extended capadmslit
would reflect the absence of all such capabil)tigsplications that wish to be backwards compatible
Version 1.0 VBE should pre-initialize the 256 Hytefer before calling the Return VBE Mode
Information function.

4.5 Function 02h - Set VBE Mode

This required function initializes the controllacdesets a VBE mode. The format of VESA VBE mode
numbers is described earlier in this documeritelfhode cannot be set, the BIOS should leave the
graphics environment unchanged and return a fatooe code.

Input: AX =4F02h Set VBE Mode
BX = Desired Mode to set
D0-D8= Mode number
D9-D13 = Reserved (must be 0)

D14 =0 Usewindowed frame buffer model
=1 Use linear/flat frame buffer model
D15 = Clear display memory
=1 Don'tclear display memory

Output: AX = VBE Return Status
Note: All other registers are preserved.

If the requested mode number is not available ttreecall will fail, returning AH=01h to indicatiae
failure to the application.

If bit D14 is set, the mode will be initialized fase with a flat frame buffer model. The base esklof
the frame buffer can be determined from the ext&na&le information returned by VBE Function
01h. If D14 is set, and a linear frame buffer nhexleot available then the call will fail.

If bit D15 is not set, all reported image pageseklaon Function 00h returned information
NumberOfimagePages, will be cleared to 00h in deaphode, and 20 07 in text mode. Memory
over and above the reported image pages will nciiéseged. If bit D15 is set, then the contenteef
frame buffer after the mode change is undefinaate Nhe 1-byte mode numbers used in Function 00h
of an IBM VGA compatible BIOS use D7 to signify tseame thing as D15 does in this function. If
function call D7 is set and the application assuhiesimilar to the IBM compatible mode set using
VBE Function 02h, the implementation will fail. Yaware applications must use the memory clear bit
in D15.

VBE CORE FUNCTIONS VERSION 2.0 Page 25
DOCUMENT REVISION 1.1

VBE Functions
00h Return VBE Controller Information

Note: VBE BIOS 2.0 implementations should also updad3iloS Data Area 40:87 memory clear
bit so that VBE Function 03h can return this fld8E BIOS 1.2 and earlier implementations ignore the
memory clear bit.

Note: This call should not set modes not listed initef supported modes. In addition all modes
(including IBM standard VGA modes), if listed apparted, must have ModeInfoBlock structures
associated with them. Required ModelnfoBlock vafoethe IBM Standard Modes are listed in
Appendix 2.

4.6 Function 03h - Return Current VBE Mode
This required function returns the current VBE motlee format of VBE mode numbers is described
earlier in this document.

Input: AX =4F03h Return current VBE Mode
Output: AX = VBE Return Status
BX = Current VBE mode
D0-D13 = Mode number

D14 =0 Windowed frame buffer model
=1 Linear/flat frame buffer model

D15 =0 Memorycleared at last mode set
=1 Memory not cleared at last mode set

Note: All other registers are preserved.

Version 1.x Note:In a standard VGA BIOS, Function OFh (Read curvetgo state) returns the
current graphics mode in the AL register. In DAfit also returns the status of the memory digtar
(D7 of 40:87). This bit is set if the mode wasig#tout clearing memory. In this VBE function, the
memory clear bit will not be returned in BX sinbe purpose of the function is to return the videden
only. If an application wants to obtain the menabegar bit, it should call the standard VGA BIOS
Function OFh.

Version 2.x Note: Unlike version 1.x VBE implementations, the meyraear flag will be returned.
The application should NOT call the standard VGAS8IFunction OFh if the mode was set with VBE
Function 02h.

Note: The mode number returned must be the same mode=nusdd in the VBE Function 02h mode
set.

Note: This function is not guaranteed to return an ateunode value if the mode set was not done
with VBE Function 02h.

Page 26 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

VBE Functions
07h Set/Get Display Start

4.7 Function 04h - Save/Restore State

This required function provides a complete mecinatissave and restore the display controller
hardware state. The functions are a superset thfresubfunctions under the standard VGA BIOS
Function 1Ch (Save/restore state) which does ravagtee that the extended registers of the video
device are saved or restored. The complete hardieegexcept frame buffer memory) should be
saveable/restorable by setting the requested statds(in the CX register) to 000Fh.

Input: AX =4F04h Save/Restore State
DL =00h Return Save/Restore State buffer size
=01h Save state
=02h Restore state
CX = Requested states
DO= Save/Restore controller hardware state
D1= Save/Restore BIOS data state
D2= Save/Restore DAC state
D3= Save/Restore Register state
ESBX = Pointer to buffer (if DL <> 00h)
Output: AX = VBE Return Status
BX = Number of 64-byte blocks to hold the state

buffer (if DL=00h)
Note: All other registers are preserved.

4.8 Function 05h - Display Window Control

This required function sets or gets the positich@pecified display window or page in the frame
buffer memory by adjusting the necessary hardvagmg registers. To use this function properly, th
software should first use VBE Function 01h (ReWB& Mode information) to determine the size,
location and granularity of the windows.

For performance reasons, it may be more effictetdlt this function directly, without incurringghNT
10h overhead. VBE Function 01h returns the segaftset of this windowing function that may be
called directly for this reason. Note that a défe entry point may be returned based upon teetsel
mode. Therefore, it is necessary to retrievesggsnent:offset specifically for each desired mode.

Input: AX =4F05h VBE Display Window Control
BH =00h Set memory window
=01h Get memory window
BL = Window number
=00h Window A
=01h Window B
DX = Window number in video memory in window

granularity units (Set Memory Window only)

VBE CORE FUNCTIONS VERSION 2.0 Page 27
DOCUMENT REVISION 1.1

VBE Functions
00h Return VBE Controller Information

Output: AX = VBE Return Status
DX = Window number in window granularity units
(Get Memory Window only)

Note: In VBE 1.2 implementations, the direct far callsiten returns no Return Status information to
the application. Also, in the far call version, &¢and DX registers will be destroyed. TherefdieX
and/or DX must be preserved, the application nusbdgrior to making the far call. The application
must still load the input arguments in BH, BL, &Xl(for Set Window). In VBE 2.0 implementations,
the BIOS will return the correct Return Status, thedefore the application must assume that AX and
DX will be destroyed.

Application Developer's Note: This function is not intended for use in a linfe@me buffer mode, if
this function is requested, the function call fail with the VBE Completion code AH=03h.

VBE BIOS Implementation Note: Ifthis function is called while in a linear frarhuffer memory
model, this function must fail with completion colld=03h.

4.9 Function 06h - Set/Get Logical Scan Line Length

This required function sets or gets the lengtHagiaal scan line. This allows an applicationgblgp a
logical display memory buffer that is wider thae tlisplayed area. VBE Function 07h (Set/Get Display
Start) then allows the application to set theisgosition that is to be displayed.

Input: AX =4F06h VBE Set/Get Logical Scan Line Length
BL =00h Set Scan Line Length in Pixels
=01h Get Scan Line Length
=02h Set Scan Line Length in Bytes
=03h Get Maximum Scan Line Length
CX = If BL=00h Desired Width in Pixels

If BL=02h Desired Width in Bytes
(Ignored for Get Functions

Output: AX = VBE Return Status
BX = Bytes Per Scan Line
CX = Actual Pixels Per Scan Line
(truncated to nearest complete pixel)
DX = Maximum Number of Scan Lines

Note: The desired width in pixels or bytes may notdyeevable because of hardware considerations.
The next larger value will be selected that wilaomodate the desired number of pixels or bytes, an
the actual number of pixels will be returned in BX returns a value that when added to a pointer in
display memory will point to the next scan linet Egample, in VGA mode 13h this would be 320, but
in mode 12h this would be 80. DX returns the nuroblegical scan lines based upon the new scan
line length and the total memory installed and lesatthis display mode.

Page 28 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

VBE Functions
07h Set/Get Display Start

Note: This function is also valid in VBE supported texdades. In VBE supported text modes the
application should convert the character line letapixel line length by getting the current closea
cell width through the XCharSize field returned/iaodelnfoBlock, multiplying that times the desired
number of characters per line, and passing thag wathe CX register. In addition, this functieit
only work if the line length is specified in chargranularity. i.e. in 8 dot modes only multgdé 8
will work. Any value which is not in character gedarity will result in a function call failure.

Note: On afailure to set scan line length by setti@Xaalue too large, the function will fail withrer
code 02h.

Note: The value returned when BL=03h is the lessatl@rthe maximum line length that the
hardware can support, or the longest scan lindhéngt would support the number of lines in the
current video mode.

4.10 Function 07h - Set/Get Display Start

This required function selects the pixel to beldig in the upper left corner of the display.sThi
function can be used to pan and scroll aroundabgaeens that are larger than the displayedrscree
This function can also be used to rapidly switdiwvben two different displayed screens for double
buffered animation effects.

Input: AX =4F07h VBE Set/Get Display Start Control
BH =00h Reserved and must be 00h
BL =00h Set Display Start
=01h Get Display Start
=80h Set Display Start during Vertical Retrace
CX = First Displayed Pixel In Scan Line
(Set Display Start only)
DX = First Displayed Scan Line (Set Display Stauti/p
Output: AX = VBE Return Status
BH = 00h Reserved and will be 0 (Get Display Sialy)
CX = First Displayed Pixel In Scan Line (Get Digp&tart only)
DX = First Displayed Scan Line (Get Display Stantt/

Note: This function is also valid in text modes. Te tigs function in text mode, the application sdoul
convert the character coordinates to pixel cootetifay using XCharSize and YCharSize returned in
the ModelnfoBlock. If the requested Display Stadrdinates do not allow for a full page of video
memory or the hardware does not support memonypivigpthe Function call should fail and no
changes should be made. As a general casegiiested Display Start is not available, fail the
Function call and make no changes.

Note: CX and DX, for both input and output values, Wwélzero-based.

VBE CORE FUNCTIONS VERSION 2.0 Page 29
DOCUMENT REVISION 1.1

VBE Functions
0Ah Return VBE Protected Mode Interface

4.11 Function 08h - Set/Get DAC Palette Format
This required function manipulates the operatingerar format of the DAC palette. Some DACs are
configurable to provide 6 bits, 8 bits, or morealbr definition per red, green, and blue primary

colors. The DAC palette width is assumed to betteghe standard VGA value of 6 bits per primary
color during any mode set.

Input: AX =4F08h VBE Set/Get Palette Format
BL =00h Set DAC Palette Format
=01h Get DAC Palette Format
BH = Desired bits of color per primary

(Set DAC Palette Format only)

Output: AX = VBE Return Status
BH = Current number of bits of color per primary

An application can determine if DAC switching is#&ble by querying Bit DO of the Capabilitiesdiel
of the VbelnfoBlock structure returned by VBE FumcOOh (Return Controller Information). The
application can then attempt to set the DAC palatiéh to the desired value. If the display conéol
hardware is not capable of selecting the requesiette width, then the next lower value that the
hardware is capable of will be selected. The leguialette width is returned.

This function will return failure code AH=03h iflezd in a direct color or YUV mode.

4.12 Function 09h - Set/Get Palette Data

This required function is very important for RAMDAQvhich are larger than a standard VGA
RAMDAC. The standard INT 10h BIOS Palette functiails assume standard VGA ports and VGA
palette widths. This function offers a paletteiifatce that is independent of the VGA assumptions.

Input: AX =4F09h VBE Load/Unload Palette Data
BL =00h Set Palette Data
=01h Get Palette Data
=02h Set Secondary Palette Data
=03h Get Secondary Palette Data
=80h Set Palette Data during Vertical Retrace
with Blank Bit on
CX = Number of palette registers to update (to a
maximum of 256)
DX = First of the palette registers to update (start)
ES:DI = Table of palette values (see below for fojmat
Output: AX = VBE Return Status
Page 30 VBE CORE FUNCTIONS VERSION 2.0

DOCUMENT REVISION 1.1

VBE Functions
OAh Return VBE Protected Mode Interface

Format of Palette Values:Alignment byte, Red byteGreen byte, Blue byte

Note: The need for BL=80h is for older style RAMDAC'kave programming the RAM values
during display time causes a "snow-like" effectranscreen. Newer style RAMDAC's don't have this
limitation and can easily be programmed at any,taeolder RAMDAC's require that they be
programmed during a non-display time only to steshow like effect seen when changing the DAC
values. When this is requested the VBE implemientaiill program the DAC with blanking on.

Check D2 of the Capabilities field returned by VBIfction 00h to determine if 80h should be used
instead of 00h.

Note: The need for the secondary palette is for antetpfuture palette extensions, if a secondary
palette does not exist in aimplementation ancttbats are made, the VBE implementation will metur
error code 02h.

Note: When in 6 bit mode, the format of the 6 bits iBl-8is is done for speed reasons, as the
application can typically shift the data fastenttize BIOS can.

Note: All application should assume the DAC is defaulte@l bit mode. The application is responsible
for switching the DAC to higher color modes usingé&tion 08h.

Note: Query VBE Function 08h to determine the RAMDAC thitlefore loading a new palette.

4.13 Function OAh - Return VBE Protected Mode Interf ace

This required function call returns a pointer talde that contains code for a 32-bit protectedenod
interface that can either be copied into local B2abmory space or can be executed from ROM
providing the calling application sets all requisetectors and I/O access correctly. This functturns

a pointer (in real mode space) with offsets tatite fragments, and additionally returns an oftset
table which contains Non-VGA Port and Memory lomasi which an Application may have to have I/O
access to.

