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Abstract

There are widespread concerns that current trends in population and resource-use are
unsustainable, but the possibilities of an overshoot and collapse remain unclear and contro-
versial. Collapses have occurred frequently in the past five thousand years, and are often
followed by centuries of economic, intellectual, and population decline. Many different nat-
ural and social phenomena have been invoked to explain specific collapses, but a general
explanation remains elusive. Two important features seem to appear across societies that
have collapsed: (1) Ecological Strain and (2) Economic Stratification.

In this paper, the structure of a new model and several simulated scenarios that offer
significant implications are explained. The model has just four equations that describe the
evolution of the populations of Elites and Commoners, Nature, and accumulated Wealth.
Mechanisms leading to collapse are discussed and the measure “Carrying Capacity” is devel-
oped and defined. The model suggests that the estimation of Carrying Capacity is a practical
means for early detection of a collapse. Collapse can be avoided, and population can reach a
steady state at the maximum carrying capacity, if the rate of depletion of nature is reduced
to a sustainable level, and if resources are distributed equitably.

1 Introduction

There are widespread concerns that current trends in population and resource-use are unsustain-
able, but the possibilities of an overshoot and collapse remain unclear and controversial. How
real is the possibility of societal collapse? Can complex, advanced civilizations really collapse?
It is common to see human history as a relentless and inevitable trend toward greater levels of
social complexity, political organization, and economic specialization, with the development of
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more complex and capable technologies supporting ever-growing population, all sustained by the
mobilization of ever-increasing quantities of material, energy and information. Yet this is not
inevitable. In fact, cases where this seemingly near-universal, long-term trend has been severely
disrupted by a precipitous collapse —often lasting centuries— have been quite common. A brief
review of some examples of collapses suggests that the process of rise-and-collapse is actually a
recurrent cycle found throughout history, making it important to establish a general explanation
of this process [Tainter, 1988; Yoffee and Cowgill, 1988; Turchin and Nefedov, 2009; Chase-Dunn
and Hall, 1997; Goldstein, 1988; Modelski, 1987; Meadows et al., 1972].

The Roman Empire’s dramatic collapse (followed by many centuries of population decline,
economic deterioration, intellectual regression and the disappearance of literacy) is well known,
but it was not the first rise-and-collapse cycle in Europe. Prior to the rise of Classical Greco-Roman
civilization, both the Minoan and Mycenaean Civilizations had each risen, reached very advanced
levels of civilization, and then collapsed virtually completely [Morris, 2005; Redman, 1999]. The
history of Mesopotamia, the very cradle of civilization, agriculture, complex society and urban life,
presents a series of rise-and-declines including the Sumerians, the Akkadian, Assyrian, Babylonian,
Achaemenid, Seleucid, Parthian, Sassanid, Umayyad, and Abbasid Empires [Yoffee, 1979; Redman
et al., 2004]. In neighboring Egypt, this cycle also appeared repeatedly. In both Anatolia and in
the Indus Valley, the very large and long-lasting Hittite and Harrapan civilizations both collapsed
so completely that their very existence was unknown until modern archeology rediscovered them.
Similar cycles of rise and collapse occurred repeatedly in India, most notably with the Mauryan
and the Gupta Empires [Thapar, 2004; Jansen et al., 1991; Kenoyer, 1998; Edwards et al., 1971,
1973]. Chinese history is, very much like Egypt’s, full of repeated cycles of rises and collapses,
with each of the Zhou, Han, Tang and Song Empires followed by a very serious collapse of political
authority and socioeconomic progress [Chu and Lee, 1994; Needham and Wang, 1956; Lee, 1931].
Collapses are not restricted to the “Old World”. The collapse of Maya Civilization is well known
and evokes widespread fascination, both because of the advanced nature of Mayan society and
because of the depth of the collapse [Webster, 2002; Demerest et al., 2004]. As Jared Diamond
[Diamond, 2005] puts it, it is difficult to ignore “the disappearance of between 90 and 99% of the
Maya population after A.D. 800 . . . and the disappearance of kings, Long Count calendars, and
other complex political and cultural institutions.” In the central Highlands of Mexico, a number
of powerful states also rose to high levels of power and prosperity and then rapidly collapsed,
Teotihuacan (the sixth largest city in the world in the 7th C) and Monte Alban being just the
largest of these to experience dramatic collapse, with their populations declining to about 20-25%
of their peak within just a few generations[Tainter, 1988]. We know of many other collapses, and
it is likely that other collapses have also occurred in societies that were not at a sufficient level of
complexity to produce written records or archeological evidence. Despite the common impression
that societal collapse is rare, or even largely fictional, “The picture that emerges is of a process
recurrent in history, and global in its distribution” [Tainter, 1988]. See also Yoffee and Cowgill
[1988]; Goldstein [1988]; Ibn Khaldun [1958]; Kondratieff [1984]; Parsons [1991]. As Turchin and
Nefedov [Turchin and Nefedov, 2009] contend, there is a great deal of support for “the hypothesis
that secular cycles —demographic-social-political oscillations of a very long period (centuries long)
are the rule, rather than an exception in the large agrarian states and empires”.

