/* * GENANN - Minimal C Artificial Neural Network * * Copyright (c) 2015-2018 Lewis Van Winkle * * http://CodePlea.com * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgement in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. * */ #include "genann.h" #include <assert.h> #include <errno.h> #include <math.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #ifndef genann_act #define genann_act_hidden genann_act_hidden_indirect #define genann_act_output genann_act_output_indirect #else #define genann_act_hidden genann_act #define genann_act_output genann_act #endif #define LOOKUP_SIZE 4096 double genann_act_hidden_indirect(const struct genann *ann, double a) { return ann->activation_hidden(ann, a); } double genann_act_output_indirect(const struct genann *ann, double a) { return ann->activation_output(ann, a); } const double sigmoid_dom_min = -15.0; const double sigmoid_dom_max = 15.0; double interval; double lookup[LOOKUP_SIZE]; #ifdef __GNUC__ #define likely(x) __builtin_expect(!!(x), 1) #define unlikely(x) __builtin_expect(!!(x), 0) #define unused __attribute__((unused)) #else #define likely(x) x #define unlikely(x) x #define unused #pragma warning(disable : 4996) /* For fscanf */ #endif double genann_act_sigmoid(const genann *ann unused, double a) { if (a < -45.0) return 0; if (a > 45.0) return 1; return 1.0 / (1 + exp(-a)); } void genann_init_sigmoid_lookup(const genann *ann) { const double f = (sigmoid_dom_max - sigmoid_dom_min) / LOOKUP_SIZE; int i; interval = LOOKUP_SIZE / (sigmoid_dom_max - sigmoid_dom_min); for (i = 0; i < LOOKUP_SIZE; ++i) { lookup[i] = genann_act_sigmoid(ann, sigmoid_dom_min + f * i); } } double genann_act_sigmoid_cached(const genann *ann unused, double a) { size_t j; assert(!isnan(a)); if (a < sigmoid_dom_min) return lookup[0]; if (a >= sigmoid_dom_max) return lookup[LOOKUP_SIZE - 1]; j = (size_t)((a-sigmoid_dom_min)*interval+0.5); /* Because floating point... */ if (unlikely(j >= LOOKUP_SIZE)) return lookup[LOOKUP_SIZE - 1]; return lookup[j]; } double genann_act_linear(const struct genann *ann unused, double a) { return a; } double genann_act_threshold(const struct genann *ann unused, double a) { return a > 0; } genann *genann_init(int inputs, int hidden_layers, int hidden, int outputs) { genann *ret; if (hidden_layers < 0) return 0; if (inputs < 1) return 0; if (outputs < 1) return 0; if (hidden_layers > 0 && hidden < 1) return 0; { const int hidden_weights = hidden_layers ? (inputs+1) * hidden + (hidden_layers-1) * (hidden+1) * hidden : 0; const int output_weights = (hidden_layers ? (hidden+1) : (inputs+1)) * outputs; const int total_weights = (hidden_weights + output_weights); const int total_neurons = (inputs + hidden * hidden_layers + outputs); /* Allocate extra size for weights, outputs, and deltas. */ const int size = sizeof(genann) + sizeof(double) * (total_weights + total_neurons + (total_neurons - inputs)); ret = malloc(size); if (!ret) return 0; ret->inputs = inputs; ret->hidden_layers = hidden_layers; ret->hidden = hidden; ret->outputs = outputs; ret->total_weights = total_weights; ret->total_neurons = total_neurons; } /* Set pointers. */ ret->weight = (double*)((char*)ret + sizeof(genann)); ret->output = ret->weight + ret->total_weights; ret->delta = ret->output + ret->total_neurons; genann_randomize(ret); ret->activation_hidden = genann_act_sigmoid_cached; ret->activation_output = genann_act_sigmoid_cached; genann_init_sigmoid_lookup(ret); return ret; } genann *genann_read(FILE *in) { int inputs, hidden_layers, hidden, outputs; int rc; int i; genann *ann; errno = 0; rc = fscanf(in, "%d %d %d %d", &inputs, &hidden_layers, &hidden, &outputs); if (rc < 4 || errno != 0) { perror("fscanf"); return NULL; } ann = genann_init(inputs, hidden_layers, hidden, outputs); for (i = 0; i < ann->total_weights; ++i) { errno = 0; rc = fscanf(in, " %le", ann->weight + i); if (rc < 1 || errno != 0) { perror("fscanf"); genann_free(ann); return NULL; } } return ann; } genann *genann_copy(genann const *ann) { const int size = sizeof(genann) + sizeof(double) * (ann->total_weights + ann->total_neurons + (ann->total_neurons - ann->inputs)); genann *ret = malloc(size); if (!ret) return 0; memcpy(ret, ann, size); /* Set pointers. */ ret->weight = (double*)((char*)ret + sizeof(genann)); ret->output = ret->weight + ret->total_weights; ret->delta = ret->output + ret->total_neurons; return ret; } void genann_randomize(genann *ann) { int i; for (i = 0; i < ann->total_weights; ++i) { double r = GENANN_RANDOM(); /* Sets weights from -0.5 to 0.5. */ ann->weight[i] = r - 0.5; } } void genann_free(genann *ann) { /* The weight, output, and delta pointers go to the same buffer. */ free(ann); } double const *genann_run(genann const *ann, double const *inputs) { double const *w = ann->weight; double *o = ann->output + ann->inputs; double const *i = ann->output; int h, j, k; double const *ret; /* Copy the inputs to the scratch area, where we also store each neuron's * output, for consistency. This way the first layer isn't a special case. */ memcpy(ann->output, inputs, sizeof(double) * ann->inputs); if (!ann->hidden_layers) { double *ret = o; for (j = 0; j < ann->outputs; ++j) { double sum = *w++ * -1.0; for (k = 0; k < ann->inputs; ++k) { sum += *w++ * i[k]; } *o++ = genann_act_output(ann, sum); } return ret; } /* Figure input layer */ for (j = 0; j < ann->hidden; ++j) { double sum = *w++ * -1.0; for (k = 0; k < ann->inputs; ++k) { sum += *w++ * i[k]; } *o++ = genann_act_hidden(ann, sum); } i += ann->inputs; /* Figure hidden layers, if any. */ for (h = 1; h < ann->hidden_layers; ++h) { for (j = 0; j < ann->hidden; ++j) { double sum = *w++ * -1.0; for (k = 0; k < ann->hidden; ++k) { sum += *w++ * i[k]; } *o++ = genann_act_hidden(ann, sum); } i += ann->hidden; } ret = o; /* Figure output layer. */ for (j = 0; j < ann->outputs; ++j) { double sum = *w++ * -1.0; for (k = 0; k < ann->hidden; ++k) { sum += *w++ * i[k]; } *o++ = genann_act_output(ann, sum); } /* Sanity check that we used all weights and wrote all outputs. */ assert(w - ann->weight == ann->total_weights); assert(o - ann->output == ann->total_neurons); return ret; } void genann_train(genann const *ann, double const *inputs, double const *desired_outputs, double learning_rate) { int h, j, k; /* To begin with, we must run the network forward. */ genann_run(ann, inputs); /* First set the output layer deltas. */ { double const *o = ann->output + ann->inputs + ann->hidden * ann->hidden_layers; /* First output. */ double *d = ann->delta + ann->hidden * ann->hidden_layers; /* First delta. */ double const *t = desired_outputs; /* First desired output. */ /* Set output layer deltas. */ if (genann_act_output == genann_act_linear || ann->activation_output == genann_act_linear) { for (j = 0; j < ann->outputs; ++j) { *d++ = *t++ - *o++; } } else { for (j = 0; j < ann->outputs; ++j) { *d++ = (*t - *o) * *o * (1.0 - *o); ++o; ++t; } } } /* Set hidden layer deltas, start on last layer and work backwards. */ /* Note that loop is skipped in the case of hidden_layers == 0. */ for (h = ann->hidden_layers - 1; h >= 0; --h) { /* Find first output and delta in this layer. */ double const *o = ann->output + ann->inputs + (h * ann->hidden); double *d = ann->delta + (h * ann->hidden); /* Find first delta in following layer (which may be hidden or output). */ double const * const dd = ann->delta + ((h+1) * ann->hidden); /* Find first weight in following layer (which may be hidden or output). */ double const * const ww = ann->weight + ((ann->inputs+1) * ann->hidden) + ((ann->hidden+1) * ann->hidden * (h)); for (j = 0; j < ann->hidden; ++j) { double delta = 0; for (k = 0; k < (h == ann->hidden_layers-1 ? ann->outputs : ann->hidden); ++k) { const double forward_delta = dd[k]; const int windex = k * (ann->hidden + 1) + (j + 1); const double forward_weight = ww[windex]; delta += forward_delta * forward_weight; } *d = *o * (1.0-*o) * delta; ++d; ++o; } } /* Train the outputs. */ { /* Find first output delta. */ double const *d = ann->delta + ann->hidden * ann->hidden_layers; /* First output delta. */ /* Find first weight to first output delta. */ double *w = ann->weight + (ann->hidden_layers ? ((ann->inputs+1) * ann->hidden + (ann->hidden+1) * ann->hidden * (ann->hidden_layers-1)) : (0)); /* Find first output in previous layer. */ double const * const i = ann->output + (ann->hidden_layers ? (ann->inputs + (ann->hidden) * (ann->hidden_layers-1)) : 0); /* Set output layer weights. */ for (j = 0; j < ann->outputs; ++j) { *w++ += *d * learning_rate * -1.0; for (k = 1; k < (ann->hidden_layers ? ann->hidden : ann->inputs) + 1; ++k) { *w++ += *d * learning_rate * i[k-1]; } ++d; } assert(w - ann->weight == ann->total_weights); } /* Train the hidden layers. */ for (h = ann->hidden_layers - 1; h >= 0; --h) { /* Find first delta in this layer. */ double const *d = ann->delta + (h * ann->hidden); /* Find first input to this layer. */ double const *i = ann->output + (h ? (ann->inputs + ann->hidden * (h-1)) : 0); /* Find first weight to this layer. */ double *w = ann->weight + (h ? ((ann->inputs+1) * ann->hidden + (ann->hidden+1) * (ann->hidden) * (h-1)) : 0); for (j = 0; j < ann->hidden; ++j) { *w++ += *d * learning_rate * -1.0; for (k = 1; k < (h == 0 ? ann->inputs : ann->hidden) + 1; ++k) { *w++ += *d * learning_rate * i[k-1]; } ++d; } } } void genann_write(genann const *ann, FILE *out) { int i; fprintf(out, "%d %d %d %d", ann->inputs, ann->hidden_layers, ann->hidden, ann->outputs); for (i = 0; i < ann->total_weights; ++i) { fprintf(out, " %.20e", ann->weight[i]); } }