
Last update: 11 Sep 2010

Mótsognir – The mighty gopher server

User manual

Written by Mateusz Viste

gopher://gopher.viste-family.net/1/projects/motsognir/

Mótsognir gopher server's manual - Table of Contents

Table of Contents

Introduction... 3
Installation (Linux with inetd)...4
Installation (Linux with xinetd)...5
Installation (Windows)..6
Configuration file..7
Directory listings... 9

Descript.ion files...10
Link files (gopherlinks)...10
Gophermaps.. 10

Authentication...12
CGI support... 13
Caps.txt support..15
Frequently asked questions (FAQ)..16
Legal mumbo-jumbo...17

Page 2 / 17

Mótsognir gopher server's manual - Introduction

Introduction

Mótsognir is a robust, reliable and easy to install open-source gopher server for Linux and
Windows. Mótsognir is not a standalone daemon - it requires an inetd-compatible superserver to
work.

Gopher is a distributed document search and retrieval network protocol designed for the
Internet. Its goal is to function as an improved form of Anonymous FTP, enhanced with
hyperlinking features similar to that of the World Wide Web.

I wrote Mótsognir primarily for fun, but it appears to have become a strong gopher server
implementation with some very nice points: easy to install, lightweight, secure... At first,
Mótsognir was born as a gopher module incorporated into my Grumpy web server1. After several
months of development, the gopher support in the Grumpy web server appeared to become a very
robust gopher implementation, so I decided to make it a standalone server.

The Mótsognir gopher server is meant to be used for small projects (like home servers), but
should scale well on bigger architectures as well. All the configuration is done via a single
configuration file, which has very reasonable defaults. That makes Mótsognir easily maintainable,
and allows the administrator to have a full knowledge of what features are allowed/enabled on the
server, and what's not. Mótsognir supports also server-side CGI applications, is plainly
compatible with UTF-8 filesystems, and is entirely written in FreeBASIC2.

1 http://www.grumpy-server.net/
2 http://www.freebasic.org/

Page 3 / 17

Mótsognir gopher server's manual - Installation (Linux with inetd)

Installation (Linux with inetd)

Installing Mótsognir on a Linux host is very easy. On the first place, you will have to copy
the motsognir executable to /sbin (or /usr/sbin, if you prefer), and the motsognir.cfg configuration
file to /etc. As mentioned previously, Mótsognir needs an inetd-like superserver to work. If you
are using the basic inetd (included by default in many Linux distributions), you will have to add
the following line to /etc/inetd.conf:

gopher stream tcp nowait root /sbin/motsognir

Important things here are: "gopher", which is the name of service to bind to. You will have to
check if the gopher service has its entry in /etc/services. "root" is the name of the user which has
to be used to run the motsognir process. Never use root to run motsognir (or any other public
daemon) – the example above is just that: an example. Obviously, you will have to check if the
user you choosed to run motsognir exists in your system, and let him write to
/var/log/motsognir.log, read from /etc/motsognir.cfg and execute /sbin/motsognir. The easiest way
to do that is simply to run "chown user file" on each file, where "user" is the username you
choosed to run motsognir, and "file" is the file you want to set permissions on. When the inetd
configuration is done, you'll have to restart the superserver (or the whole machine). In Debian,
restarting inetd can be done by running the command "kill -HUP `cat /var/run/inetd.pid`".

Page 4 / 17

Mótsognir gopher server's manual - Installation (Linux with xinetd)

Installation (Linux with xinetd)

If your system is running xinetd, the first steps will be similar to the inetd case: on the first
place you will have to copy the motsognir executable to /sbin or /usr/sbin, and motsognir.cfg to
/etc. The behavior of xinetd is very similar to inetd. However, the configuration file has a
different syntax. Some distributions have a unique configuration file for xinetd, other use separate
files for each service (these files are usually placed in /etc/xinet.d/). In any case, you will need to
add such (or similar) lines somewhere in the configuration of xinetd to let it know about
Mótsognir:

service gopher
{
 disable = no
 socket_type = stream
 protocol = tcp
 wait = no
 user = root
 server = /sbin/motsognir
 instances = 100
 per_source = 10
 log_type = FILE /var/log/xinetd-motsognir.log
 log_on_success = HOST PID DURATION
 log_on_failure = HOST
}

Important things here are: "service gopher", which is the name of the service (port) to bind
to. You will have to check if the gopher service has its entry in /etc/services. "root" is the name of
the user which has to be used to run the grumpy process. Take care to never use root to run
Grumpy (or any other public daemon). The above example is just a dumb example, for you to get
the general idea. However, you may want to run Mótsognir under the root account for
troubleshooting purposes. Obviously, you will have to check if the user you choosed exists in
your system, and let him write to /var/log/motsognir.log, read from /etc/motsognir.cfg and
execute /sbin/motsognir. The easiest way to do that is simply to run "chown user file" on each
file, where "user" is the username you want the gopher service to run on, and "file" is the file you
want to set permissions on. When the xinetd configuration is done, you'll have to restart the
superserver (or the whole machine). In most distributions, restarting xinetd can be done by
running "/etc/init.d/xinetd restart". For more details on available features, see the xinetd manual.