Input: AX =4FOAh VBE 2.0 Protected Mode Interface
BL =00h Return protected mode table
Output: AX = Status
ES = Real Mode Segment of Table
DI = Offset of Table
CX = Length of Table including protected mode codaites
(for copying purposes)
VBE CORE FUNCTIONS VERSION 2.0 Page 31

DOCUMENT REVISION 1.1

VBE Functions
0Ah Return VBE Protected Mode Interface

The format of the table is as follows:

ES:DI+00h Word Offset in table of Protected mooldecfor
Function 5 for Set Window Call

ES:DI+02h Word Offset in table of Protected mooldecfor
Function 7 for set Display Start

ES:DI+ 04h Word Offset in table of Protected mooldecfor
Function 9 for set Primary Palette data

ES:DI+06h Word Offset in table of Ports and Meyriarcations

that the application may need I/O privilege for.
(Optional: if unsupported this must be 0000h)
(See Sub-table for format)

ES:DI+7? Variable remainder of Table including €od

The format of the Sub-Table (Ports and Memory looa)

Port, Port, ..., Port, Terminate Port List withFHF, Memory locations (4 bytes), Length (2
bytes), Terminate Memory List with FF FF.

Example 1 For Port/Index combination 3DE/Fh and Memorytmres DES800-DEAOO (length =
200h) the table would look like this:
DE 03 DF 03 FF FF 00 E8 OD 00 00 02 FF FF

Example 2 For only the ports it would look like:
DE 03 DF 03 FF FF FF FF

Example 3. For only the memory locations it would look like
FF FF 00 E8 0D 00 00 02 FF FF

Note:. All protected mode functions should end witharRET (as opposed to FAR RET) to allow
the application software to CALL the code from witthe ROM.

Note: The Port and Memory location Sub-table doestotide the Frame Buffer Memory location.
The Frame Buffer Memory location is contained watthie ModelnfoBlock returned by VBE Function
01h.

Note: The protected mode code is assembled for a 3t segment, when copying it, the
application must copy the code to a 32-bit codensex.

Note: Itis the responsibility of the application teseare that the selectors and segments are set up
correctly.

Page 32 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

VBE Functions
OAh Return VBE Protected Mode Interface

If the memory location is zero, then only I/O maghperts will be used so the application does not
need to do anything special. This should be tfeuttease for ALL cards that have I/O mapped
registers because it provides the best performance.

If the memory location is nonzero (there can bg ong), the application will need to create a ngw 3
bit selector with the base address that pointeettphysical” location specified with the specifiedit.

When the application needs to call the 32-bit lsavitch function, it must then load the ES selector
with the value of the new selector that has bessited. The bank switching code can then directly
access its memory mapped registers as absolusoffto the ES selector

(i.e., mov [es:10],eax to put a value into thegtgiat base+10).

It is up to the application code to save and restar previous state of the ES selector if this is
necessary (for example in flat model code).

Note: Currently undefined registers may be destroy#utive exception of ESI, EBP, DS and SS.

Note: Applications must use the same registers foranetion 05h and Function 09h protected mode
interface that it would use in a real mode cadflisTncludes the AX register.

Note: Function 07h protected mode calls have a diffdoemat.

AX = 4F07h
BL = 00h SetDisplay CRTC Start
= 80h Set Display CRTC Start during Vertical Retrace
CX = Bits 0-15 of display start address
DX = Bits 16-31 of display start address

The protected mode application must keep tradikeotolor depth and scan line length to calculate th
new start address. If a value that is out of ra&geogrammed, unpredictable results will occur.

Note: Refer to Section 4.2 for information on protectemtie considerations.

VBE CORE FUNCTIONS VERSION 2.0 Page 33
DOCUMENT REVISION 1.1

VBE Supplemental Specifications

5.0 VBE Supplemental Specifications
This chapter details VBE Supplemental Specification

5.1 Purpose of Supplemental Specifications

The VBE was originally designed to provide a devckependent interface between application
software and SVGA hardware. In the last few yehespersonal computing environment has grown
much more complex and there have been numerousstsda provide interfaces similar to the VBE to
service these new requirements. The VBE supplehspateification architecture provides a way to
extend the basic VBE specification without makirige unwieldy or having to revise the VBE
specification itself.

The supplemental specifications are implementedyMBE function numbers starting at AL=10h. This
leaves the first sixteen functions available f@rgual VBE growth. Individual calls for each
supplemental specification are made through a satifun number via the BL register. This
function/subfunction architecture is compatibléwiite VBE and provides each VBE Supplemental
Specification with 64 potential subfunctions. Sulsfion 00h for each supplemental specification is
reserved for a 'Return VBE Supplemental Specibodtiformation’ call. It is based on the VBE
Function 00h and returns basic information on tB& ¥Bupplemental Specification implementation.

5.2 Obtaining Supplemental VBE Function Numbers

VBE Supplemental Specifications can only be crelagedESA committees. Once a need for a new
software specification has been identified, thegrmeorking on it needs to contact the VESA Software
Standards Committee (SSC) to discuss the requitenidre SSC will assign a function number and
name to the supplemental specification. The nasigresl to a supplemental specification will bénen t
form of 'VBE/??7?' where the "??7?" is a two or tleter acronym for its function. Two letter acramsy

will be padded with FFh for the third letter. bnse cases the committee that is working on the
supplemental specification may have another naabéhigy will use for promotional purposes, however
the VBE/??? will continue to be the signature.

The VBE specification will be revised periodicadtiyupdate the list of supplemental specificatidrs.
obtain the actual specifications, contact the Viaffiée.

Page 34 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

VBE Supplemental Specifications

5.3 Required VBE Supplemental Specification Componen ts

5.3.1 VBE Supplemental Specification Functions

All VBE Supplemental Specification functions artbezhwith the AH register set to 4Fh to identifgth
as VBE function calls. The AL register is usesigecify which VESA function the supplemental
specification is using. The BL register will canttine subfunction number for the call being méité,
will contain the sub-subfunction number if necegsar

e.g., Input: AX =4FXXh VESA Supplemental VBE Speafion
(‘XX represents the function number for the
supplemental specification)
BL =7 Subfunction
BH =72 Sub-subfunction

5.3.2 Return Status
All VBE Supplemental Specifications will use the ¥Bompletion codes as documented in Section 4.1
of the VBE specification.

5.3.3 Subfunction 00h - Return VBE Supplemental Specification Information
This subfunction returns the capabilities, revisémel, and vendor specific information of the
supplemental specification, and is a required fandbr any VBE 2.x Supplemental Specification.

The purpose of this subfunction is to provide imfation to the calling program about the general
capabilities of the installed VBE software and ane. This subfunction fills an information block
structure at the address specified by the caltee. SupVBEInfoBlock information block size is 256
bytes.

Input: AX =4FXXh Return Supplemental VBE Specificatioformation
(‘XX represents the function number for the
supplemental specification)

BL =00h Subfunction 'O’
ESDI = Pointer to buffer in which to place
SupVBElInfoBlock structure
Output: AX = VBE Return Status

Other registers may be defined for input and olipséd upon the particular requirements of
supplemental specifications

When writing supplemental functions, explicitlytstavhich registers are preserved and which are
destroyed. Refrain from preserving all registsithis tends to limit expandability in the futufe
example of the note is:

VBE CORE FUNCTIONS VERSION 2.0 Page 35
DOCUMENT REVISION 1.1

VBE Supplemental Specifications

Note: Currently undefined registers may be destroy#utive exception of SI,BP,DS
and SS.
The information block has the following structure:

SupVbelnfoBlock struc

SupVbeSignature db 'VBE/??7?' ; Supplemental VBE Sigaat
SupVbeVersion dw ? ; Supplemental VBE Version
SupVbeSubFunc db 8dup (?) ; Bitfield of supportedisdtions
OemSoftwareRev dw ? ; OEM Software revision

OemVendorNamePtr dd ? ; Pointer to Vendor Name String
OemProductNamePtr dd ? ; Pointer to Product NamegStrin
OemProductRevPtr dd ? ; Pointer to Product RevisiamgSt

OemSitringPtr dd ? ; Pointer to OEM String

Reserved db 221dup(?) ; Reserved for descriptimgstand future
; expansion

SupVbelnfoBlock ends

Note: All data in this structure is subject to changéleyvBE implementation when any VBE
Subfunction 00h is called. Therefore it shouldb®tised by the application to store data of amg ki

Description of the&SupVbelnfoBlock structure fields:

The SupVbeSignaturefield is filled with the ASCII characters 'VBEdSlfowed by the two or three
letter acronym that represents the supplementafispgon. This field is filled by the supplementa
VBE implementation. In the event that the acrorsamly two letters, the third letter must be filleith
FFh.

The SupVbeVersionis a BCD value which specifies what level of ti2B\supplementary
specification is implemented in the software. Tigaér byte specifies the major version number. The
lower byte specifies the minor version number.

Note: The BCD value for 2.0 is 0200h and the BCD vatwd f2 is 0102h. In the past we have had
some applications misinterpreting these BCD valtes example, BCD 0102h was interpreted as
1.02, which is incorrect.

The SupVbeSubFunds a bitfield that represents the subfunctiongdaiva for the supplementary
specification. If the bit representing a particslainfunction is set, then that subfunction is stppo
Subfunction '0' is represented by the LSB of tis¢lfiyte and the other subfunctions follow. Ontg bi
for subfunctions defined in the specification niedok set.

The OemStringPtr is a Real Mode far pointer to a null-terminatedv@@efined string. This string may
used to identify the graphics controller chip oNOroduct family for hardware specific display

Page 36 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

VBE Supplemental Specifications

drivers. There are no restrictions on the form#ti@sttring. This pointer may point into eitherlRGr
RAM, depending on the specific implementation.

VBE CORE FUNCTIONS VERSION 2.0 Page 37
DOCUMENT REVISION 1.1

VBE Supplemental Specifications

The OemSoftwareReWield is a BCD value which specifies the OEM rendevel of the
Supplemental Specification software. The hights Byecifies the major version number. The lower
byte specifies the minor version number. Thislfteln be used to identify the OEM's VBE software
release.

The OemVendorNamePtris a Real Mode far pointer to a null-terminatedvBiefined string
containing the name of the vendor who producedidmay controller board product.

The OemProductNamePtris a Real Mode far pointer to a null-terminatedv®efined string
containing the product name of the display corrdibard.

The OemProductRevPtris a Real Mode far pointer to a null-terminatedv®@efined string
containing the revision or manufacturing levehef tlisplay controller board product. This field ba
used to determine which production revision otlisplay controller board is installed.

5.4 Supplemental Specification Protected Mode Guidel ines
VBE Supplemental Specifications may wish to inceap®32-bit protected mode interfaces based
upon the 32-bit protected mode interface in VBE Zl@e guidelines for this are simple.

Input: AX =4FXXh Supplemental Specification Function Number
BL =XX Return 32-bit protected mode interface table
Output: AX = Status
ES = Real Mode Segment of Table
DI = Offset of Table
CX = Length of Table including protected mode code
(for copying purposes)

The format of the table should be as follows:

ES:DI+00h Word Offset in table of Protected mooléecfor
first function
ES:DI + (n*2) Word Offset in table of Protected madele for
nth function
ES:DI+? Word Offset in table of Ports and Memargations

that the application may need I/O privilege for
(Optional: if unsupported this must be 0000h)
(See Sub-table for format)

ES:DI+7? Variable remainder of Table including €od

Page 38 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

VBE Supplemental Specifications

The format of the Sub-Table (Ports and Memory looa)

Port, Port, ..., Port, Terminate Port List withF; Memory locations (4 bytes), Length (2
bytes), Terminate Memory List with FF FF.

Example 1 For Port/Index combination 3DE/Fh and Memoryimres DES800-DEAQON (length =

200h) the table would look like this:
DE 03 DF 03 FF FF 00 E8 OD 00 00 02 FF FF

Example 2 For only the ports it would look like:
DE 03 DF 03 FF FF FF FF

Example 3. For only the memory locations it would look like
FF FF 00 E8 0D 00 00 02 FF FF

Note:. All protected mode functions should end witharmRET (as opposed to FAR RET) to allow
the application software to CALL the code from witthe ROM.

Note: The protected mode code should be assemble@®ba code segment, when copying it, the
application must copy the code to a 32-bit codensex.

Note: Itis the responsibility of the application teseare that the selectors and segments are set up
correctly.

Note: Currently undefined registers may be destroy#utive exception of ESI, EBP, DS and SS.

In developing a supplemental specification, eniatboth the application developer and the
VBE/XXX implementors are aware of which portiorttod function is supported, i.e., if a function
supports both a Get and a Set function, spell bigtws supported, the Get, the Set or both.

5.5 Loading Supplemental Drivers

VBE Supplemental Specifications can be implement&OM, TSR programs or as device drivers.
The specific requirements will vary depending @ntidividual supplementary specification. If there
any specific requirements, they should be detauldet supplementary specification.

5.6 Implementation Questions

When developing a new supplemental specificatplgmentation questions whether they are covered
in this guideline or not, should be referred toMBSA Software Standards Committee for clarificatio
The chairman of the SSC can be contacted throu§@RA\dfice.

VBE CORE FUNCTIONS VERSION 2.0 Page 39
DOCUMENT REVISION 1.1

VBE Supplemental Specifications

5.7 Known Supplemental Specifications

5.7.1 Function 10h - Power Management Extensions (PM)
This optional function controls the power statéhefattached display device or monitor.
Refer to the VBE/PM Standard for specifics.

5.7.2 Function 11h - Flat Panel Interface Extensions (FP)

This proposed optional supplemental specificatioma access to the special features incorporated i
Flat Panel controllers. There is no reference 8pation at the time of this standard's approvahtact
the VESA office for more information.

5.7.3 Function 12h - Cursor Interface Extensions (ClI)

This proposed optional function provides servioestardware Cursors and Pointing Devices. At this
time, this is in development. There is no refezamecification at the time of this standard's aygdr
contact the VESA office for more information.