This brings up the question of whether modern civilization is similarly susceptible. It may
be reasonable to believe that modern civilization, armed with its greater technological capacity,
scientific knowledge, and energy resources, will be able to survive and endure whatever crises
historical societies succumbed to. But the brief overview of collapses demonstrates not only the
ubiquity of the phenomenon, but also the extent to which advanced, complex and powerful societies
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are susceptible to collapse. The fall of the Roman Empire, and the equally —if not more— advanced
Han, Mauryan and Gupta Empires, as well as so many advanced Mesopotamian Empires, are all
testimony to the fact that advanced, sophisticated, complex, and creative civilizations can be both
fragile and impermanent.

A large number of explanations have been proposed for each specific case of collapse, including
one or more of the following: volcanoes, earthquakes, droughts, floods, changes in the courses
of rivers, soil degradation (erosion, exhaustion, salinization, etc), deforestation, tribal migrations,
foreign invasions, changes in technology (such as the introduction of ironworking), changes in
the methods or weapons of warfare (such as the introduction of horse cavalry, armored infantry
or long swords), changes in trade patterns, depletion of particular mineral resources (e.g. silver
mines), cultural decline and social decadence, popular uprisings, and civil wars. However, these
explanations are specific to each particular case of collapse rather than general. Moreover, even
for the specific case where the explanation applies, the society in question usually had already
experienced the phenomenon identified as the cause without collapsing. For example, the Minoan
society had repeatedly experienced earthquakes that destroyed palaces, and they simply rebuilt
them more splendidly than before. Indeed, many societies experience droughts, floods, volcanoes,
soil erosion, and deforestation with no major social disruption. The same applies to migrations,
invasions and civil wars. The Roman, Han, Assyrian, and Mauryan Empires were, for centuries,
completely hegemonic, successfully defeating the neighboring “barbarian” peoples who eventually
did overrun them. So external military pressure alone hardly constitutes an explanation for their
collapses. With both natural disasters and external threats, identifying a specific cause compels
one to ask, “yes, but why did this particular instance of this factor produce the collapse?” Other
processes must be involved, and, in fact, the political, economic, ecological, and technological
conditions under which civilizations have collapsed have varied widely. Individual collapses may
have involved an array of specific factors, with particular triggers, but a general explanation
remains elusive. Individual explanations may seem appropriate in their particular case, but the
very universal nature of the phenomenon implies a mechanism that is not specific to a particular
time period of human history, nor a particular culture, technology, or natural disaster [Tainter,
1988; Yoffee and Cowgill, 1988; Turchin, 2003].

In this paper we attempt to model collapse mathematically in a more general way. We propose
a simple model, not intended to describe actual individual cases, but rather to provide a general
framework that allows carrying out “thought experiments” for the phenomenon of collapse and
to test changes that would avoid it. Two important features seem to appear across societies
that have collapsed: (1) the stretching of resources due to the strain placed on the ecological
carrying capacity [Ponting, 1991; Redman, 1999; Redman et al., 2004; Kammen, 1994; Postan,
1966; Ladurie, 1987; Abel, 1980; Catton, 1980; Wood, 1998], and (2) the economic stratification
of society into Elites and Masses (or “Commoners”) [Brenner, 1985; Parsons, 1991; Turchin, 2005,
2006; Turchin and Nefedov, 2009; Diamond, 2005; Goldstone, 1991; Ibn Khaldun, 1958]. In many
of these historical cases, we have direct evidence of Ecological Strain and Economic Stratification
playing a central role in the character or in the process of the collapse [Diamond, 2005; Goldstone,
1991; Culbert, 1973; Lentz, 2000; Mitchell, 1990]. For this reason, our model includes these two
features. Although, like the Brander-Taylor (BT) model [Brander and Taylor, 1998], HANDY is
based on the classical predator-prey model, the inclusion of two societal classes introduces a much
richer set of dynamical solutions, including cycles of societal and ecological collapse, as well as the
possibility of smoothly reaching equilibrium (the ecological carrying capacity). We use Carrying
Capacity in its biological definition, as the population level that the resources of a particular
environment can maintain over the long term [Catton, 1980; Daly and Farley, 2003; Cohen, 1995].
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In this paper, we call these environmental resources “Nature”.
The paper is organized as follows: section 2 gives a brief review of the Predator-Prey model,

section 3 includes the mathematical description of HANDY, section 4 is a theoretical analysis of
the model equilibrium and possible solutions, section 5 presents examples of scenarios within three
distinct types of societies, section 6 presents an overall discussion of the scenarios from section 5,
and section 7 includes a short summary of the paper and a discussion of future work.

2 Predator-Prey Model

The predator-prey model was the original inspiration behind HANDY. This system of equations
was derived independently by two mathematicians, Alfred Lotka and Vitto Volterra, in the early
20th century [Lotka, 1925; Volterra, 1926]. This model describes the dynamics of competition
between two species, say, wolves and rabbits. The governing system of equations is ẋ = (ay)x− bx

ẏ = cy − (dx)y
(1)

In the above system, x represents the predator (wolf) population; y represents the prey (rabbit)
population; a determines the predator’s birth rate, i.e., the faster growth of wolf population due
to availability of rabbits; b is the predator’s death rate; c is the prey’s birth rate; d determines the
predation rate, i.e., the rate at which rabbits are hunted by wolves.