Page 5 / 17

Mótsognir gopher server's manual - Installation (Windows)

Installation (Windows)

Although being primarily written for Linux, Mótsognir is also available for the Windows
platform. I wouldn't recommend to use Mótsognir (nor any server application) on a Windows
platform, but it's obviously up to you to make the choice. The Windows package of Mótsognir
contains all things which are required to run the gopher server (executable file, an inetd-like
wrapper, etc). All you have to do is launch the batch files "start-gopher.bat". This batch file will
execute the inetd wrapper, binding Mótsognir to a network socket.

As explained in the "Authentication" part of this manual, the Mótsognir gopher server looks
for ".motsognir.auth" files in directories which have to be password-protected. You will quickly
notice that Windows Explorer doesn't allow to create files beginning by a dot. That's why you will
have to use some kinds of tricks to create the file. One way would be to run the "echo. >
.motsognir.auth" command from within the command-line command.

After being started, the Mótsognir server will listen on the port TCP/70. If you would like to
check whether it's active or not, you can simply type the "gopher://127.0.0.1/" URL in your
gopher browser, to see whether you get something in return or not.

Keep in mind, that Windows is not case-sensitive when it comes to handling file names.
Therefore, a request for "gopher://server.net/0/file.txt" will return the same resource than
"gopher://server.net/0/FILE.TXT" (there are big chances that you don't mind anyway).

Also, you should check your firewall's configuration, to avoid any filtering-related trouble
(basically, you need to open your TCP/70 port for incoming connections).

Page 6 / 17

Mótsognir gopher server's manual - Configuration file

Configuration file

The Mótsognir's configuration file is located at /etc/motsognir.cfg (Linux) or in Mótsognir's
directory (Windows), and should be readable by the user which will run the motsognir service.
The configuration file is a plain-text file, containing some tokens with values. All lines beginning
with the "#" character are ignored (and can be used to put some comments in the configuration
file).

If, for some reasons, Mótsognir can't access/read his configuration file, he will load default
values. Here is an example of a (rather well commented) configuration file:

##
#
CONFIGURATION FILE FOR THE MOTSOGNIR GOPHER SERVER
#
##

Server's hostname
The hostname the gopher server is reachable at. This setting is
mandatory. The gopher protocol is heavily relying on self-pointing
links.
GopherHostname=gopher.mydomain.net

Gopher TCP port
The TCP port on which the public Gopher server listens on.
Usually, gopher servers are published on port 70.
GopherPort=70

Root directory
That's the local path to Gopher resources.
Default path: /var/gopher/ on Linux, and .\gopher\ on Windows.
GopherRoot=

Set the loging verbosity
0 - No loging (not recommended, unless you really don't care about logs)
1 - Log basic informations, like Requests and type of answers. (Default)
2 - Log extended informations (requests + a summary of the answer + info)
3 - Debug verbose (maximum logging, mostly for debugging purpose)
Verbose=1

Specify custom log files
By default, Motsognir logs any events to /var/log/motsognir.log on
Linux, and .\motsognir.log on Windows. Below, you can specify a custom
log files to write to.
GopherLogFile=

CGI support
The line below enables/disables CGI support. Read the manual
for details.
Possible values: 0 (disabled) or 1 (enabled). Disabled by default.

Page 7 / 17

Mótsognir gopher server's manual - Configuration file

GopherCgiSupport=0

Caps.txt support
Caps.txt is a specific file-like selector, which allows a gopher client to
know more about the server's implementation (for example what the path's
delimiter is, where is the server located, etc). When enabled, Motsognir
will answer with caps-compatible data to requests for "/caps.txt".
Caps support is enabled by default (CapsSupport=1).
CapsSupport=1

Caps additionnal informations
If Caps support is enabled, you can specify there some additional
informations about your server. These informations will be served
to gopher clients along with the CAPS.TXT data.
Example:
CapsServerArchitecture=Linux/i386
CapsServerDescription=This is my server
CapsServerGeolocationString=Dobrogoszcz, Poland
CapsServerArchitecture=
CapsServerDescription=
CapsServerGeolocationString=