5.7.4 Function 13h - Audio Interface Extensions (Al)
This optional function provides standard Audio E&s.
Refer to the VBE/AI Standard for specifics.

5.7.5 Function 14h - OEM Extensions

This optional supplemental function provides OEMIth a code dispatch area that falls under the
VESA 4Fh functions. An OEM may use this areaeit thwn risk. VESA states no warranties or
guarantees about the function calls containedmiitig area.

5.7.6 Function 15h - Display Data Channel (DDC)
This optional function provides a mechanism tceetiata from attached display devices on the VESA
communication channel. Refer to the VBE/DDC Steshfta specifics.

5.7.7 Function 16h - Graphics System Configuration (GC)

This proposed supplemental function provides a amesim for system level services to set up Monitor
Timings, Linear Frame Buffer addresses etc. yistem level calls that applications should not detl

. There is no reference specification at the thtieis standard's approval. Contact the VESA effic
for more information.

Page 40 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

VBE Quick Reference

Appendix 1 - VBE Quick Reference

Input: AX =4F00h Return VBE Controller Information
ES:DI = Pointer to buffer in which to place
VbelnfoBlock structure
(VbeSignature should be set to 'VBE2' when
function is called to indicate VBE 2.0 information
is desired and the information block is 512 bytes i
size.)

Output: AX = VBE Return Status
Note: All other registers are preserved.

Input: AX =4F01h Return VBE mode information

CX = Mode number

ES:DI = Pointer to ModelnfoBlock structure
Output: AX = VBE Return Status

Note: All other registers are preserved.

Input: AX =4F02h Set VBE Mode
BX = Desired Mode to set
DO0-D8= Mode number
D9-D13 = Reserved (must be 0)

D14 =0 Usewindowed frame buffer model
=1 Use linear/flat frame buffer model
D15 = Clear display memory
=1 Don'tclear display memory

Output: AX = VBE Return Status
Note: All other registers are preserved.

VBE CORE FUNCTIONS VERSION 2.0 Page 41
DOCUMENT REVISION 1.1

VBE Quick Reference

Input: AX =4F03h Return current VBE Mode
Output: AX = VBE Return Status
BX = Current VBE mode
D0-D13 = Mode number

D14 =0 Windowed frame buffer model
=1 Linear/flat frame buffer model
D15 = Memory cleared at last mode set
=1 Memory not cleared at last mode set
Note: All other registers are preserved.

Input: AX =4F04h Save/Restore State
DL =00h Return Save/Restore State buffer size
=01h Save state
=02h Restore state
CX = Requested states
DO= Save/Restore controller hardware state
D1= Save/Restore BIOS data state
D2= Save/Restore DAC state
D3= Save/Restore Register state
ESBX = Pointer to buffer (if DL <> 00h)
Output: AX = VBE Return Status
BX = Number of 64-byte blocks to hold the state

buffer (if DL=00h)
Note: All other registers are preserved.

Input: AX =4F05h VBE Display Window Control
BH =00h Set memory window
=01h Get memory window
BL = Window number
=00h Window A
=01h Window B
DX = Window number in video memory in window

granularity units (Set Memory Window only)

Output: AX = VBE Return Status
DX = Window number in window granularity units
Page 42 VBE CORE FUNCTIONS VERSION 2.0

DOCUMENT REVISION 1.1

VBE Quick Reference

VBE CORE FUNCTIONS VERSION 2.0 Page 43
DOCUMENT REVISION 1.1

VBE Quick Reference

Input:

Output: AX

Input:

Output: AX

Input:

Output: AX

Page 44

CX

BX
CX

DX

BH
BL

CX

=4F06h
=00h
=01h
=02h
=03h

VBE Set/Get Logical Scan Line Léngt
Set Scan Line Length in Pixels

Get Scan Line Length

Set Scan Line Length in Bytes

Get Maximum Scan Line Length

If BL=00h Desired Width in Pixels

If BL=02h Desired Width in Bytes
(Ignored for Get Functions)

VBE Return Status

Bytes Per Scan Line

Actual Pixels Per Scan Line
(truncated to nearest complete pixel)
Maximum Number of Scan Lines

=4F07h
=00h
=00h
=01h

VBE Set/Get Display Start Control

Reserved and must be 00h

Set Display Start

Get Display Start

Set Display Start during Vertical Retrace
First Displayed Pixel In Scan Line

(Set Display Start only)

First Displayed Scan Line (Set Display Stauti/p

VBE Return Status

00h Reserved and will be 0 (Get Display Staly)
First Displayed Pixel In Scan Line (Get Digp&iart only)
First Displayed Scan Line (Get Display Stantip

=4F08h
=00h
=01h

VBE Set/Get Palette Format
Set DAC Palette Format

Get DAC Palette Format
Desired bits of color per primary
(Set DAC Palette Format only)

VBE Return Status

Current number of bits of color per primary

VBE CORE FUNCTIONS VERSION 2.0

DOCUMENT REVISION 1.1

VBE Quick Reference

VBE CORE FUNCTIONS VERSION 2.0 Page 45
DOCUMENT REVISION 1.1

VBE Quick Reference

Input: AX =4F0%h VBE Load/Unload Palette Data
BL =00h Set Palette Data
=01h Get Palette Data
=02h Set Secondary Palette Data
=03h Get Secondary Palette Data
=80h Set Palette Data during Vertical Retrace
with Blank Bit on
CX = Number of palette registers to update
DX = First palette register to update
ESDI = Table of palette values (see below for fojmat
Output: AX = VBE Return Status

Format of Palette Values: Alignment byte, Red Jigreen byte, Blue byte

Input: AX =4F0Ah VBE 2.0 Protected Mode Interface
BL =00h Return protected mode table
Output: AX = Status
ES = Real Mode Segment of Table
DI = Offset of Table
CX = Length of Table including protected mode codayies
(for copying purposes)
Page 46 VBE CORE FUNCTIONS VERSION 2.0

DOCUMENT REVISION 1.1

VBE Data Structures

Appendix 2 - VBE Data Structures

VbelnfoBlock struc

VbeSignature db "VESA' ; VBE Signature

VbeVersion dw 0200h ; VBE Version

OemStringPtr dd ? ; Pointer to OEM String
Capabilities db 4 dup (?) ; Capabilities of grapharstmller
VideoModePtr dd ? ; Pointer to VideoModelList
TotalMemory dw ? ; Number of 64kb memory blocks

: Added for VBE 2.0

OemSoftwareRev dw ? ; VBE implementation Softwaresieni
OemVendorNamePtr dd ? ; Pointer to Vendor Name String
OemProductNamePtr dd ? ; Pointer to Product NamegStrin
OemProductRevPtr dd ? ; Pointer to Product RevisiamgSt
Reserved db 222dup (?) ;Reserved for VBE implementstratch
, area

OemData db 256 dup (?) ; Data Areafor OEM Strings
VbelnfoBlock ends

VBE CORE FUNCTIONS VERSION 2.0 Page 47

DOCUMENT REVISION 1.1

VBE Data Structures

ModelnfoBlock struc
; Mandatory information for all VBE revisions

ModeAttributes aw ? ; mode attributes

WinAAttributes db ? ; window A attributes

WinBAttributes db ? ; window B attributes

WinGranularity dw ? ; window granularity

WinSize dw ? ; window size

WinASegment dw ? ; window A start segment

WinBSegment dw ? ; window B start segment

WinFuncPtr dd ? ; pointer to window function
BytesPerScanLine dw ? ; bytes per scan line

; Mandatory information for VBE 1.2 and above

XResolution daw ? ; horizontal resolution in pixel€baracters
YResolution dw ? ; vertical resolution in pixels oachcters
XCharSize db ? ; character cell width in pixels
YCharSize db ? ; character cell height in pixels
NumberOfPlanes db ? ; number of memory planes
BitsPerPixel db ? ; bits per pixel

NumberOfBanks db ? ; number of banks

MemoryModel db ? ; memory model type

BankSize db ? ; bank size in KB
NumberOfimagePages db ? ; number of images

Reserved db 1 ; reserved for page function

; Direct Color fields (required for direct/6 and VI memory models)

RedMaskSize db ? ; Size of direct color red maskis bi
RedFieldPosition db ? ; bit position of Isb of red knas
GreenMaskSize db ? ; Size of direct color green nmelsits
GreenFieldPosition db ? ; bit position of Isb of gre@sk
BlueMaskSize db ? ; Size of direct color blue madkti
BlueFieldPosition db ? ; bit position of Isb of bluask
RsvdMaskSize db ? ; Size of direct color reserved rnetsiks
RsvdFieldPosition db ? ; bit position of Isb of resetmask
DirectColorModelnfo db ? ; direct color mode attrisite

; Mandatory information for VBE 2.0 and above

PhysBasePtr dd ? ; physical address for flat memamydibuffer
OffScreenMemOffset dd ? ; pointer to start of off sarenemory
OffScreenMemSize dw ? ; amount of off screen menmdtik units
Reserved db 206 dup (?) ; remainder of Mod elnfoBlock

ModelnfoBlock ends

Page 48 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

VBE Data Structures

SupVbelnfoBlock struc

SupVbeSignature db 'VBE/??7?' ; Supplemental VBE Sigaat
SupVbeVersion dw ? ; Supplemental VBE Version
SupVbeSubFunc db 8dup (?) ; Bitfield of supportedisdtions
OemSoftwareRev aw ? ; OEM Software revision
OemVendorNamePtr dd ? ; Pointer to Vendor Name String
OemProductNamePtr dd ? ; Pointer to Product NamegStrin
OemProductRevPtr dd ? ; Pointer to Product RevisiangSt
OemStringPtr dd ? ; Pointer to OEM String
Reserved db 221 dup(?) ;Reserved for descriptimgstand future
; expansion
SupVbelnfoBlock ends
Function OAh Table Formats
The format of the table is as follows:
ES:DI+00h Word Offset in table of Protected mooléecfor
Function 5 for Set Window Call
ES:DI+02h Word Offset in table of Protected mooléecfor
Function 7 for set Display Start
ES:DI+04h Word Offset in table of Protected mooléecfor
Function 9 for set Primary Palette data
ES:DI+06h Word Offset in table of Ports and Meyrarcations

that the application may need I/O privilege for
(Optional: if unsupported this must be 0000h)
(See Sub-table for format)

ES:DI+7? Variable remainder of Table including €od

The format of the Sub-Table (Ports and Memory looa)

Port, Port, ..., Port, Terminate Port List withFHF, Memory locations (4 bytes), Length (2
bytes), Terminate Memory List with FF FF.

VBE CORE FUNCTIONS VERSION 2.0 Page 49
DOCUMENT REVISION 1.1

VBE Data Structures

Required ModelnfoBlock Information for VGA Standard Modes

The VGA Standard modes are not required to be stegpby the VESA set mode Function 02h,
however, if 4F02h can set the mode, then the modémave a ModelnfoBlock structure associated
with it. These are the required ModelnfoBlock fatefor VGA standard modes if they are supported.

Note: The NumberOflimagePages field is defined as
[Available Memory/(YResolution*BytesPerScanLind)] -

The Available Memory has been calculated for a Z58KA implementation;
implementations >256KB may have more memory avaikakan IBM Standard Mode and
therefore this number may vary. All other valuesfixed.

; IBM Mode 00 VBE Support
; Text 40x25

DW
DB

DB

DwW
DW
DwW
DW
DwW
DW

DW
DwW
DB
DB
DB
DB
DB
DB
DB
DB
DB

Page 50

0000Eh
06

00

32

32
0B800h
00000h
0,0

80

40
25
9

16

5

PR OOR PR

: ModeAttributes

: WinAAttributes

: WinBAttributes

; WinGranularity

: WinSize

; WinASegment

; WinBSegment

: WinFuncPtr
; BytesPerScanLine

: XResolution

: YResolution

; XCharSize (This may be 8 for flat panels)
: YCharSize

: NumberOfPlanes

: BitsPerPixel

: NumberOfBanks

; MemoryModel(text)

: BankSize

; NumberOfimagePages
: Reserved

VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

; IBM Mode 01 VBE Support

; Text 40x25
DW 0000Eh
DB 06
DB 00
DW 32
DW 32
DW 0B800h
DW 00000h
DW 0,0
DW 80
DW 40
DW 25
DB 9
DB 16
DB 1
DB 4
DB 1
DB O
DB O
DB 15
DB 1
;IBM Mode 02 VBE Support
: Text 80x25
DW 0000Eh
DB 06
DB 00
DW 32
DW 32
DW 0B800h
DW 00000h
DW 0,0
DW 160

VBE Data Structures

: ModeAttributes

: WinAAttributes

: WinBAttributes

; WinGranularity

: WinSize

; WinASegment

; WinBSegment

: WinFuncPtr
; BytesPerScanLine

: XResolution

: YResolution

; XCharSize (This may be 8 for flat panels)
: YCharSize

: NumberOfPlanes

: BitsPerPixel

: NumberOfBanks

; MemoryModel(text)

: BankSize

; NumberOflmagePages
: Reserved

: ModeAttributes
: WinAAttributes
: WinBAttributes
; WinGranularity
: WinSize

; WinASegment

; WinBSegment

: WinFuncPtr

; BytesPerScanLine

VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

Page 51

VBE Data Structures

DW 80 : XResolution
DW 25 : YResolution
DB 9 ; XCharSize (This may be 8 for flat panels)
DB 16 : YCharSize
DB 1 : NumberOfPlanes
DB 4 : BitsPerPixel
DB 1 : NumberOfBanks
DB O ; MemoryModel(text)
DB 0 : BankSize
DB 7 : NumberOflmagePages
DB 1 : Reserved
;IBM Mode 03 VBE Support
; Text 80x25
DW 0000Eh : ModeAttributes
DB 06 : WinAAttributes
DB 00 : WinBAttributes
Dw 32 ; WinGranularity
DW 32 : WinSize
DW 0B800h ; WinASegment
DW 00000h ; WinBSegment
DW 0,0 : WinFuncPtr
DW 160 ; BytesPerScanLine
DW 80 : XResolution
DW 25 : YResolution
DB 9 ; XCharSize (This may be 8 for flat panels)
DB 16 : YCharSize
DB 1 : NumberOfPlanes
DB 4 : BitsPerPixel
DB 1 : NumberOfBanks
DB O ; MemoryModel(text)
DB 0 : BankSize
DB 7 ; NumberOflmagePages
DB 1 : Reserved