The predator and prey populations show periodic, out-of-phase variations about the equilibrium
values  xe = c/d

ye = b/a
(2)

A typical solution of the predator-prey system can be seen below:
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Predator (wolves) and Prey (rabbits) Populations
400 wolves

2,000 rabbits

200 wolves
1,000 rabbits

0 wolves
0 rabbits

0 150 300 450 600 750 900
Time (year)

x Predator : typical-solution wolves
y Prey : typical-solution rabbits

Predator

Prey

Figure 1: A typical solution of the predator-prey system

This typical solution can be obtained by running the system with the following parameter
values and initial conditions:


a = 3.0× 10−5 (rabbits.years)−1 b = 2.0× 10−2 years−1

c = 3.0× 10−2 years−1 d = 2.0× 10−4 (wolves.years)−1

x(0) = 1.0× 10+2 wolves y(0) = 1.0× 10+3 rabbits

(3)

Note consistency of the units on the left and right hand sides of (1) and (2). Predator population is
measured in units of wolves, Prey population is measured in units of rabbits, and Time is measured
in units of years.

3 HANDY

As indicated above, Human And Nature DYnamics (HANDY) was originally built based on the
predator-prey model. We can think of the human population as the “predator”, while nature (the
natural resources of the surrounding environment) can be taken as the “prey”, depleted by humans.
Based on the long history of collapse of civilizations discussed in the introduction, we separated
the population into “Elites” and “Commoners”, and introduced a variable for accumulated wealth.
For an analysis of this two-class structure of modern society, see Drăgulescu and Yakovenko [2001];
Banerjee and Yakovenko [2010]. We have also added a different dimension of predation whereby
Elites “prey” on the production of wealth by Commoners. As a result, HANDY consists of just
four prediction equations: two for the two classes of population, Elites and Commoners, denoted
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by xE and xC , respectively, one for the natural resources or Nature, y, and one for the accumulated
Wealth, w, referred to hereafter as “Wealth”. This minimal set of four equation seems to capture
essential features of the human-nature interaction and is capable of producing major potential
scenarios of collapse or transition to steady state.

A similar model of population and renewable resource dynamics based on the predator-prey
model was developed in the pioneering work of Brander and Taylor [1998], demonstrating that
reasonable parameter values can produce cyclical “feast and famine” patterns of population and
resources. Their model showed that a system with a slow-growing resource base will exhibit over-
shooting and collapse, whereas a more rapidly growing resource base will produce an adjustment of
population and resources toward equilibrium values. They then applied this model to the historical
case of Easter Island, finding that the model provides a plausible explanation of the population
dynamics known about Easter Island from the archeological and scientific record. They thus argue
that the Polynesian cases where population did collapse were due to smaller maximum resource
bases (which they call carrying capacity) that grew more slowly, whereas those cases which did
not experience such a collapse were due to having a larger resource base (i.e., a larger carrying
capacity). They then speculate whether their model might be consistent with other historical cases
of collapse, such as the ancient Mesopotamian and Maya civilizations or modern Rwanda.

However, the Brander-Taylor approach only models Population and Nature and does not include
a central component of these historical cases: economic stratification and the accumulation of
wealth. Brander and Taylor recognize that their model is simple, and that application to more
complex scenarios may require further development of the structure of the model. We have found
that including economic stratification, in the form of the introduction of Elites and Commoners, as
well as accumulated Wealth, results in a much richer variety of solutions, which may have a wider
application across different types of societies. Thus while the Brander-Taylor model has only two
equations, HANDY has four equations to predict the evolution of the rich and poor populations
(Elites and Commoners), Nature, and accumulated Wealth. (We examine other differences in
section 6.4 of the paper.) The HANDY equations are given by:

ẋC = βCxC − αCxC
ẋE = βExE − αExE
ẏ = γy(λ− y)− δxCy

ẇ = δxCy − CC − CE

(4)

3.1 Model Description

The total population is divided between the two variables, xC and xE, representing the population
of masses and of elites. The population grows through a birth rate β and decreases through a
death rate α. β is assumed to be constant for both Elites and Commoners but α depends on
Wealth as explained below.

Natural resources exist in three forms: nonrenewable stocks (fossil fuels, mineral deposits,
etc), renewable stocks (forests, soils, aquifers), and flows (wind, solar radiation, rivers). In fu-
ture versions of HANDY, we plan to disaggregate Nature into these three different forms, but
for simplification in this version, we have adopted a single formulation intended to represent an
amalgamation of the three forms. Thus, he equation for Nature includes a regeneration term,
γy(λ − y) , and a depletion term, −δxCy. The regeneration term has been written in the form
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of a logistic equation, with a regeneration factor, γ, and exponential regrowth for low values of y,
and saturation when y approaches λ, Nature’s capacity —maximum size of Nature in absence of
depletion [Brander and Taylor, 1998]. As a result, the maximum rate of regeneration takes place
when y = λ/2. Production is understood according to standard Ecological Economics formula-
tions as involving both inputs from, and outputs to, Nature (i.e., depletion of natural resources
and pollution of natural sinks) [Daly and Farley, 2003; Daly, 1996]. This initial version of HANDY
models the Depletion side of the equation as if it includes the reduction in Nature due to Pollution.
Future versions will differentiate Depletion from Pollution. The depletion term includes a rate of
depletion per worker, δ, and is proportional to both Nature and the number of workers. However,
the economic activity of Elites is modeled to represent executive, management, and supervisory
functions, but not engagement in the direct extraction of resources, which is done by Commoners.
Thus, only Commoners produce.