[End of file here]

Page 8 / 17

Mótsognir gopher server's manual - Directory listings

Directory listings

As any other gopher server, Mótsognir will present to gopher clients listings of available
directories with a specific presentation. A specific requirement of the Gopher protocol is that it
needs to provide a "type" for every resource. To detect that gopher type, Mótsognir is simply
basing on the file's extension. Below is a table containing all relations between gopher filetypes
and real file extensions (at least that's the way Mótsognir handles them):

Gopher type Description Files binded to this gopher type

0 Plain text file *.txt

1 Directory listing All directories

2 CSO search query -

3 Error message -

4 BinHex encoded text file -

5 Binary (PC-DOS) archive file -

6 UUEncoded text file -

7 Search engine query -

8 Telnet session pointer -

9 Binary file All files which doesn't fit into any other
category

g GIF image file *.gif

h HTML file *.htm, *.html, *.gopherlink containing an
"URL" selector

i Informational message -

I Image file (other than GIF) *.jpg, *.jpeg, *.png, *.bmp, *.pcx, *.ico,
*.tif, *.tiff, *.svg, *.eps

s Audio file *.mp3, *.mp2, *.wav, *.mid, *.wma, *.flac,
*.mpc, *.aiff, *.aac

P PDF file *.pdf

M MIME encoded message -

; Video file -

Then, once all filetypes present in a given directory are known, Mótsognir will send a
directory listing to the remote gopher client.

Page 9 / 17

Mótsognir gopher server's manual - Directory listings

Descript.ion files

When asked to list the content of directory, Mótsognir will look after the "descript.ion" files
(if found in the listed directory). If found, the "descript.ion" will be parsed to output descriptions
for listed items. A "descript.ion" file is just a basic text file, with the following structure (of
course, you will have to replace every <tab> with a real tabulation):

filename1.txt<tab>This is the description of the first file
filename2.txt<tab>This is the description of the second file
filename3.txt<tab>This is the description of the third file
...

Link files (gopherlinks)

The Gopher protocol is able to handle linking to external resources in a very neat way: links
are part of the protocol itself, not part of the document (as in HTTP). That's why creating gopher
links requires a special trick. For the purpose of gopher links, Mótsognir uses files with the
extension *.gopherlink. Let's say, we would like to put a link to a gopher site located at
gopher://mygopher.server.net/1/myfolder. We would create a file (say, "link-to-my-
server.gopherlink") with the following content:

Server=mygopher.server.net
Selector=/myfolder
Type=1
Port=70
Description=This is a link to my folder on my gopher server

The only parameter of the file which is really required is (obviously) "Server". All other
parameters will be set to default values (no selector, type=1, port=70). If no description is
provided in the gopherlink file, then the server's address will be used. Note, that you can add links
to HTTP servers, too. For a link pointing at http://www.mydomain.com/stuff.htm, you'll have to
use a very short gopherlink file, containing just the "Selector" token...

Selector=URL:http://www.mydomain.com/stuff.htm

...and optionally a description (the "Server" token is not used for HTTP links).

Gophermaps

Last, but not least, there are situations where you would like to have the absolute control on
what (and how) the server will display a directory. That's why Mótsognir is supporting
gophermaps. If Mótsognir finds a file called "gophermap" (without any extension) in a directory,
then it doesn't check the directory content, and simply outputs to the user the content of the
gophermap. A gophermap file must contain gopher entries as described by the RFC 1436. There's
an example of a gophermap file (of course <tab> have to be replaced by real tabs!):

Page 10 / 17

Mótsognir gopher server's manual - Directory listings

iWelcome to my gopher server!<tab>fake<tab>null<tab>0
i<tab>fake<tab>null<tab>0
0About my server<tab>/about.txt<tab>mygopher.domain.net<tab>70
1Download<tab>/download<tab>mygopher.domain.net<tab>70
1A link to a friend's server<tab><tab>friend.domain.net<tab>70
hMy Website<tab>URL:http://mywebsite.com<tab><tab>

Note, that you can omit the server's address and server's port parts. If you don't specify a port,
Mótsognir provides the one your server is using (usually 70). If you don't specify a host,
Mótsognir provides your server's hostname. If you specify a relative selector (not beginning by a /
character) instead of an absolute path, Mótsognir sticks on the path of the currently browsed
directory (but only if the host part is omitted, or pointing to your own server).

Therefore, a simpler form of the above gophermap could look like that:

iWelcome to my gopher server!
i
0About my server<tab>about.txt
1Download<tab>download
1A link to a friend's server<tab>friend.domain.net<tab>70
hMy Website<tab>URL:http://mywebsite.com

Page 11 / 17

Mótsognir gopher server's manual - Authentication

Authentication

The gopher protocol doesn't provide any standardized methods for authentication. However,
Mótsognir provides his own mechanism to perform login/password authentication over gopher.