Page 52

VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

;IBM Mode 04 VBE Support
: 320x200x4
DW 0001Eh
DB 06
DB 00
DW 32
DW 32
DW 0B800h
DW 00000h
DD O
DW 80
DW 320
DW 200
DB 8
DB 8
DB 1
DB 2
DB 2
DB 1 ;CGA Graphics
DB 8
DB 1
DB 1

; IBM Mode 05 VBE Support

: 320x200x4

DW
DB
DB
DwW
DW
DwW
DW
DD
DW

0001Eh

06
00
32
32

0B800h
00000h

0

80

VBE CORE FUNCTIONS VERSION 2.0

VBE Data Structures

: ModeAttributes
: WinAAttributes
: WinBAttributes
; WinGranularity
: WinSize

; WinASegment

; WinBSegment
: WinFuncPtr
; BytesPerScanLine

: XResolution

: YResolution

: XCharSize

: YCharSize

: NumberOfPlanes

: BitsPerPixel

: NumberOfBanks
; MemoryModel

: BankSize

; NumberOflmagePages

: Reserved

: ModeAttributes
: WinAAttributes
: WinBAttributes
; WinGranularity
: WinSize

; WinASegment

; WinBSegment
: WinFuncPtr
; BytesPerScanLine

Page 53
DOCUMENT REVISION 1.1

VBE Data Structures

DW 320 : XResolution

DW 200 : YResolution

DB 8 : XCharSize

DB 8 : YCharSize

DB 1 : NumberOfPlanes
DB 2 : BitsPerPixel

DB 2 : NumberOfBanks
DB 1 ;CGA Graphics ; MemoryModel
DB 8 : BankSize

DB 1 : NumberOflmagePages
DB 1 : Reserved

; IBM Mode 06 VBE Support

: 640x200x2
DW 0001Eh : ModeAttributes
DB 06 : WinAAttributes
DB 00 : WinBAttributes
Dw 32 ; WinGranularity
DW 32 : WinSize
DW 0B800h ; WinASegment
DW 00000h ; WinBSegment
DD O : WinFuncPtr
DW 80 ; BytesPerScanLine
DW 640 ; XResolution
DW 200 : YResolution
DB 8 : XCharSize
DB 8 : YCharSize
DB 1 : NumberOfPlanes
DB 1 : BitsPerPixel
DB 2 : NumberOfBanks
DB 1 ;CGA Graphics ; MemoryModel
DB 8 : BankSize
DB 1 ; NumberOflmagePages
DB 1 : Reserved

Page 54 VBE CORE FUNCTIONS VERSION 2.0

DOCUMENT REVISION 1.1

; IBM Mode 07 VBE Support

: Text 80x25

DwW
DB

DB

DW
DwW
DW
DwW
DW
DwW

DwW
DW
DB
DB
DB
DB
DB
DB
DB
DB
DB

00006h
06

00

32

32
0B0O0ONh
00000h
0,0

160

80
25
9

16

R NOORLNEER

; IBM Mode 0D VBE Support

: 320x200x16

DW
DB
DB
DwW
DW
DwW
DW
DD
DW

0001Eh
06

00

64

64
OAO000h
00000h
0

40

: ModeAttributes

: WinAAttributes
: WinBAttributes
; WinGranularity
: WinSize

; WinASegment
; WinBSegment
: WinFuncPtr

; BytesPerScanLine

: XResolution
- YResolution

VBE Data Structures

; XCharSize (This may be 8 for flat panels)

:YCharSize

: NumberOfPlanes

: BitsPerPixel

: NumberOfBanks
; MemoryModel(text)

: BankSize

; NumberOflmagePages

: Reserved

: ModeAttributes

: WinAAttributes
: WinBAttributes
; WinGranularity
: WinSize

; WinASegment
; WinBSegment

: WinFuncPtr

; BytesPerScanLine

VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

Page 55

VBE Data Structures

DW 320 : XResolution
DW 200 : YResolution
DB 8 : XCharSize
DB 8 : YCharSize
DB 4 : NumberOfPlanes
DB 4 : BitsPerPixel
DB 1 : NumberOfBanks
DB 3 : MemoryModel
DB 0 : BankSize
DB 7 : NumberOflmagePages
DB 1 : Reserved

; IBM Mode OE VBE Support

: 640x200x16
DW 0001Eh : ModeAttributes
DB 06 : WinAAttributes
DB 00 : WinBAttributes
DW 64 ; WinGranularity
DW 64 : WinSize
DW 0AOQO0Oh ; WinASegment
DW 00000h ; WinBSegment
DD O : WinFuncPtr
DW 80 ; BytesPerScanLine
DW 640 ; XResolution
DW 200 : YResolution
DB 8 : XCharSize
DB 8 : YCharSize
DB 4 : NumberOfPlanes
DB 4 : BitsPerPixel
DB 1 : NumberOfBanks
DB 3 ; MemoryModel
DB 0 : BankSize
DB 3 ; NumberOflmagePages
DB 1 : Reserved

Page 56

VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

; IBM Mode OF VBE Support

: 640x350x2

DwW
DB
DB
DW
DwW
DW
DwW
DD
DwW

DwW
DW
DB
DB
DB
DB
DB
DB
DB
DB
DB

00016h
06

00

64

64
OAO00Oh
00000h
0

80

640
350

PR RPOWRH™H

; IBM Mode 10 VBE Support

: 640x350x16

DW
DB
DB
DwW
DW
DwW
DW
DD
DW

0001Eh
06

00

64

64
OAO000h
00000h
0

80

: ModeAttributes

: WinAAttributes
: WinBAttributes
; WinGranularity
: WinSize

; WinASegment
; WinBSegment

: WinFuncPtr

; BytesPerScanLine

: XResolution
: YResolution
: XCharSize
: YCharSize

: NumberOfPlanes

: BitsPerPixel

: NumberOfBanks

; MemoryModel
: BankSize

; NumberOflmagePages

: Reserved

: ModeAttributes

: WinAAttributes
: WinBAttributes
; WinGranularity
: WinSize

; WinASegment
; WinBSegment

: WinFuncPtr

; BytesPerScanLine

VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

VBE Data Structures

Page 57

VBE Data Structures

; IBM Mode 11 VBE Support
; 640x480x2

Page 58

DW
DwW
DB
DB
DB
DB
DB
DB
DB
DB
DB

DwW
DB
DB
DW
DwW
DW
DwW
DD
DwW

DwW
DW
DB
DB
DB
DB
DB
DB
DB
DB
DB

640
350
8
14

P FRPOWERP~HL

0001Eh
06

00

64

64
OAO00Oh
00000h
0

80

640
480

R OO WRMLI

: XResolution

: YResolution

: XCharSize

: YCharSize

: NumberOfPlanes
: BitsPerPixel

: NumberOfBanks
: MemoryModel

: BankSize

: NumberOflmagePages
: Reserved

: ModeAttributes
: WinAAttributes
: WinBAttributes
; WinGranularity
: WinSize
; WinASegment
; WinBSegment
: WinFuncPtr
; BytesPerScanLine

: XResolution

: YResolution

: XCharSize

: YCharSize

: NumberOfPlanes
: BitsPerPixel

: NumberOfBanks
; MemoryModel

: BankSize

; NumberOflmagePages
: Reserved

VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

; IBM Mode 12 VBE Support

: 640x480x16

DwW
DB
DB
DW
DwW
DW
DwW
DD
DwW

DwW
DW
DB
DB
DB
DB
DB
DB
DB
DB
DB

0001Eh
06

00

64

64
OAO00Oh
00000h
0

80

640
480

R OO WRhMLI

; IBM Mode 13 VBE Support

; 320x200%x256
DW 0001Eh
DB 06
DB 00
DW 64
DW 64
DW 0AO00Oh
DW 00000h
DD O
DW 320

: ModeAttributes

: WinAAttributes

: WinBAttributes

; WinGranularity

: WinSize

; WinASegment
; WinBSegment

: WinFuncPtr

; BytesPerScanLine

: XResolution
: YResolution
: XCharSize
: YCharSize

: NumberOfPlanes

: BitsPerPixel

: NumberOfBanks

; MemoryModel
: BankSize

; NumberOflmagePages

: Reserved

: ModeAttributes

: WinAAttributes

: WinBAttributes

; WinGranularity

: WinSize

; WinASegment
; WinBSegment

: WinFuncPtr

; BytesPerScanLine

VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

VBE Data Structures

Page 59

VBE Data Structures

DW 320 : XResolution
DW 200 : YResolution
DB 8 : XCharSize
DB 8 : YCharSize
DB 1 : NumberOfPlanes
DB 8 : BitsPerPixel
DB 1 : NumberOfBanks
DB 4 : MemoryModel
DB 0 : BankSize
DB O : NumberOflmagePages
DB 1 : Reserved

Page 60 VBE CORE FUNCTIONS VERSION 2.0

DOCUMENT REVISION 1.1

VBE Supplemental Specifications Summaries

Appendix 3 - VBE Supplemental Specs.

VESA Power Management (VBE/PM 1.0) Function Summary
(VBE/PM Function 4F10h)

00h - Return VBE/PM Information

01h - Set Display Power State

02h - Get Display Power State

VESA Audio Interface (VBE/AI 1.0) Function Summary
(VBE/AI Function 4F13h)

00h - Return VBE/AI Information

01h - Get Next Device Handle

02h - Get Device Class Information

03h - Open Device

04h - Close Device

05h - Driver Unload Request

06h - Driver Chaining

07h - Load 32-bit Interface

WAVE Audio Services
wsDeviceCheck()
wsPCMinfo()
wsPlayBlock()
wsRecordBlock()
wsPlayCont()
wsRecordCont()
wsPauselO()
wsResumelO()
wsStoplO()
wsTimerTick()
wsGetLastError()

MIDI Audio Services
msDeviceCheck()
msGlobalReset()
msMIDImsg()
msPreLoadPatch()
msUnloadPatch()
msTimerTick()
msGetLastError()

VBE CORE FUNCTIONS VERSION 2.0 Page 61
DOCUMENT REVISION 1.1

VBE Supplemental Specifications Summaries

VOLUME Control Services
vsDeviceCheck()
vsSetVolume()
vsSetFieldVol()
vsToneControl()
vsFilterControl()
vsOutputPath()
vsGetLastError()

VESA BIOS Extensions / Display Data Channel (VBE/DD 1.0) Function Summary
(VBE/DDC Function 4F15h)

00h - Report VBE/DDC Capabilities

01lh-Read EDID

02h - Read VDIF

Page 62 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

VBE Implementation Considerations

Appendix 4 - VBE Implementation Considerations

This appendix discusses required features of VBEAplementations, and offers some suggestions for
consideration by BIOS developers. Some issuesrhisre apply only to adding VBE 2.0 to an
existing VGA BIOS, while other issues are more gatyaelevant.

A4.1 Minimum Functionality Requirements

A4.1.1 Required VBE Services
VBE Functions 00h-0Ah are required,; all other figrts are optional. There are no absolutely redquire
modes, or mode capabilities, since these will aacprding to the hardware and applications.

A4.1.2 Minimum ROM Implementation

For compliance certification, Functions 00-0Ah naesimplemented in the ROM. In the case of ROM
space limitations that do not allow full implemeiatas, VESA strongly recommends that VBE Get
Controller Information Function 00h be implemernitetthe ROM so applications will be able to find
information about the controller type and capakdit This 'Stub’ implementation can be supplerdente
by a TSR which will provide full VBE Core functiolitg. These stub implementations are not VBE 2.0
compliant and should only be implemented in caseseno space is available to implement the whole
VBE. Inthe event that a stub is implemented a ifBBt be available to complete VBE 2.0
functionality.

In a stub implementation, the VideoModeList wilhtain no entries (starts with OFFFFh). Thisis the
indicator to application software that the VBE Gamplementation is in fact only a stub and thaeoth
functions and modes do not exist.

A4.1.3 TSR Implementations

TSR based implementations of VBE must not assuaha ttompatible graphics controller is present!
They must first attempt to detect the presenceof@atible device before chaining into INT 10h and
completing the load process. If no compatibleward is detected they must exit without chaining IN
10h. On failure to load, the TSR should displagapropriate message to the screen, identifyirtg bot
the installed and expected hardware and displ#yn@EM strings from Function 00h, if available.
The software version number and identifying infdramefor the TSR should also be shown.

TSRs which are meant to work in a variety of hardvead BIOS environments should check to see if
the ROM supports some version of VBE Function @@t Controller Information. The information
which is returned from this function can then k&spd on to calling applications or displayed on the
screen, reducing the burden of supporting diffedeplay hardware. If a stub orincomplete version
VBE exists in ROM, it is the responsibility of th8R to supplement all missing functions and replace
Function O0h.