Technological change can raise the efficiency of resource use, but it also tends to raise both
per capita resource consumption and the scale of resource of extraction, such that, absent policy
effects, the increases in consumption often compensate for the increased efficiency of resource use.
These are associated with the phenomena referred to as the Jevon’s Paradox, and the “Rebound
Effect” [Polimeni et al., 2008; Greening et al., 2000]. For example, an increase in vehicle fuel-
efficiency technology tends to enable increased per capita vehicle miles driven, heavier cars, and
higher average speeds, which then negate the gains from the increased fuel-efficiency. The extent
of these effects varies, but in this initial model, we assume that the effects of these trends tend
to cancel each other out. In future versions, the rates of these trends could be adjusted in either
direction.

Finally, there is an equation for accumulated Wealth, which increases with production, δxCy,
and decreases with the consumption of the Elites and the Commoners, CC and CE, respectively.
The consumption of the Commoners (as long as there is enough wealth to pay them) is sxC , a
subsistence salary per capita, s, multiplied by the working population. The Elites pay themselves
a salary κ times larger, so that the consumption of the Elites is κsxE. However, once the wealth
becomes too small to pay for this consumption, i.e., when w < wth, the payment is reduced and
eventually stopped, and famine takes place, with a much higher rate of death. κ is meant to
represent here the factors that determine the division of the output of the total production of
society between elites and masses, such as the balance of class power between elites and masses,
and the capacity of each group to organize and pursue their economic interests. In this initial
version of the model, we hold that balance (κ) constant in each scenario, but we expect to develop
it further in later versions, so that it can be endogenously determined by other factors in the
model.

CC and CE, the consumption rates for the Commoner and the Elite respectively, are given by
the following equations: 

CC = min

(
1,

w

wth

)
sxC

CE = min

(
1,

w

wth

)
κsxE

(5)

Wealth threshold, wth, is a threshold value for wealth below which famine starts. It depends
on the “minimum required consumption per capita”, ρ:

wth = ρxC + κρxE. (6)
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Even when Commoners start experiencing famine, i.e., when w ≤ wth , the Elites continue
consuming unequally as indicated by the factor κ in the second term on the right hand side of (6).
A graphical representation of the consumption rates are given in the figure below.
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Figure 2: Consumption rates for Elites and Commoners as a function of Wealth. Famine starts
when C

sx
≤ 1. Therefore, Commoners start experiencing famine when w

wth
≤ 1, while Elites do not

experience famine until w
wth
≤ 1

κ
.

The death rates for the Commoner and the Elite, αC and αE, are functions of consumption
rates: 

αC = αm + max

(
0, 1− CC

sxC

)
(αM − αm)

αE = αm + max

(
0, 1− CE

sxE

)
(αM − αm)

(7)

The death rates vary between a normal (healthy) value, αm, observed when there is enough
food for subsistence, and a maximum (famine) value, αM that prevails when the accumulated
wealth has been used up and the population starves. The death rates αC and αE can be expressed
equivalently in terms of w

wth
, a graphical representation of which is given below.
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Figure 3: Death rates for Elites and Commoners as a function of Wealth. Elites experience famine
with a delay due to their unequal access to Wealth.

3.2 A Note on Units and Dimensions

There are three dimensions for quantities in HANDY:

1. Population (either Commoner or Elite), in units of people, also shown as ppl.

2. Nature/Wealth, in units of “eco-Dollars”/“Eco-Dollars”. (Capitalization is only used to
distinguish different scales for Nature and Wealth on the subsequent graphs.)

3. Time, in units of years.

The structure of model requires Nature and Wealth to be measured with the same units, therefore
we created the unit eco-dollar to serve this purpose. Other parameters and functions in the model
carry units that are compatible with the abovementioned dimensions following (4). For example,
Carrying Capacity, χ, and Maximum Carrying Capacity, χM , defined in section 4.1, are both
expressed in units of people (ppl).

4 Equilibrium Values and Carrying Capacity

We can use the model to find a sustainable equilibrium and maximum carrying capacity in different
types of societies. In order for population to reach an equilibrium, we must have αm ≤ βE ≤ βC ≤
αM . We define a dimensionless parameter, η:
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η =
αM − βC
αM − αm

(8)

Since we assume αm ≤ βC ≤ αM , 0 ≤ η ≤ 1.

4.1 Equilibrium when xE = 0 (No Elites)

Assuming xE ≡ 0, we can find the equilibrium values of the system:

xC,e =
γ

δ

(
λ− ηs

δ

)
ye = η

s

δ

we = ηρxC,e

(9)

We define χ, the Carrying Capacity for the population, to be equal to xC,e in (9), i.e., the
equilibrium value of the population in the absence of Elites:

χ =
γ

δ

(
λ− s

δ
η

)
(10)

Carrying capacity can be maximized if Nature’s regeneration rate is maximal, i.e., if ye = λ
2
.