The authentication can be requested on a per-directory basis. It means that some directories
on the server can be protected by a password, and other not. Note, that if a directory is protected,
then all its subdirectories becomes protected, too.

To protect a given directory, you need only to put a file called ".motsognir.auth" in it. This
file will contain all logins/passwords that are allowed to access the content of this directory. Here
is an example of such a ".motsognir.auth" file:

Some comments
john:crazydwarf
angela:kitty
A comment line again
mark:a complex passphrase

Any line which begins with a pound character (#) is ignored. Login/password couples are
stored in the form "login:password". Passwords are allowed to contain spaces or special
characters. Both logins and passwords are case-sensitive.

Warning: Altough it might seem cool to perform authentication stuff over gopher, keep in mind
that the authentication method used by Mótsognir is not secure (probably as much secure as the basic
HTTP authentication method used by web servers, but this still is not really secure). The password
provided by the user at authentication time will transit in clear text over the network (so it could be
catched by anyone who is between the user and the gopher server). Besides, after credentials are
checked by the server, Mótsognir provides an authorization token to the user - this token will be visible
in the URL as a string of hexadecimal characters.

Page 12 / 17

Mótsognir gopher server's manual - CGI support

CGI support

Mótsognir supports CGI application, which allows to run custom scripts and applications
interacting with the gopher client. The only supported CGI programs are applications which
output text data (binary data won't be interpreted properly by the Mótsognir's CGI parser).
Fortunately, CGI scripts outputting binary stuff are rather rare. Note, that CGI support is not
available on the Windows port of the Mótsognir server.

Let's see how does CGI work.

Each time a client requests the URL corresponding to your CGI program, the server will
execute it in real-time, then the output of your program will go more or less directly to the client.
In fact, when it comes to answer to the client, the CGI application will output a gopher response
(ie. a plain text file for file type #0, a directory listing for file type #1, etc...). This response will
be catched by Mótsognir, and forwarded to the gopher client as being the request's answer.

The gopher server (in our case Mótsognir), may provide some informations to the CGI
application, by setting some environment variables (note, that for security reasons – and unlike
some other CGI implementations - Mótsognir will never feed CGI scripts with any command-line
parameters).

Mótsognir will set several environment variables, which can (and should) be used by the
called CGI script. Here is the complete list of these variables:

QUERY_STRING The URL parameters, as provided by the client
SERVER_SOFTWARE The name and version of the server software
SERVER_NAME The server's hostname, DNS alias, or IP address, used

for self-referencing links
GATEWAY_INTERFACE The revision of the CGI specification, as supported by

the server
SCRIPT_NAME Script name (for self-referencing links)
AUTH_USER The authenticated user (if there was any authentication)
REMOTE_USER Same as AUTH_USER

Note, that the QUERY_STRING variable will contain data inputed by the user. For type #7
items, it will contain the search string (on type #7 items, the gopher client usually asks the user
for a query, using some kind of a pop-up). For any other item's type, the QUERY_STRING
variable will contain the part of the URL after the first "?" character (if any). For example, for a
request on "gopher://mygopher.server.com/0/myprog.cgi?hellothere", the QUERY_STRING
variable will contain the data "hellothere".

Page 13 / 17

Mótsognir gopher server's manual - CGI support

Some other environment variables may be also set by your superserver (that is, inetd/xinetd,
or any mechanism alike). Here are some additional CGI variables which might be set (check the
documentation of your superserver for the list):

SERVER_PORT The port number to which the request was sent

REMOTE_HOST The hostname making the request.

REMOTE_ADDR The IP address of the remote host making the request

REMOTE_IDENT User name retrieved from the server via the
identification mechanism described by the RFC 931

If you want to use CGI scripts on your Mótsognir server, you will have to enable CGI
support in the Mótsognir's configuration file, and name your CGI program with the extension
*.cgi.

Page 14 / 17

Mótsognir gopher server's manual - Caps.txt support

Caps.txt support

Mótsognir supports caps.txt since version 0.99.1. Caps.txt is a file-like selector, which allows
a gopher client to know more about the server's gopher implementation (like what is the path
delimiter character, how are structured server's paths, what the server's location is, etc).