VBE CORE FUNCTIONS VERSION 2.0 Page 63
DOCUMENT REVISION 1.1

VBE Implementation Considerations

VESA recommends that VBE 2.0 TSRs be given namatwhbntain some identifier for the OEM
and/or product, as well as a '2' to indicate th& VBrsion supported. This will help users make sur
they have the correct version of software for thaidware, and may prevent a few phone calls for
software support. Itis also required that a ketpen be included, which can be activated bydypin
"/h", "[?", or any unrecognized parameter on tmeroand line. The help screen should contain all
pertinent information about the source and versiomber of the TSR and the hardware on which itis
designed to work.

A4.2 VGA BIOS Implications

A primary design goal with the VESA VBE is to nmmize the effects on the standard VGA BIOS.
Standard VGA BIOS functions should need to be nextlds little as possible. However, two
standard VGA functions are affected by the VBEeSEhare VGA Function 00h (Set VGA Mode)
and VGA Function OFh (Get Current VGA Mode).

VBE-unaware applications (such as old Pop-Up progi@nd other TSRS, or the CLS command of
MS-DOS), may use VGA BIOS Function OFh to get tireant display mode and later call VGA
BIOS Function 00h to restore/reinitialize the aldhics mode. To make such applications work, the
8-bit value returned by VGA BIOS Function OFhgitip to the OEM to define this number), must
correctly reinitialize the graphics mode throughA/&0S Function 00h.

However, VBE-aware applications should not seVilBE mode using VGA BIOS Function 00h, or
get the current mode with VGA BIOS Function OFhBABunctions 02h (Set VBE mode) and 03h
(Get VBE Mode) should be used instead. The modéeumust be from the mode list returned by
VBE Function 00h, and Function 03h must returrsimae mode number used to set the mode in
Function 02h.

Given these requirements, and the fact that ma@gBhanufacturers will need to support at least some
of the VESA-defined 14-bit mode numbers for backisaompatibility, it is clear that the BIOS must
keep track of the last mode that was set with VBEckon 02h. There are various ways that this

could be accomplished without the use of scratgibtezs or non-volatile RAM, which is not always
available. One method is to use the mode numitenbthe BIOS Data Area to store the index into
the mode list returned in VBE Function 00h, whghlivays stored in ROM. Another method is to
store a small translation table for the 14-bit mug®bers (probably necessary for using duplicate
mode numbers anyway) and to use an obsolete ocedbitsn the BIOS Data Areato indicate a 14-

bit mode in effect.

If a BIOS offers only the flat frame buffer versioione of the modes which have VESA-defined
numbers, it may be advisable to use an OEM-definatber for that mode instead. Since VBE 1.2
and earlier versions assume standard VGA windogitige frame buffer, older VBE-aware
applications may recognize the mode number andatite use windowed memory without properly
checking with Function O1h.

Page 64 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

VBE Implementation Considerations

A4.3 ROM Space Limitations

Since standard VGA BIOS is currently confined t& B2DM images, space is likely to be critical in
implementing even the minimum VBE 2.0 functionaliost VGA BIOSs have already been
compressed many times as new features and modekédmvadded over time. Clearly, older VGA
BIOS features may have to be sacrificed to makearoo

A4.3.1 Data Storage

To allow for ROM based execution of the VBE functipeach VBE function must be implemented
without the use of any local data. When possib&BIOS data area, non-volatile RAM, or OEM
specific scratch registers can be used to plaatcbatata during execution. All VBE data structure
are allocated and provided to VBE by the callingjigption.

A4.3.2 Removal of Unused VGA Fonts

VESA strongly recommends that removal of the 8xGRont become a standard way of freeing up
space for VBE 2.0 implementations. The removdilisffont leaves 3.5K bytes of ROM space for
new functions, and is probably the least painfuy twdree up such a large amount of space while
preserving as much backwards compatibility as ptessihe 8x14 font is normally used for VGA
Modes 0%, 3* and Mode 10h, which are 350-line o®mpatible modes. When these modes are
selected the 8x16 font may be chopped and useaddhstWhen chopping a 16 point font to replace
the 14 point, there are several characters (ornkslescenders) that should be special cased.

Some applications which use the 8x14 font obtapimiater to the font table through the standard VGA
functions and then use this table directly. Irhstases, no workaround using the 8x16 font is plessi
and a TSR with the 8x14 font is unavoidable. SOERS may find this situation unacceptable
because of the potential for an inexperiencedtasgrcounter "garbage” on the screen if the T8Btis
present. However, OEMs may also find eventuadlydemand for VBE 2.0 services is great enough
to justify the inconvenience associated with ai8ght TSR. To date, no compatibility problems are
known to be caused by the use of such a TSR. \Wkibmake available a TSR that replaces the
8x14 font, please contact VESA for more information

Another option with the fonts in Turn-Key systesisgh as Laptops, Notebooks etc.) is to move the
fonts to another location in the System ROM. @ Y8BE functions could even be relocated. This
however is not an acceptable solution for mosttdesystems, where they are expandable.

VBE CORE FUNCTIONS VERSION 2.0 Page 65
DOCUMENT REVISION 1.1

VBE Implementation Considerations

A4.3.3 Deleting VGA Parameter Tables

One way to create more ROM space for the VBEdetete some of the VGA parameter tables by
deleting modes which are outdated and little us&athy of the standard VGA modes are now almost
entirely obsolete and should probably be phasenf existence. How quickly this might happen
depends on which applications are still using ltleranodes and on how tolerant OEMs and users will
be to using TSR programs for these modes whensayesSome mode groups which might be
candidates for removal are modes 4, 5, and 6@ @odes, or all 200 line modes.

It must be emphasized, however, that it is abdglnézessary to preserve the size and positicas of
the standard mode VGA parameter tables! Failwte 8o will cause a lot of problems with
diagnostics and older VGA applications. If a tablemoved, fill the space with an equal number of
bytes of code or data.

A4.3.4 Increasing ROM Space

In the PC environment, VGA BIOS developers hawditicmally been limited to a 32K ROM image
located at CO000h-C7FFFh. The C8000h-CBFFFh aasawginally reserved for the XT hard disk
BIOS, which is of little current concern. HoweV@€ S| CD ROM controllers have now begun to use
this area, and the possibility exists that otheiods may use this area also. Itis unlikely YH2iE
developers will be able to expand into the C800BR¥E-h region without creating potential conflicts.

4.3.5 Support of VGA TTY Functions

The support of VGA TTY functions is recommended rimi mandatory, for graphic modes beyond
VGA. TTY support for all modes is desirable t@allbasic text operations such as reading and gritin
characters to the screen. Some operating systémesart to using TTY functions when a hardware
error occurs, since the graphics environment méynger be operational.

Support of TTY functions for all modes will, of ase, increase the size of the BIOS. One possible
solution is to provide TTY function support for ertled modes as part of a TSR rather than in the
ROM.

Bit D2 in the Mode Attributes field in the Modelitmck structure returned by VBE Function 01h
indicates the presence of support for TTY functionsach VBE mode. Refer to the VBE Function
01h description for details on which TTY functionsst be supported when this bit is set.

Page 66 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

VBE Implementation Considerations

A4.4 Implementation Notes by Function

A4.4.1 General Notes

Starting with VBE version 2.0 VESA will no longefthe new VESA mode numbers and it will not
longer be mandatory to support these old mode nembl®wever, it is highly recommended that
BIOS implementations continue to support these mad®ers for compatibility with old software.
VBE 2.0 aware applications should follow the guitk in Appendix 5 - Application Programming
Considerations - for setting a desired mode.

Applications should treat any non-zero value irAHeegister as a general failure condition ag late
versions of the VBE may define additional errorasodBIOS developers should refrain from defining
their own return codes, which may conflict withuitet VESA-defined return codes.

VESA strongly recommends the preservation of tlagkics Controller indexes.

A4.4.2 Function 00h - Return VBE Controller Information

All data in the structure is subject to changélbyBE implementation when VBE Function 00h is
called. Therefore it should not be used by théegifwn to store data of any kind. VBE shoulbdity
unused portion of the structure with zeros.

The BCD value for VBE 2.0 is 0200h, The BCD valoe\fBE 1.2 is 0102h. In the past we have had
some applications misinterpreting these BCD val&es example, BCD 0102h was interpreted as
1.02, which is incorrect.

The length of the OEMString is not defined, busioice considerations, we recommend a string length
of less than 256 bytes.

The DAC must always be restored to 6 bits per pyrasdefault upon a mode set. If the DAC has
been switched to 8 bits per primary, the mode sst nestore the DAC to 6 bits per primary to ensure
the application developer that he does not hanesst it.

If the RAMDAC is an older style RAMDAC with the pmbility of "snow" during programming, the
VBE 2.0 implementation must place a 1 in bit hef€Capabilities field.

If a VideoModeList is found to contain no entrisga(ts with OFFFFh), it can be assumed that the VBE
implementation is a "stub" implementation wherg &iinction 00h is supported for diagnostic or "Plug
and Play" reasons. These stub implementatiomoakBE 2.0 compliant and should only be
implemented in cases where no space is availaifptement the whole VBE.

The length of the strings OemProductRev, OemPrblidnce and OemVendorName (including
terminators), summed, must fit within a 256 bytidsu This is to allow for return in the OemDateld
if necessary.

VBE CORE FUNCTIONS VERSION 2.0 Page 67
DOCUMENT REVISION 1.1

VBE Implementation Considerations

A4.4.3 Function 01h - Return VBE Mode Information

Monochrome modes map their CRTC address at 3B4br odes map their CRTC address at
3D4h. Monochrome modes have attributes in whichlmt8 (video) and bit 4 (intensity) of the

attribute controller output are significant. Theref monochrome text modes have attributes of off,
video, high intensity, blink, etc. Monochrome griggimodes are two plane graphics modes and have
attributes of off, video, high intensity, and blilitended two color modes that have their CRTC
address at 3D4h, are color modes with one bitigel gnd one plane. The standard VGA modes, 06h
and 11h would be classified as color modes, whiestandard VGA modes 07h and OFh would be
classified as monochrome modes.

Version 1.1 and later VBE will zero out all unugettis in the Mode Information Block, always
returning exactly 256 bytes. This facilitates uph@mpatibility with future versions of the starajas
any newly added fields will be designed such thktas of zero will indicate nominal defaults ornon
implementation of optional features. (For exangfeld containing a bit-mask of extended capadslit
would reflect the absence of all such capabiljtiéysplications that wish to be backwards compatible
Version 1.0 VBE should pre-initialize the 256 lytdfer before calling the Return VBE Mode
Information function.

If the ModelnfoBlock is for an IBM Standard VGA nednd the NumberOfimagePages field contains
more pages than would be found in a 256KB impleatiemt, the TTY support described in the
ModeAttributes must be accurate, i.e., if the Tuidtions are claimed to be supported, they must be
supported in all pages, not just the pages norifoaihyd in the 256KB implementation.

A4.4.4 Function 02h - Set VBE Mode

VBE BIOS 2.0 implementations should also updat®tkxs Data Area 40:87 (memory clear bit) so
that Function 03h can return this flag. VBE BIO3dnd earlier BIOS implementations ignore the
memory clear bit.

Function 00h of an IBM VGA compatible BIOS usestDgignify the same thing as D15 does in this
function. If D7 is set for an IBM compatible maaleen calling this function, this mode set shouild fa
VBE aware applications must set the memory cleam BI15.

This call should not set modes not listed in tteoli supported modes. All modes (including IBM
standard VGA modes), if listed as supported, masgt iMiodelnfoBlock structures associated with
them.

Page 68 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

VBE Implementation Considerations

Mode 81FFh is a special mode designed to preds\@itrent memory contents and to give access to
the entire video memory. This mode is especialijul for saving the entire video memory contents
before going into a state that could lose the cisi{e.g. set this mode to gain access to all video
memory to save it before going into a volatile pos@vn state). This mode is required as the entire
video memory contents are not always accessiblary mode. Itis recommended that this mode be
packed pixel in format, and a ModelnfoBlock mustibgned for it. However, it should not appear in
the VideoModelList. Look in the ModelnfoBlock tatdemine if paging is required and, if it is reqdire
how it is supported. Also note that there aremmied resolutions or timings associated with this

mode.

A4.4.5 Function 03h - Return Current VBE Mode

Version 1.x Note:In a standard VGA BIOS, Function OFh (Read cuwvetdo state) returns the
current graphics mode in the AL register. In DAfit also returns the status of the memory digar
(D7 of 40:87). This bit is set if the mode wasmétout clearing memory. In this VBE functioneth
memory clear bit will not be returned in BX sinbe purpose of the function is to return the videden
only. If an application wants to obtain the menaegar bit, it should call the standard VGA BIOS
Function OFh.

Version 2.x Note: Unlike version 1.x VBE implementations, the meyrabear flag will be returned.
The application should NOT call the standard VGA8IFunction OFh if the mode was set with VBE
Function 02h.

The mode number returned must be the same modesnusd#dl in the VBE Function 02h mode set.

This function is not guaranteed to return an a¢eurade value if the mode set was not done with VBE
Function 02h. In that case, the results are urfsmkbc

A4.4.6 Function 05h - Display Window Control

In VBE 1.2 implementations, the direct far callsien returns no Return Status information to the
application. Also, inthe far call version, the AXd DX registers will be destroyed. ThereforeXf
and/or DX must be preserved, the application nusbdgrior to making the far call. The application
must still load the input arguments in BH, BL, &Xl(for Set Window). In VBE 2.0 implementations,
the BIOS will return the correct Return Status, thedefore the application must assume that AX and
DX will be destroyed.

If this function is called while in a linear frarpeffer memory model, this function must fail with
completion code AH=03h.