This requires δ to be set equal to its optimal value, δ∗. From the second equation in (9), it can be
seen that δ∗ is given by:

δ∗ =
2ηs

λ
(11)

The Maximum Carrying Capacity, χM , is thus given by:

χM =
γ

δ∗

λ

2
=

γ

ηs

(
λ

2

)2

(12)

4.2 Equilibrium when xE ≥ 0 and κ = 1 (No Inequality)

If we set κ ≡ 1 and βE ≡ βC ≡ β, we can reach an equilibrium state for which xE ≥ 0. This
case models an equitable society of “Workers” and “Non-Workers”. We need a dimensionless free
parameter ϕ that sets the initial ratio of the Non-Workers to Workers:

ϕ =
xE(0)

xC(0)
(13)

The equilibrium values of the system can then be expressed as follows:
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

xC,e =
γ

δ

(
λ− ηs

δ
(1 + ϕ)

)
xE,e = ϕxC,e

ye = η
s

δ
(1 + ϕ)

we = ηρ(1 + ϕ)xC,e

(14)

The total population xe = xC,e + xE,e can still be maximized by choosing δ appropriately:

δ∗∗ =
2ηs

λ
(1 + ϕ) (15)

This δ∗∗ is larger than the optimal depletion factor given by (11). The difference arises because
Workers have to produce more than they need just for themselves in order to support Non-Workers.
For this choice of δ, total population is given by:

xe,M = (1 + ϕ)
γ

δ∗∗

λ

2
=

γ

ηs

(
λ

2

)2

(16)

As can be seen from (16), maximum total population in equilibrium is independent of ϕ and
conforms to the maximum carrying capacity given above by (12).

4.3 Equilibrium when xE ≥ 0 and κ ≥ 1 (Unequal Society)

It is possible to attain equilibrium in an unequal society if we can satisfy the following condition:

αM − βE
κ(αM − αm)

=
αM − βC
αM − αm

= η. (17)

The general condition αm ≤ βE ≤ βC ≤ αM must hold in all cases for an equilibrium to be feasible.
The equilibrium values in this general case can be expressed as follows:

xC,e =
γ

δ

(
λ− ηs

δ
(1 + κψ)

)
xE,e = ψxC,e

ye = η
s

δ
(1 + κψ)

we = ηρ(1 + κψ)xC,e

(18)

The free parameter, ψ, is the equilibrium ratio xE,e/xC,e, apparent from the second equation
in (18). As opposed to ϕ, ψ cannot be easily related to the initial conditions; rather, it can be
determined from the result of a simulation.

Again, the total population xe = xC,e + xE,e can be maximized by choosing δ appropriately:

δ∗∗∗ =
2ηs

λ
(1 + κψ) (19)
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This required depletion rate δ∗∗∗ can be even larger than the optimal δ given by (15) depending
upon the values of κ and ψ. In the presence of inequality, the maximum total population is
no longer independent of κ and ψ and is smaller than the maximum carrying capacity given by
equations (12) and (16):

xe,M = (1 + ψ)
γ

δ∗∗∗

λ

2
=

γ

ηs

(
λ

2

)2(
1 + ψ

1 + κψ

)
(20)

5 Scenarios

We will discuss three sets of scenarios:

1. Egalitarian society (No-Elites): Scenarios in which xE = 0.

2. Equitable society (with Workers and Non-Workers): Scenarios in which xE ≥ 0 but κ ≡ 1.

3. Unequal society (with Elites and Commoners): Scenarios in which xE ≥ 0 and κ ≥ 1.

For all of these scenarios, we start the model with the following parameter values and initial
conditions, unless otherwise stated:

αm = 1.0× 10−2 αM = 7.0× 10−2

βC = 3.0× 10−2 βE = 3.0× 10−2

γ = 1.0× 10−2 λ = 1.0× 10+2

s = 5.0× 10−4 ρ = 5.0× 10−3

xC(0) = 1.0× 10+2

y(0) = λ w(0) = 0

(21)

As indicated above, the values of κ and xE(0) determine the type of society. Within each type
of society, we obtain different scenarios by varying the depletion factor δ.

In this section, we will show that HANDY is capable of modeling three distinct types of societies
by changing κ and xE(0). By controlling δ, each society can attain a sustainable equilibrium.
Appropriate choice of δ can make this equilibrium optimal, i.e., with maximum total population.
Increasing δ above its optimal value makes the approach toward equilibrium oscillatory. Such an
equilibrium is suboptimal, and Carrying Capacity is below its Maximum value, χM . It is also
possible to reach a suboptimal equilibrium by making δ lower than its optimal value. However, in
the latter case, the approach toward equilibrium would be a soft landing rather than oscillatory.

When δ is increased even further, the society goes into cycles of prosperity and collapse. In-
creasing δ beyond a certain point will result in a Type-II collapse (full), examples of which are
presented in sections 5.1.4, 5.2.4, and 5.3.2.

It is important to understand the inter-relation of the depletion factor, δ, and the Carrying
Capacity, χ. The further δ is taken away from its optimal value, the further χ moves away from its
maximum value, χM . An equilibrium can be reached if and only if χ is not too far away from χM ,
which means δ cannot be too far away from its optimal value, given by equations (11), (15), and
(19) in the three types of societies under consideration. Note that in all of the scenario outputs
presented below (for the three types of societies under consideration), Carrying Capacity (χ) and
the Maximum Carrying Capacity (χM) are calculated from their defining equations (10) and (12),
respectively.
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5.1 Egalitarian Society (No-Elites)

In the four following scenarios, κ does not play any role since we set xE ≡ 0. We start the
depletion rate from δ = δ∗, the optimal equilibrium value that maximizes the Carrying Capacity,
and increase it slowly to get additional scenarios. The horizontal red line in the graphs for the
four scenarios of this section represents the zero population of Elites.

5.1.1 Soft Landing to Equilibrium when xE = 0
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  Carrying
  Capacity 

Figure 4: Soft landing to the optimal equilibrium when Elite population (marked in red) equals
zero.