Caps.txt support is configurable via the Mótsognir's configuration file, using following
tokens:

Caps.txt support
Caps.txt is a specific file-like selector, which allows a gopher client to
know more about the server's implementation (for example what the path's
delimiter is, where is the server located, etc). When enabled, Motsognir
will answer with caps-compatible data to requests for "/caps.txt".
Caps support is enabled by default (CapsSupport=1).
CapsSupport=1

Caps additionnal informations
If Caps support is enabled, you can specify there some additional
informations about your server. These informations will be served
to gopher clients along with the CAPS.TXT data.
Example:
CapsServerArchitecture=Linux/i386
CapsServerDescription=This is my server
CapsServerGeolocationString=Dobrogoszcz, Poland
CapsServerArchitecture=
CapsServerDescription=
CapsServerGeolocationString=

If you would like to have full access to what Mótsognir sends in Caps.txt data, you might
consider disabling the caps.txt support in Mótsognir (CapsSupport=0), and simply host your own
caps.txt file in the server's root. Here is an example of such custom caps.txt file:

CAPS
CapsVersion=1
ExpireCapsAfter=3600
PathDelimiter=/
PathIdentity=.
PathParent=..
PathParentDouble=FALSE
PathKeepPreDelimeter=FALSE
ServerSoftware=Motsognir
ServerSoftwareVersion=0.99.1
ServerArchitecture=Linux/i386
ServerDescription=This is my gopher server
ServerGeolocationString=Dobrogoszcz, Poland

Page 15 / 17

Mótsognir gopher server's manual - Frequently asked questions (FAQ)

Frequently asked questions (FAQ)

Q: Does Mótsognir support special (nationalized) character sets in file names?

A: Yes, it does. Mótsognir implements support for UTF-8 encoded URLs, therefore it is able to
handle any existing language. Note, that it requires the local server's filesystem to be using
UTF-8 too, otherwise only the basic ASCII set will be handled.

Q: Can I use Mótsognir for commercial purpose, or adapt it to my own needs?

A: Yes, you definitely can. Mótsognir is released under the GNU/GPLv3 license, therefore
everyone is free to use it, modify it, and even sell it. However, you can't claim that you are the
author of this software, and you must provide the source code of any modification you do on
it (and you can't EVER drop the GPL licensing). Note, that if you add any feature or fix to
Mótsognir, I would be happy to add your code to the official release.

Q: Is there any way to run server-side applications on Mótsognir?

A: Mótsognir supports executable CGI scripts, which allows to run custom server-side scripts
(not available on the Windows platform).

Q: What's the maximum file size that Mótsognir can serve?

A: Mótsognir itself can serve files which are up to 8 exbibytes (EiB) big. However, there are
chances that your filesystem will limit you much sooner (for example EXT3 supports files up
to 2 TiB of size, while EXT4 supports files up to 16TiB).

Q: What does "Mótsognir" stand for?

A: In Norse mythology, Mótsognir is the father of the Dwarves. Mótsognir is the creation of
Odin and his brothers, Vili and Vé, who fashioned him out of Ymir's blood and bones in the
form of a maggot. He got a roughly humanoid appearance and a human-like intelligence,
which the rest of the Dwarves later inherited.

Q: Does Mótsognir support the HTTP protocol?

A: No. Mótsognir is a gopher server. Gopher is a protocol very different from HTTP. However, if
you send by mistake a HTTP request to Mótsognir (for example using a URL like
http://yourserver:70/), he will politely answer to you with a HTTP error message, explaining
what the mistake was.

Page 16 / 17

Mótsognir gopher server's manual - Legal mumbo-jumbo

Legal mumbo-jumbo

Copyright © Mateusz Viste 2008, 2009, 2010

gopher://gopher.viste-family.net/1/projects/motsognir/

All rights reserved. This product or documentation is protected by copyright and is
distributed under licenses restricting its use, copying, distribution and decompilation. See the
GNU General Public License as published by the Free Software Foundation, either version 3 of
the License, or (at your option) any later version for details.

The copyright owner gives no warranties and makes no representations about the contents of
this manual and specifically disclaims warranties of merchantability or fitness to any purpose.

The copyright owner reserves the right to revise this manual and to make changes from time
to time in its content without notifying any person of such revision or changes.

Trademarks

Unix is a registered trademark of UNIX System Laboratories, Inc. Windows, WindowsNT,
and Win32 are registered trademarks of Microsoft Corp. All other product names mentioned
herein are the trademarks of their respective owners.

Page 17 / 17

	Table of Contents
	Introduction
	Installation (Linux with inetd)
	Installation (Linux with xinetd)
	Installation (Windows)
	Configuration file
	Directory listings
	Descript.ion files
	Link files (gopherlinks)
	Gophermaps

	Authentication
	CGI support
	Caps.txt support
	Frequently asked questions (FAQ)
	Legal mumbo-jumbo