VBE CORE FUNCTIONS VERSION 2.0 Page 69
DOCUMENT REVISION 1.1

VBE Implementation Considerations

A4.4.7 Function 06h - Get/Set Logical Scan Line Length

The desired width in pixels may not be achievabtabse of hardware considerations. The next larger
value will be selected that will accommodate trerdd number of pixels, and the actual number of
pixels will be returned in CX. BX returns a vathat when added to a pointer into display memolty wi
point to the next scan line. For example, in VG#da13h this would be 320, but in mode 12h this
would be 80. DX returns the number of logical doaes based upon the new scan line length and the
total memory installed and usable in this displagen

On afailure to set scan line length by settingla&lue too large, the function will fail with errcode
02h.

The value returned when BL=03h is the lesserlaéeihe maximum line length that the hardware can
support, or the longest scan line length that weuighort the number of lines in the current videden

This function is also valid in text modes. In texides the application should convert the chartoger
length to pixel line length by getting the currelmracter cell width through the XCharSize fietdmeed
in ModelnfoBlock, multiplying that times the desineumber of characters per line, and passing that
value in the CXregister.

In text modes, this function will only work if thiee length is specified in character granulaiiity. in 8
dot modes only multiples of 8 will work. Any valadich is not in character granularity will resala
function call failure.

A4.4.8 Function 07h - Get/Set Display Start

This function is also valid in text modes. To thégfunction in text mode, the application should
convert the character coordinates to pixel cootelitay using XCharSize and YCharSize returned in
the ModelnfoBlock. If the requested Display Stadrdinates do not allow for a full page of video
memory or the hardware does not support memonypwgthe Function call should fail and no
changes should be made. As a general casegiiested Display Start is not available, fail the
Function call and make no changes.

A4.4.9 Function 08h - Set/Get DAC Palette Format
This function will return failure code 03h if callan a direct color or YUV mode.

A4.4.10 Function 09h - Set/Get Palette Data

The need for BL=80h is for older style RAMDAC'savl programming the RAM values during
display time causes a "snow-like" effect on theesr Newer style RAMDAC's don't have this
limitation and can easily be programmed at any,taeolder RAMDAC's require that they be
programmed during a non-display time only to steshow like effect seen when changing the DAC
values. When this is requested the VBE implemientaiill program the DAC with blanking on.
Check D2 of the Capabilities field returned by VBIfction 00h to determine if 80h should be used
instead of 00h.

Page 70 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

VBE Implementation Considerations

The need for the secondary palette is for antietbkiture palette extensions, if a secondary palett
does not exist in aimplementation and thesear@lmade, the VBE implementation will return error
code 02h.

A4.4.11 Function OAh - Return VBE Function Information
All protected mode functions should end with a IREar (as opposed to FAR RET) to allow the
application software to CALL the code from withiretROM.

The Port and Memory location Sub-table does ntidecthe Frame Buffer Memory location. The
Frame Buffer Memory location is contained withia ModelnfoBlock returned by VBE Function 01h.

The protected mode code must be assembled fobia @@de segment, when copying it, the
application must copy the code to a 32-bit codense).

A4.5 Plug and Play Issues

Plug and Play information may be used to fill @ ¥BE Function 00h (Return VBE Controller
Information) data structures. Since VBE Functidh feturns information such as product name, or
product revision, which must be hard-coded in tB&/RBIOS, Plug and Play may help to avoid the
need for the display board manufacturer to alteustomize the ROM binary image.

A4.6 Supporting Multiple Controllers

It is sometimes necessary for more than one displatyoller to be present in the system for several
reasons. For example, OEMs may choose to implesrdrdl-controller design with VGA
functionality provided by one controller, and SVGA/BE functionality provided by a second
controller. In some cases, it may be desirabiestall more than one display adapter in the sytem
simultaneous support of multiple display monitors.

A4.6.1 Dual-Controller Designs

VBE 2.0 supports the dual-controller design byemsg that since both controllers are typically
provided by the same OEM, under control of a siB§zS ROM, it is possible to hide the fact that
two controllers are indeed present from the appiica This has the limitation of preventing
simultaneous use of the independent controlletgllows applications released before VBE 2.0 to
operate normally. The VBE Function 00h (Returnt€@dlier Information) returns the combined
information of both controllers, including the candal list of available modes. When the application
selects a mode, the appropriate controller isatetiv Each of the remaining VBE functions then
operates on the active controller.

A4.6.2 Provision for Multiple Independent Controllers

There are no provisions for multiple independentratlers under VBE at this time. [f it ever beczsn
necessary, support of additional display contrettan be provided under the "Supplemental
Specification™” guidelines.

VBE CORE FUNCTIONS VERSION 2.0 Page 71
DOCUMENT REVISION 1.1

VBE Implementation Considerations

A4.7 Display Refresh Rates and Interlacing

Display refresh rates, interlacing, and other tipgiarameters are automatically implied for each
graphics mode. Application programs should notmeerned with these hardware details, and
therefore should assume that the most desirablegrare selected for each graphics mode.

The VGA standard defines the timing details fohedGA mode, and all VGA monitors support these
timing requirements. Additional graphics modedémgented under VBE should operate at the
maximum frequency possible for the display cordrahd installed monitor. This presents a problem
since the manufacturer of the display controlley beaunaware of what display monitor hardware is
installed, and what its capabilities are.

VESA s in the process of standardizing a mechabiswhich the display controller can automatically
determine the capabilities of the installed disptayitor. The maximum refresh rate and need for
interlacing for each graphics mode can then berdeted based on the display controller timing logic
and the hardware profile of the installed monae the VESA Display Data Channel and Graphics
Configuration documents for more information.

If the VESA Display Data Channel capability is atisthe display controller manufacturer must previd
a configuration utility, or other suitable procd¢eselect the best available timing for each mdids.
permissible for the display controller OEM to extéme VBE implementation with private functions to
assist with the configuration of the display handwa a standard way across the product line (see
section A4.8). This allows support of all coneddl in the product line with a single configuratitifity

that makes use of these private functions. Wheamiemmatic method is not available, the end user ca
run this utility when a new monitor is installedstlect the refresh rates and adjust other paresnete
such as centering for each graphics mode. Maptmific information must then be stored, either in
scratch registers, non-volatile RAM, or, more fkéhrough the use of a configuration file and
associated TSR.

A utility accessing these proprietary functions tnead the VbelnfoBlock returned by VBE Function
00h to determine if the firmware is of the progpetand revision level before making any Functiém 1
calls. Failure to do so will render the callingitytincompatible with VBE 2.0 and may cause
unpredictable results.

A4.8 OEM Extensions to VBE
The VBE specification allows the OEM to extendutsctionality for support of nonstandard, or prevat
features known only to the OEM and custom appbaoatthat are aware of these OEM extensions.

VBE Function 14h is reserved for use by OEMs wighiradd VBE subfunctions of their own. This
function number is provided so that the OEM mayaadtiom services without fear of conflict with
other VBE services. These subfunctions must @s@&Xtregister in the same manner as all other
standard VBE functions and return the standard ®t@&pletion codes.

Page 72 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

VBE Implementation Considerations

Normally, these extended functions are used bQHM to aid in the setup and configuration of the
controller hardware. For example, during instialteit may be necessary to set the physical frame
buffer address, maximum monitor refresh frequethefgult graphics mode, default power state, etc. A
single setup and installation program can be ug#telDEM with the entire product line if the same
OEM extensions are implemented on each product.

A utility accessing these proprietary functions tnead the VbelnfoBlock returned by VBE Function
00h to determine if the firmware is of the progpetand revision level before making any Functiim 1
calls. Failure to do so will render the callinditytincompatible with VBE 2.0 and may cause
unpredictable results.

A4.9 Certification Requirements

Perhaps one of the key differences in VBE 2.0 eaier revisions, is the certification requirensawit
VBE 2.0. There is only one type of certificatibatcan be done through VESA, this is "Compliance".
For Compliance with VBE 2.0, an implementation npasts a certification process. Compliance
testing will require VBE functions in ROM, and wiknefit the end user, the video vendor and the
application developers. Vendors who pass commitesting, may license the VESA VBE 2.0 logo,
and may market their products as VBE 2.0 Compliant.

Another term that can be associated with VBE 2@dmentations is "Compatible”. VBE 2.0
compatible systems cannot be marketed as VBE 2riplizont, VBE 2.0 Compatible nor can they use
the VESA VBE 2.0 logo. VBE Compatible means thetsiem implements VBE 2.0 correctly but
does not have the features in ROM. VBE Compatijtidinot the desired method of VBE
implementation because of the Plug and Play adyestd the ROM implementation. VBE
Compatibility is targeted for the upgrading of eldeleo systems.

A4.9.1 VBETest Utility

A Test program will be developed which must be @agsorder to claim your system is VBE
Compliant. Itis extremely important that even Bampatible implementations be tested with this
test. The test will be made available to VESA Merslmnly, however discussion on the merits of
distributing this test to the general public isygobn at this time.

A4.9.2 Communication with VESA Office
To find out more about VBE 2.0 Compliant Logo liseng and testing, please contact the VESA office.

VBE CORE FUNCTIONS VERSION 2.0 Page 73
DOCUMENT REVISION 1.1

Application Programming Considerations

Appendix 5 - Application Programming Considerations

A5.1 Application Developer's Sample Source

The certification process is only for the BIOS iempEntations, this should be enough to ensurdihat t
applications fall in line with the VESA standaitit doesn't work on a VBE Compliant card, thee th
application is wrong and should be changed. Tédmure that the application developer will wark o
VBE Compliant systems, sample source for applinateveloper's will be provided by the VESA
office.

A simple example of how to set a Video Mode, andl trouse it to put something up on the screen, is
found below. This is not intended to be a com@&K or source example, but it only demonstrates
what we are trying to achieve.

C Language Module
(This has been compiled and tested under Micr@s6f0. Conversion for the direct banking method
to inline assembly may be required for Borland C.)

/** *kkkkkkkkkkkkhhhhhhhhhikix

*

* Hello VBE!

*

*

* Language: C (Keyword far is by definition not ANSI, therefore

* to make it true ANSI remove all far references and
*

compile under MEDIUM model.)

*

* Environment: IBM PC (MSDOS) 16 bit Real Mode

* Original code contributed by: - Kendall Bennett, SciTech Software
* Conversion to Microsoft C by: - Rex Wolfe, Wester n Digital Imaging
* - George Bystricky, S-MOS Systems

*

* Description: Simple 'Hello World' program to ini tialize a user

* specified 256 color graphics mode, and display a simple

* moire pattern. Tested with VBE 1.2 and above.

*

* This code does not have any hard-co ded VBE mode numbers,
* but will use the VBE 2.0 aware meth od of searching for

* available video modes, so will work with any new extended
* video modes defined by a particular OEM VBE 2.0 version.
*

* For brevity we don't check for fail ure conditions returned
* by the VBE (but we shouldn't get an y).

*

%
*
%
*
%
*
*
*
%
*
%
*
%
*
%
*
%
*
%
*
%
*
%
*
%

*************************/

#include <stdio.h>
#include <stdlib.h>

Page 74 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

Application Programming Considerations

#include <dos.h>
#include <conio.h>

VBE CORE FUNCTIONS VERSION 2.0 Page 75
DOCUMENT REVISION 1.1

Application Programming Considerations
/*Commentoutthe following #define to disable dir
*The code will then use Int 10h software interrup
#define DIRECT_BANKING

#ifdef DIRECT_BANKING

/*only needed to setup registers BX,DX priorto th
externfarsetbxdx(int,int);

#endif

[Fommmm e Macroandtype definitions

/*SuperVGAinformationblock*/

struct

{
char VESASignature[4]; /*'VESA'4 byt
short VESAVersion; /* VBE version
char far *OEMStringPtr; /* Pointerto O
long Capabilities; [* Capabilities
unsigned far *VideoModePtr; /* Pointertos
short TotalMemory; /* Number of 64
char reserved[236]; /*Pad to 256 b

}VbelnfoBlock;
/*SuperVGAmode informationblock*/

struct

{
unsigned short ModeAttributes; /* Mode att
unsigned char WinAAttributes; /* Window A
unsigned char WinBAttributes; /* Window B
unsigned short WinGranularity; /* Window g
unsigned short WinSize; /* Window s
unsigned short WinASegment; /* Window A
unsigned short WinBSegment; /* Window B
void (far *WinFuncPtr)(void); /* Pointer
unsigned short BytesPerScanLine; /* Bytes pe

unsigned short XResolution; [* Horizont
unsigned short YResolution; [* Vertical
unsigned char XCharSize; /* Characte
unsigned char YCharSize; /* Characte
unsigned char NumberOfPlanes; /* Number o
unsigned char BitsPerPixel; /* Bits per
unsigned char NumberOfBanks; /* Number o
unsigned char MemoryModel, /* Memory m
unsigned char BankSize; [* Size of
unsigned char NumberOfimagePages; /* Number o
unsigned char resl; /* Reserved
unsigned char RedMaskSize; /* Size of

unsigned char RedFieldPosition; /* Bit posn
unsigned char GreenMaskSize; /* Size of

Page 76 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

ectbank switching.
t method for banking. */

edirectcall..*/

_______________________ */
e sighature */
number */
EM string */

of videocard */
upported modes */
kb memory blocks */
yte block size */

ributes */
attributes */
attributes */
ranularity in k */
izeink */
segment */
segment */
to window function */
r scanline */
al resolution */
resolution */
r cell width */

r cell height */
f memory planes */

pixel *
f CGA style banks */
odel type */
CGA style banks */
fimages pages */
*/

direct color red mask */
of Isb of red mask */
direct color green mask */

unsigned char GreenFieldPosition; /* Bit posn
unsigned char BlueMaskSize; /* Size of
unsigned char BlueFieldPosition; /* Bit posn
unsigned char RsvdMaskSize; /* Size of
unsigned char RsvdFieldPosition; /* Bit posn
unsigned char DirectColorModelnfo; /* Directc
unsigned char res2[216]; /* Pad to 2
}ModelnfoBlock;

typedefenum

{
memPL =3, /* Planar memor
memPK =4, /* Packed pixel
memRGB =6, /* Direct color
memYUV =7, [* Direct color

}memModels;

I GlobalVariables----
charmystr[256];
char*get_str();

/* Resolution o
/* Logical CRT
/* Current read
/* Bank granula

int xres,yres;

int bytesperline;

int curBank;
unsigned int bankShift;
int oldMode; /* Old video mo
char far *screenPtr; [* Pointerto s
void (far*bankSwitch)(void); /* Direct bank
[H VBE Interface Functions

/* Get SuperVGA information, returning true if VBE

intgetVbelnfo()
{
union REGS in,out;
struct SREGS segs;
char far *Vbelnfo = (char far *)&VbelnfoBlock;
in.x.ax = 0x4F00;
in.x.di = FP_OFF(Vbelnfo);
segs.es = FP_SEG(Vbelnfo);
int86x(0x10, &in, &out, &segs);
return (out.x.ax == 0x4F);

}

/* Getvideo mode information given a VBE mode numb
*if the mode is not available, or ifitis not a

* pixel mode.