In this case, δ = δ∗ = 6.67 × 10−6. Therefore, the carrying capacity, χ, is at its maximum level,
χM . Notice that Nature also settles to ye = λ/2, which is the value that results in the maxi-
mum regeneration rate. This maximal regeneration can in turn support a maximum sustainable
production and population.

If we set δ < δ∗, we still see a soft landing to the carrying capacity, χ. However, χ would be at a
lower level than χM because a sub-optimal δ cannot result in the maximum regenration of nature,
which is a necessity if we want to have the maximum sustainable population. The advantage of a
sub-optimal δ is a higher equilibrium level (compared to λ/2) for Nature.

It should be understood that choosing δ too small makes any equilibrium impossible sim-
ply because Commoners cannot even feed themselves and their population quickly collapses even
though Nature stays at its maximum capacity, λ. This is not a usual case as the urge for survival
guarantees humans extract their basic needs from nature, especially when natural resources are
abundant.
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5.1.2 Oscillatory Approach to Equilibrium when Elite population (marked in red)
equals zero.
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Figure 5: Oscillatory approach to equilibrium when Elite population (marked in red) equals zero.

In this scenario, δ is increased to δ = 2.5δ∗ = 1.67 × 10−5. As can be seen from figure 5, the
carrying capacity, χ, is lower than its maximum value, χM . Population initially overshoots the
carrying capacity, then oscillates and eventually converges to it since the amount of overshoot is
not too large, just about the order of χ. Note that at the time the (total) population overshoots
the Carrying Capacity, the Wealth also reaches a maximum and starts to decline.
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5.1.3 Cycles of Prosperity and Collapse when xE = 0
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Figure 6: Cycles of prosperity and collapse when Elite population (marked in red) equals zero.

In this scenario, δ is increased to δ = 4δ∗ = 2.67× 10−5. As can be seen, Population, Nature and
Wealth all collapse to a very small value. However, after depletion becomes small due to very low
number of workers, Nature gets a chance to grow back close to its capacity, λ. The regrowth of
Nature kicks off another cycle of prosperity which ends with another collapse. Simulation results
show that these cycles repeat themselves indefinitely.
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5.1.4 Type-II (Full) Collapse when xE = 0
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Figure 7: Type-II (full) collapse when Elite population (marked in red) equals zero. All the state
variables collapse to zero in this scenario due to over-depletion.

In this scenario, δ is increased further to δ = 5.5δ∗ = 3.67E − 5. The overshoot is so large that
forces Population, Nature and Wealth into a full collapse, after which there is no recovery. This is a
generic type of collapse that can happen for any type of society due to over-depletion. See sections
5.2.4 and 5.3.2 for examples of a Type-II collapse in equitable and unequal societies, respectively.

5.2 Equitable society (with Workers and Non-Workers)

We take the parameter values and the initial conditions to be the same as (21), except that this
time we set xE(0) = 25 (ϕ = 0.25) and κ = 1. We start with the optimal production per capita
δ = δ∗∗ (see (15)) and will gradually increase it in order to get the additional scenarios in this
subsection. Notice that in these cases, xC describes the Working Population, while xE describes
the Non-Working Population. Everybody consumes at the same level, since we set κ = 1, i.e., we
assume there is no inequality in consumption level for Workers and Non-Workers.
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5.2.1 No-Inequality: Soft Landing to Optimal Equilibrium
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Figure 8: Equilibrium in the presence of both Workers and Non-Workers can be attained with
slow growth and equitable salaries.

In this case, δ = δ∗∗ = 8.33 × 10−6. Notice that this is larger than the optimal value in the
absence of Non-Workers δ∗ = 6.67 × 10−6 even though all the other parameters are identical to
those in section 5.1.1. This difference arises because xE 6= 0, which in turn forces the workers to
produce extra in order to support the Non-Workers. Now, χ < χM because δ = δ∗∗ 6= δ∗. However,
by setting δ = δ∗∗, the optimal value of δ in the presence of Non-Workers, the total population,
xC +xE still reaches the maximum Carrying Capacity χM , the same as in section 5.1. See equation
(16) and section 4.2 for a mathematical description.

Similar comments as in section 5.1.1 apply here when we choose a sub-optimal δ.
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5.2.2 No-Inequality: Oscillatory Approach to Equilibrium
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Figure 9: Oscillatory approach to equilibrium in the presence of both Workers and Non-Workers
is possible when the overshoot is not too large.

In this case, δ = 2.64δ∗∗ = 2.20 × 10−5. The total population is equal to the actual Carrying
Capacity (smaller than the maximum Carrying Capacity).
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5.2.3 No-Inequality: Cycles of Prosperity, Overshoot and Collapse
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Figure 10: Cycles of prosperity, overshoot and collapse in the presence of Workers and Non-Workers

In this case, δ = 3.46δ∗∗ = 3.00 × 10−5. The result is similar to figure 6 presented in section
5.1.3. As before, the time at which the total population overshoots the actual Carrying Capacity
is indicated by the fact that Wealth starts to decrease. Partial collapses that occur after each cycle
of prosperity are of Type-II, even though they are followed by another cycle of growth. See section
5.3.2 for a discussion of a Type-II collapse.
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5.2.4 No-Inequality: Full Collapse

Population (ppl), Nature (eco$), and Wealth (Eco$)
80,000 ppl

100 eco$
2,000 Eco$

40,000 ppl
50 eco$

1,000 Eco$

0 ppl
0 eco$
0 Eco$

0 150 300 450 600 750 900
Time (Year)

"kappa * x R equivalent Elite population" : Current ppl
x P Commoner Population : Current ppl
chi population carrying capacity : Current ppl
chi M optimal population carrying capacity : Current ppl
y Nature : Current eco$
w Accumulated Wealth : Current Eco$

Non-Workers

Workers

Nature

Wealth
Carrying Capacity

Maximum Carrying Capacity

Figure 11: Type-II (full) collapse happens after a period of very fast growth.

In this case, δ = 5δ∗∗ = 4.33 × 10−5. Once again, we can see how a full collapse of Population,
Nature, and Wealth can occur due to over-depletion of natural resources as a result of high depletion
per capita.
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5.2.5 No-Inequality: Preventing a Full Collapse by Decreasing Average Depletion
per Capita
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Figure 12: The full collapse that happened in the previous scenario, figure 11, can be prevented by
reducing the average depletion per capita. This can be achieved by either increasing the ratio of
the Non-Working population or decreasing the average workload per worker, i.e., decreasing total
work hours per week.

This case is similar to the previous case (see section 5.2.4), except that we raised the ratio of Non-
Workers to Workers, ϕ, from 0.25 to 6. This corresponds to changing xE(0) from 25 to 600, while
keeping xC(0) = 100. By increasing the ratio of non-workers to workers, a sustainable equilibrium
can be reached due to lower average depletion per capita. This could also be interpreted as
modeling a reduction in the average workload per worker.

5.3 Unequal Society (with Elites and Commoners): xE ≥ 0 and κ ≥ 1

In our example of an unequal society, the Elites consume κ ∼ 10 – 100 times more than the
Commoners. Their population, plotted in red, is multiplied by κ to represent their equivalent
impact because of their higher consumption. That is why we use the label “Equivalent Elites” on
the graphs in this section, 5.3.

In the first two cases, we will discuss two distinct, but generic types of collapse in an unequal
society. In these two scenarios, κ = 100. Then we will show possibility of reaching an equilibrium
by reducing κ to 10 and adjusting the birth rates βE and βC independently. These two κ = 10
scenarios show that in order to reach a sustainable equilibrium in an unequal society, it is necessary
to have policies that limit inequality and control birth rates.
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5.3.1 Unequal Society: Type-I Collapse (Recovery of Nature)
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Figure 13: Population collapse following an apparent equilibrium due to a small initial Elite
population when κ = 100.

This scenario is precisely the same as the equilibrium without Elites case presented in 5.1.1 except
that here we set xE(0) = 1.0 × 10−3. This is indeed a very small initial seed of Elites. The two
scenarios look pretty much the same up until about t = 500 years after the starting time of the
simulation. The Elite population starts growing significantly only after t = 500, hence depleting
the Wealth and causing the system to collapse. Under this scenario, the system collapses due to
the scarcity of workers even though natural resources are still abundant, but because the depletion
rate is optimal, it takes more than 400 years after the Wealth reaches a maximum for the society
to collapse. In this example, Commoners die out first and Elites disappear later.

This scenario is one example of a Type-I collapse in which both Population and Wealth collapse
but Nature recovers (to its maximum capacity, λ, in the absence of depletion). Scarcity of workers
is the initial cause of a Type-I collapse, as opposed to scarcity of Nature for a Type-II collapse.
Recovery of Nature distinguishes a Type-I from a Type-II collapse.

22



5.3.2 Unequal Society: Type-II Collapse (Full Collapse)
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Figure 14: A fast full collapse due to both over-depletion and inequality (κ = 100).

This typical scenario for a full collapse is the result of running the model with the parameter values
and initial conditions given by (21). Examples of a Type-II (full) collapse in the egalitarian and
equitable societies are discussed in sections 5.1.4 and 5.2.4.

We set a small initial seed of xE(0) = 0.20, κ = 100, and a large depletion δ = 1.0 × 10−4,
so that both the depletion δ = 15δ∗ and the inequality coefficient κ = 100 are very large. This
combination results in a full collapse of the system with no recovery. The Wealth starts declining
as soon as the Commoner’s population goes beyond its carrying capacity, and then the full collapse
takes only about 250 additional years. The declining Wealth causes the fall of the Commoner’s
population (workers) with a time lag. The fast reduction in the number of workers combined with
scarcity of natural resources causes the Wealth to decline even faster than before. As a result, the
Elites —who could initially survive the famine due to their unequal access to consumable goods
(κ = 100)— eventually also die of hunger. Note that because both depletion and inequality are
large, the collapse takes place faster and at a much lower level of population than in the previous
case (see section 5.3.1) with a depletion rate of δ = δ∗ .
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5.3.3 Unequal Society: Soft Landing to Optimal Equilibrium
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Figure 15: With moderate inequality (κ = 10), it is possible to attain an optimal equilibrium by
controlling the birth rates.

The following parameter values and initial values can produce the current scenario (the rest are
exactly the same as (21)):

βC = 3.0× 10−2 βE = 3.0× 10−2

xC(0) = 1.0× 10+4 xE(0) = 3.0× 10+3

κ = 10 δ = 6.35× 10−6

(22)

The value for δ used in this scenario is δ∗∗∗ given by equation (19). It must be remembered that
ψ = 0.65 is not a parameter that we can choose. However, it can be read from the result of the
simulation since it is the equilibrium ratio of the Elite to Commoner population. See the second
equation in (18). On the other hand, η = 1

12
is determined by the death and birth rates as well

as the inequality coefficient. These paremeters are chosen in order to satisfy (17), the necessary
condition for attaining an equilibrium in an unequal society.