*/

intgetModelnfo(intmode)

{
union REGS in,out;

struct SREGS segs;
char far *modelnfo = (char far *)&ModelnfoBlock

VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

Application Programming Considerations

of Isb of green mask */
direct color blue mask */

of Isb of blue mask */
direct color res mask */

of Isb of res mask */
olor mode attributes */
56 byte block size */

y model */
memory model */
RGB memory model */
YUV memory model */

fvideo mode used */
scanline length */

/write bank */
rity adjust factor */
de number */

tart of video memory */
switching function */

er. Wereturn O if
256 color packed

Page 77

Application Programming Considerations

if (mode < 0x100) return 0; /* Ignore non-V

in.x.ax = 0x4F01;

in.x.cx = mode;

in.x.di = FP_OFF(modelnfo);

segs.es = FP_SEG(modelnfo);

int86x(0x10, &in, &out, &segs);

if (out.x.ax != 0x4F) return O;

if (ModelnfoBlock.ModeAttributes & 0x1)
&& ModelnfoBlock.MemoryModel == memPK
&& ModelnfoBlock.BitsPerPixel ==
&& ModelnfoBlock.NumberOfPlanes == 1)

return 1,
return O;

}

/*Seta VBE video mode */

voidsetVBEMode(intmode)

{
union REGS in,out;
in.x.ax = 0x4F02; in.x.bx = mode;
int86(0x10,&in,&out);

}

/*Return the current VBE video mode */

intgetVBEMode(void)
{
union REGS in,out;
in.x.ax = 0x4F03;
int86(0x10,&in,&out);
return out.x.bx;

}

/* Set new read/write bank. We must set both Window
*many VBE's have these set as separately availabl
*windows. We also use a simple (but very effectiv
*checkingifthe requested bank s currently acti

*/

voidsetBank(intbank)
{
union REGS in,out;
if (bank == curBank) return; /* Bank is alre
curBank = bank; [* Save current
bank <<= bankShift; /* Adjust to wi
#ifdef DIRECT_BANKING
setbxdx(0,bank);
bankSwitch();
setbxdx(1,bank);
bankSwitch();
#else

Page 78 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

BE modes */

A and Window B, as
eread and write
e) optimization of
ve.

ady active */
bank number */
ndow granularity */

in.x.ax = 0x4F05; in.x.bx = 0; in.x.dx = bank;
int86(0x10, &in, &out);
in.x.ax = 0x4FO05; in.x.bx =1; in.x.dx = bank;
int86(0x10, &in, &out);

#endif

}

I* Application Functions

/* Plot a pixel atlocation (X,y) in specified colo

void putPixel(intx,inty,intcolor)

{
long addr = (long)y * bytesperline + x;
setBank((int)(addr >> 16));
*(screenPtr + (addr & OXFFFF)) = (char)color;

}
/*Draw aline from (x1,y1) to (x2,y2) in specified

voidline(intx1,intyl,intx2,inty2,intcolor)

{
int d; [* Decision var
int dx,dy; /* Dx and Dy va
int Eincr,NEincr; /* Decision var
int yincr; /* Increment fo
int t; [* Counters etc

#define ABS(a) ((a)>=07?(a):-(a))

dx = ABS(x2 - x1);
dy = ABS(y2 - y1);
if (dy <=dx)

{

/* We have a line with a slope between -1 a
*

* Ensure that we are always scan convertin

*right to ensure that we produce the same
* line from PO to P1.

*/
if (x2 <x1)
{
t=x2;x2=x1;x1=t; /*SwapXc
t=y2;y2=yl;yl=t; /[*SwapYc
}
if (y2>y1)
yincr =1;
else
yincr = -1;
d = 2*dy - dx; /* Initial deci
Eincr = 2*dy; /* Increment to

NEincr = 2*(dy - dx);
putPixel(x1,y1,color);

[* Increment to
/* Draw the fir

VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

Application Programming Considerations

r (8 bitmodes only) */

color*/

iable */
lues for the line */
iable increments */
ry values */

*/

nd1

g the line from left to
line from P1to PO as the

oordinates */
oordinates */

sion variable value */
move to E pixel */
move to NE pixel */
st point at (x1,y1) */

Page 79

Application Programming Considerations

/* Incrementally determine the positions of
for (x1++; x1 <=x2; x1++)

{
if (d <0)
d += Eincr; /* Choose the E
else
{
d += NEincr; /* Choose the N
y1l +=yincr; [* (or SE pixel
}
putPixel(x1,y1,color); /* Draw the poi
}
}
else
{

/* We have aline with a slope between -1 a
*’yertical lines). We must swap our x and

* Ensure that we are always scan convertin
*right to ensure that we produce the same
* line from PO to P1.
*/
if (y2 <yl)
{
t=x2;x2=x1;x1=t; /*SwapXc
t=y2;y2=yl;yl=t; /[*SwapYc

}
if (x2 >x1)
yincr = 1;
else
yincr = -1;
d = 2*dx - dy; /* Initial deci
Eincr = 2*dx; /* Increment to

NEincr = 2*(dx - dy); /* Increment to
putPixel(x1,y1,color); /* Draw the fir

/* Incrementally determine the positions of
for (yl++;yl <=y2; yl++)

if (d <0)
d += Eincr; /* Choose the E
else

{
d += NEincr; /* Choose the N

x1 +=yincr; [* (or SE pixel
}
putPixel(x1,y1,color); /* Draw the poi

y !

Page 80 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

the remaining pixels */

astern Pixel */

orth Eastern Pixel */
fordx/dy <0!) */

nt */

nd 1 (ie: includes
y coordinates for this.

g the line from left to
line from P1to PO as the

oordinates */
oordinates */

sion variable value */
move to E pixel */
move to NE pixel */
st point at (x1,y1) */

the remaining pixels */

astern Pixel */

orth Eastern Pixel */
fordx/dy <0!) */

nt */

/* Draw a simple moire pattern of lines on the disp

voiddrawMoire(void)
{
int i
for (i=0;i<xres;i+=5)
{
line(xres/2,yres/2,i,0,i % OXFF);
line(xres/2,yres/2,i,yres,(i+1) % OXFF);
}
for (i=0;i<yres;i+=5)
{
line(xres/2,yres/2,0,i,(i+2) % OXFF);
line(xres/2,yres/2,xres,i,(i+3) % OXFF);
}
line(0,0,xres-1,0,15);
line(0,0,0,yres-1,15);
line(xres-1,0,xres-1,yres-1,15);
line(0,yres-1,xres-1,yres-1,15);
}

/*Return NEAR pointerto FAR string pointer*/

char*get_str(charfar*p)
{

int i

char *g=mystr;

for(i=0;i<255;i++)
{
if(*p) *q++ = *p++;
else break;
}
*q ="0";
return(mystr);

}

/* Display a list of available resolutions. Be care
*function 00h to get SuperVGA mode information. M
*|ist of video modes directly in this information

*are using a common buffer (which we aren't here,
*mode you will), then you will need to make aloc

* of available modes.

*/

voidavailableModes(void)

{

unsigned far *p;
if (!getVbelnfo())
{

printf("No VESA VBE detected\n");
exit(1);
}

VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

Application Programming Considerations

lay */

fulwith calls to

any VBE's build the
block, soif you
butin protected

al copy of this list

Page 81

Application Programming Considerations

printf("VESA VBE Version %d.%d detected (%s)\n\

VbelnfoBlock.VESAVersion >> 8, VbelnfoBlock
get_str(VbelnfoBlock.OEMStringPtr));
printf("Available 256 color video modes:\n");
for (p =VbelnfoBlock.VideoModePtr; *p !=(unsig

{
if (getModelnfo(*p))

{
printf(" %4d x %4d %d bits per pixel
ModelnfoBlock.XResolution, Modelnfo
ModelnfoBlock.BitsPerPixel);

}
}

printf("\nUsage: hellovbe <xres><yres>\n");
exit(1);
}

[* Initialize the specified video mode. Notice how
*factor for adjusting the Window granularity for
*is much faster than doing it with a multiply (es
*panking enabled).

*/

voidinitGraphics(unsignedintx, unsignedinty)

{

unsigned far *p;

if ('getVbelnfo())
{
printf("No VESA VBE detected\n");
exit(1);
}
for (p =VbelnfoBlock.VideoModePtr; *p != (unsi
{
if (getModelnfo(*p) && ModelnfoBlock.XResol
&& ModelnfoBlock.YResolution ==y)
{
Xres = X; yres =y;
bytesperline = ModelnfoBlock.BytesPerSca
bankShift = 0;
while ((unsigned)(64 >> bankShift) = Mo
bankShift++;
bankSwitch = ModelnfoBlock.WinFuncPtr;
curBank = -1;
screenPtr = (char far *)(((Ilong)0xA000)
oldMode = getVBEMode();
setVBEMode(*p);
return;

}
}

printf("Valid video mode not found\n");
exit(1);

Page 82 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

n"l
.VESAVersion & OxF,

ned)-1; p++)

\n",
Block.YResolution,

we determine a shift
bank switching. This
pecially with direct

gned)-1; p++)

ution ==x

nLine;

delnfoBlock.WinGranularity)

<<16 | 0);

/*Mainroutine. Expectsthe x & y resolution of th
*to be passed on the command line. Will print out
*video modesif no command line is present.

*/
void main(intargc,char*argv[])
{

int x,y;

if (argc 1= 3)

availableModes(); /* Display list of

X = atoi(argv[1]);
y = atoi(argv[2]);
initGraphics(x,y);

[* Get requested re

[* Start requested
drawMoire(); /* Draw a moire pat
getch(); /* Wait for keypres

) setVBEMode(oldMode); /* Restore previous

/*
/* The following commented-out routines are for Pla
/* outpw() is for word output, outp() is for byte o

/*

[*Initialize Planar (Write mode 2)
*Should be Called from initGraphics

voidinitPlanar()

{
outpw(0x3C4,0x0F02);
outpw(0x3CE,0x0003);
outpw(0x3CE,0x0205);

}
il

/* Resetto Write Mode O
*for BIOS default draw text

void setWriteMode0()

{
outpw(0x3CE,0xFF08);

outpw(0x3CE,0x0005);

}
il

/* Plot a pixel in Planar mode

void putPixelP(intx, inty, int color)

{

chardummy_read;

long addr = (long)y * bytesperline + (x/8);
setBank((int)(addr >> 16));

VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

Application Programming Considerations

e desired video mode
alist of available

available modes */

solution */
video mode */

tern */

S */
mode */

_____________________ */
nar modes */
utput */

_____________________ */

Page 83

Application Programming Considerations

outp(0x3CE,8);

outp(0x3CF,0x80 >> (X & 7));

dummy_read =*(screenPtr + (addr & OXFFFF));
*(screenPtr + (addr & OXFFFF)) = (char)color;

}
il

Assembly Language Module
Below is the Assembly Language module requirethdirect bank switching. In Borland C or other
C compilers, this can be converted to in-line akdgoode.

public _setbxdx
.MODEL SMALL ;whatever
.CODE
set_struc struc
dw ? ;old bp
dad 2 ;return addr (always far ca 1))
p_bx dw ? ;reg bx value
p_dx dw ? ;reg dx value
set_struc ends

_setbxdx proc far ; must be FAR
push bp
mov bp,sp
mov bx,[bp]+p_bx
mov dx,[bp]+p_dx

pop bp

ret
_setbxdx endp
END

A5.2 Implementation Notes by Function

A5.2.1 General Notes

Starting with VBE version 2.0 VESA will no longegfthe new VESA mode numbers and it will not
longer be mandatory to support these old mode nsmbBE 2.0 aware applications should follow
the guidelines in the sample code above for settadesired mode.

Applications should treat any non-zero value iltHaegister as a general failure condition ag late
versions of the VBE may define additional erroresodBIOS developers should refrain from defining
their own return codes, which may conflict withuitet VESA-defined return codes.

A5.2.2 Function 00h - Return VBE Controller Information

All data in the structure is subject to changébyBE implementation when VBE Function 00h is
called. Therefore it should not be used by théegijmn to store data of any kind. VBE shouldcHily
unused portion of the structure with zeros.

Page 84 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

Application Programming Considerations

The BCD value for VBE 2.0 is 0200h, The BCD valoeMBE 1.2 is 0102h. In the past we have had
some applications misinterpreting these BCD val&es example, BCD 0102h was interpreted as
1.02, which is incorrect.

If the RAMDAC is an older style RAMDAC with the pmbility of "snow" during programming, the
VBE 2.0 implementation must place a 1 in bit hef€Capabilities field.

Itis the responsibility of the application to Wethe actual availability of any mode returnedtog
Function by using the Return VBE Mode InformatigBE Function 01h) call. Some of the returned
modes may not be available due to the actual arobm@mory physically installed on the display
board or to the capabilities of the attached menito

If a VideoModeList is found to contain no entrisga(ts with OFFFFh), it can be assumed that the VBE
implementation is a "stub" implementation wherg &itinction 00h is supported for diagnostic or "Plug
and Play" reasons. These stub implementatiomoakBE 2.0 compliant and should only be
implemented in cases where no space is availaioiptement the whole VBE. If a DAC is switchable,
you can assume that the DAC will be restored titsGier primary upon a mode set. For an
application to use a DAC the application prograrasponsible for setting the DAC to 8 bits per
primary mode using Function 08h.

If a DAC is switchable, you can assume that the Dl{be restored to 6 bits per primary upon a
mode set. For an application to use a DAC thaa@ijan program is responsible for setting the DAC
to 8 bits per primary mode using Function 08h.

A5.2.3 Function 01h - Return VBE Mode Information

Version 1.1 and later VBE will zero out all unugettis in the Mode Information Block, always
returning exactly 256 bytes. This facilitates uph@mpatibility with future versions of the stardjas
any newly added fields will be designed such thiates of zero will indicate nominal defaults or+fion
implementation of optional features. (For exangfeeld containing a bit-mask of extended capadmslit
would reflect the absence of all such capabil)tigsplications that wish to be backwards compatible
Version 1.0 VBE should pre-initialize the 256 Hytefer before calling the Return VBE Mode
Information function.

Since this specification encompasses non-VGA haedagwell as VGA hardware, applications
should not assume VGA properties, e.g., WinASegamahiVinBSegment are not limited to the VGA
frame buffer region AOOO-BFFFh, they may existwisere.

A5.2.4 Function 02h - Set VBE Mode

Function 00h of an IBM VGA compatible BIOS usestBgignify the same thing as D15 does in this
function. If D7 is set for an IBM compatible magleen calling this function, this mode set shouild fa
VBE aware applications must set the memory clean Bi15.

VBE CORE FUNCTIONS VERSION 2.0 Page 85
DOCUMENT REVISION 1.1

Application Programming Considerations

This call should not set modes not listed in tteoli supported modes. All modes (including IBM
standard VGA modes), if listed as supported, maxgt IModelnfoBlock structures associated with
them.

Mode 81FFh is a special mode designed to preda\eitrent memory contents and to give access to
the entire video memory. This mode is especialyjul for saving the entire video memory contents
before going into a state that could lose the cis{e.g. set this mode to gain access to all video
memory to save it before going into a volatile pogk@vn state). This mode is required as the entire
video memory contents are not always accessiblegry mode. Itis recommended that this mode be
packed pixel in format, and a ModelnfoBlock mustibined for it. Also note that there are no

implied resolutions or timings associated with thaxle.

A5.2.5 Function 03h - Return Current VBE Mode

Version 1.x Note:In a standard VGA BIOS, Function OFh (Read curvetgo state) returns the
current graphics mode in the AL register. In DAfit also returns the status of the memory ditar
(D7 of 40:87). This bit is set if the mode wasm#tout clearing memory. In this VBE functioneth
memory clear bit will not be returned in BX sinbe purpose of the function is to return the videden
only. If an application wants to obtain the menabegar bit, it should call the standard VGA BIOS
Function OFh.

Version 2.x Note: Unlike version 1.x VBE implementations, the meymabear flag will be returned.
The application should NOT call the standard VGAS8IFunction OFh if the mode was set with VBE
Function 02h.

This function is not guaranteed to return an a¢eurade value if the mode set was not done with VBE
Function 02h. In that case, the results are urismkbc

A5.2.6 Function 05h - Display Window Control

In VBE 1.2 implementations, the direct far callsien returns no Return Status information to the
application. Also, in the far call version, the AXd DX registers will be destroyed. Therefore if AX
and/or DX must be preserved, the application nusbdgrior to making the far call. The application
must still load the input arguments in BH, BL, &Xl(for Set Window). In VBE 2.0 implementations,
the BIOS will return the correct Return Status, thedefore the application must assume that AX and
DX will be destroyed.

This function is not intended for use in a lineande buffer mode, if this function is requested, th
function call will fail with the VBE Completion cedAH=03h.

A5.2.7 Function 06h - Get/Set Logical Scan Line Length
The desired width in pixels may not be achievabtahse of hardware considerations. The next larger

value will be selected that will accommodate trsrdd number of pixels, and the actual number of

Page 86 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

Application Programming Considerations

pixels will be returned in CX. BXreturns a vathat when added to a pointer into display memolty wi
point to the next scan line. For example, in VG#da13h this would be 320, but in mode 12h this
would be 80. DX returns the number of logical doaes based upon the new scan line length and the
total memory installed and usable in this displagen

This function is also valid in text modes. In texides the application should convert the charthager
length to pixel line length by getting the curreimiracter cell width through the XCharSize fietdmeed
in ModelnfoBlock, multiplying that times the desineumber of characters per line, and passing that
value in the CX register.

In text modes, this function will only work if thiee length is specified in character granularii. in 8
dot modes only multiples of 8 will work. Any valadich is not in character granularity will resaola
function call failure.

A5.2.8 Function 07h - Get/Set Display Start

This function is also valid in text modes. To tsefunction in text mode, the application should
convert the character coordinates to pixel cootetifay using XCharSize and YCharSize returned in
the ModelnfoBlock. If the requested Display Stadrdinates do not allow for a full page of video
memory or the hardware does not support memonypivigpthe Function call should fail and no
changes should be made. As a general caseqiiested Display Start is not available, fail the
Function call and make no changes.

A5.2.9 Function 08h - Set/Get DAC Palette Format

An application can determine if DAC switching isé&ble by querying Bit DO of the Capabilitiesdiel
of the VbelnfoBlock structure returned by VBE Fuma00h (Return Controller Information). The
application can then attempt to set the DAC palatith to the desired value. If the display conémol
hardware is not capable of selecting the requesietie width, then the next lower value that the
hardware is capable of will be selected. The iegysialette width is returned.

This function is not intended for direct color medewill return failure code 03h if called in meatt
color or YUV mode.

A5.2.10 Function 09h - Set/Get Palette Data

The need for BL=80h is for older style RAMDAC'savl programming the RAM values during
display time causes a "snow-like" effect on theeasr Newer style RAMDAC's don't have this
limitation and can easily be programmed at any,taeolder RAMDAC's require that they be
programmed during a non-display time only to steshow like effect seen when changing the DAC
values. When this is requested the VBE implemientaiill program the DAC with blanking on.
Check D2 of the Capabilities field returned by VBIfction 00h to determine if 80h should be used
instead of 00h.

When in 6 bit mode, the format of the 6 bits is |8 is done for speed reasons, as the applicatio
can typically shift the data faster than the Bl@s.c

VBE CORE FUNCTIONS VERSION 2.0 Page 87
DOCUMENT REVISION 1.1

Application Programming Considerations

All application should assume the DAC is defaulteélbit mode. The application is responsible for
switching the DAC to higher color modes using Famdd8h.

Query VBE Function 08h to determine the RAMDAC witefore loading a new palette.

A5.2.11 Function OAh - Return VBE Function Information

The Port and Memory location Sub-table does ntidecthe Frame Buffer Memory location. The
Frame Buffer Memory location is contained withia ModelnfoBlock returned by VBE Function 01h.

The protected mode code is assembled for a 32dEtgegment, when copying it, the application
must copy the code to a 32-bit code segment.

It is the responsibility of the application to ersstinat the selectors and segments are set upttyprre

If the memory location is zero, then only I/O maghperts will be used so the application does not
need to do anything special. This should be tfaittease for ALL cards that have I/O mapped
registers because it provides the best performance.

If the memory location is nonzero (there can bg ong), the application will need to create a ngw 3
bit selector with the base address that pointettphysical” location specified with the specifigdit.

Applications must use the same registers for tihetian 05h and Function 09h protected mode
interface that it would use in a real mode cdflisThcludes the AX register.

Function 07h protected mode calls have a diffédcentat.

AX = 4F07h
BL = 00h Set Display CRTC Start
= 80h Set Display CRTC Start during Vertical Retrace
CX = Bits 0-15 of display start address
DX = Bits 16-31 of display start address

The protected mode application must keep tradikeotolor depth and scan line length to calculate th
new start address. If a value that is out of ra&geogrammed, unpredictable results will occur.

Currently undefined registers may be destroyedtvélexception of ESI, EBP, DS and SS.

Page 88 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

Differences Between VBE Revisions

Appendix 6 - Differences Between VBE Revisions

6.1 VBE 1.0
Initial implementation: Implemented Functions 00-05h
Defined modes 100-107h

6.2 VBE 1.1
Second implementation: Added Functions 06h and 07h.
Added modes 108-10Ch
Added TotalMemory to VbelnfoBlock
Added NumberOflmagePages and
Reserved fields to ModelnfoBlock
6.3 VBE 1.2

Third implementation: Added Function 08h
Added Hi-color modes 10D-11Bh
Added Reserved field to VbelnfoBlock
Added New Direct color fields to ModelnfoBlock
Changed optional fields to mandatory in Modelnfaklo
Added Capabilities bit definition in VbelnfoBlock

6.4 VBE 2.0
Fourth implementation: Added Flat Frame Buffer supipd-unction 02h (D14)

Added protected mode support (Function OAh)

Added new DAC services for palette operations
(Function 09h)

Added new completion codes 02h and 03h

Added OEM information to VbelnfoBlock

Added two new definitions to Capabilities in VbelBfock

Added new fields to ModelnfoBlock

Certification and ROM requirements for Compliance

Clarified Memory Clear bit in Function 02h (D15)

Clarified Memory Clear bit in Function 03h (D15)

Added new return field in Function 06h

Added Supplemental Functions definition and defined
Supplemental Functions 10-16h

Added new mode to access all of video memory

Added wait for vertical retrace in Function 07h

Clarified and removed ambiguities in the earlier

VBE CORE FUNCTIONS VERSION 2.0 Page 89
DOCUMENT REVISION 1.1

Application Programming Considerations

specifications
Added new mode to access all video memory.

6.5 VBE 2.0, Rev. 1.1
Current implementation: Page 6, Section 3 - Re\ssatknce to read: Note that modes
may only be set if the mode exists in the VideoMagte
pointed to by the VideoModePTR returned in Funcfioh.
The exception to this requirement is the mode nuidéh.

Page 11, Section 4.2 - Added: If the memory locas zero,
then only I/O mapped ports will be used so theiegipbn does
not need to do anything special. This should édéfiault case
for ALL cards that have I/O mapped registers bee#us
provides the best performance.

and

If the memory location is nonzero (there can bg oné), the
application will need to create a new 32-bit selegith the
base address that points to the “physical” locapmtified with
the specified limit.

and

When the application needs to call the 32-bit Isavitch
function, it must then load the ES selector wigwalue of the
new selector that has been created. The bank svwgtohde
can then directly access its memory mapped regjsser
absolute offsets into the ES selector

(i.e., mov [es:10],eax to put a value into thestgiat
base+10).

It is up to the application code to save and resto previous
state of the ES selector if this is necessangffample in flat
model code)

Page 25, Section 4.5 - Revised sentence to rigadction
call D7 is set and the application assumes mngasi to the
IBM compatible mode set using VBE Function 02h, the
implementation will fail.

Page 29 - AddedNote: CX and DX, for both input and
output values, will be zero based.

Page 90 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

Differences Between VBE Revisions

Page 33 - Added: If the memory location is zerentbnly I/O
mapped ports will be used so the application doeseed to
do anything special. This should be the defask éar ALL
cards that have I/0O mapped registers becauseitipsthe
best performance.

and

If the memory location is nonzero (there can bg oné), the
application will need to create a new 32-bit selegith the
base address that points to the “physical” locapmtified with
the specified limit.

and

When the application needs to call the 32-bit lsavitch
function, it must then load the ES selector witgntalue of the
new selector that has been created. The bank svwgtohde
can then directly access its memory mapped regjsser
absolute offsets into the ES selector (i.e., mewl0],eax to
put a value into the register at base+10).

It is up to the application code to save and resto previous
state of the ES selector if this is necessangffample in flat
model code).

Page 69 - Added to first paragraph: However atsthnot
appear in the VideoModeList. Look in the Modelniwék to
determine if paging is required and, if it is regdj how itis
supported.

Page 88, Section A5.2.11 - Added: If the memorgtion is
zero, then only /O mapped ports will be used so th
application does not need to do anything spettak should
be the default case for ALL cards that have I/Opealp
registers because it provides the best performance.

and

If the memory location is nonzero (there can bg oné),
the application will need to create a new 32-técer with
the base address that points to the “physicaltilmtca
specified with the specified limit.

Corrected typographical errors and style.

Modified copyright notice; modified Support sectiadded
missing paragraphs regarding protected mode t¢idur@Ah
and section on protected mode considerations;ated&/po

VBE CORE FUNCTIONS VERSION 2.0 Page 91
DOCUMENT REVISION 1.1

Application Programming Considerations

in function 09h — 255 should have read 256; coegbcast of
‘color'in C example.

Page 92 VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

Appendix 7 - Related Documents

VGA Reference Manual(s)

Graphic Controller Data Sheets

VESA Monitor Timings

VBE/PM Monitor Power Management Standard

VBE/AI VESA Audio Interface

VBE/DDC VESA Display Data Channel Software Integf&tandard
VESA DDC Hardware Specification

VESA DPMS Hardware Specification

VBE CORE FUNCTIONS VERSION 2.0
DOCUMENT REVISION 1.1

Related Documents

Page 93