The same comments as in section 5.1.1 hold here if we choose a sub-optimal δ.
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5.3.4 Unequal Society: Oscillatory Approach to Equilibrium
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Figure 16: With δ ? δ∗∗∗, it is still possible to oscillate and converge to an equilibrium.

The parameter values and initial conditions in this scenario are exactly the same as the previous
scenario, presented in section 5.3.3, except for δ. It is increased to 1.3× 10−5, almost 2δ∗∗∗. This
results in a much lower Carrying Capacity compared to 5.3.3, as can be seen from a comparison of
figures 15 and 16. Therefore, the total final population in the present scenario is much less than
the total final population in the previous scenario, 5.3.3.

6 Discussion of Results

We conducted a series of experiments with the simple HANDY model, considering first an egal-
itarian society without Elites (xE = 0), next an equitable society (κ = 1) where Non-Workers
and Workers are equally paid, and finally an unequal society whose Elites consume κ times more
than the Commoners. The model was also used to find a sustainable equilibrium value and the
maximum carrying capacity within each of these three types of societies.

6.1 Unequal Society

The scenarios most closely reflecting the reality of our world today are found in the third group of
experiments (see section 5.3), where we introduced economic stratification. Under such conditions,
we find that collapse is difficult to avoid. Importantly, in the first of these unequal society scenarios,
5.3.1, even using an optimal depletion rate (δ∗) and starting with a very small number of Elites, the
solution appears to be on a sustainable path for quite a long time, then Elites grow and consume too
much, resulting in a famine among Commoners that eventually causes the collapse of society. This
Type-I collapse is due to a loss of workers, rather than a collapse of Nature. Despite appearing
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initially to be the same as the sustainable optimal solution obtained in the absence of Elites,
economic stratification changes the final result: the Elites become sizable and keep growing until
the society collapses.

In scenario 5.3.2, with a larger depletion rate, the decline of the Commoners occurs faster, while
the Elites are still thriving, but eventually the Commoners collapse completely, followed by the
Elites. It is important to note that in both of these scenarios, the Elites —due to their wealth—
do not suffer the detrimental effects of the environmental collapse until much later than the Com-
moners. We could posit that this buffer of wealth, as well as the initial apparently sustainable
trajectory, allows Elites to continue “business as usual” despite the impending catastrophe. It is
likely that this is an important mechanism that would help explain how historical collapses were
allowed to occur by seemingly oblivious elites (most clearly apparent in the Roman and Mayan
cases).

The final two scenarios in this set of experiments, 5.3.3 and 5.3.4, are designed to indicate the
kinds of policies needed to avoid this catastrophic outcome. They show that, in the context of
economic stratification, inequality must be greatly reduced and population growth must be strictly
controlled in order to avoid a societal collapse [Daly, 2008].

6.2 Egalitarian Society

In order to further understand what conditions are needed to avoid collapse, our first set of ex-
periments model a society without economic stratification and start with parameter values that
make it possible to reach a maximum carrying capacity (scenario 5.1.1). The results show that in
the absence of Elites, if the depletion per capita is kept at the optimal level of δ∗, the population
grows smoothly and asymptotes the level of the maximum carrying capacity. This produces a
soft-landing to equilibrium at the maximum sustainable population and production levels.

Increasing the depletion factor slightly (scenario 5.1.2) causes the system to oscillate, but still
reach a sustainable equilibrium, although, importantly, at a lower carrying capacity. Population
overshoots its carrying capacity, but since the overshoot is not by too much —of the order of the
carrying capacity— the population experiences smaller collapses that can cause it to oscillate and
eventually converge to a sustainable equilibrium. Thus, while social disruption and deaths would
occur, a total collapse is avoided.

A further increase in the depletion factor (scenario 5.1.3) makes the system experience oscil-
latory periods of growth, very large overshoots and devastating collapses that almost wipe out
society, but the eventual recovery of nature allows for the cycle to be repeated. These kinds
of cycles of prosperous growth followed by overshoot and an almost complete collapse may be
represented in the historical record

Increasing the depletion factor even further (scenario 5.1.4) results in a complete collapse of
the system. This shows that depletion alone, if large enough, can result in a collapse —even in
the absence of economic stratification.

6.3 Equitable Society (with Workers and Non-Workers)

As the second set of experiments (presented in section 5.2) show, HANDY allows us to model a
diverse range of societal arrangements. In this set of experiments, choosing xE ≥ 0 and κ = 1 has
allowed us to model a situation that can be described as having Workers and Non-Workers with
the same level of consumption, i.e., with no economic stratification. The Non-Workers in these
scenarios could represent a range of societal roles from students, retirees and disabled people, to
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intellectuals, managers, and other non-productive sectors. In this case, the Workers have to deplete
enough of Nature to support both the Non-Workers and themselves.

The first scenario, 5.2.1, shows that even with a population of Non-Workers, the total popu-
lation can still reach a sustainable equilibrium without a collapse. In scenario 5.2.2, we find that
increasing the depletion factor induces a series of overshoots and small collapses where population
eventually converges to a lower sustainable equilibrium. Like in an egalitarian society, scenario
5.2.3 shows us that increasing the depletion parameter further results in cycles of large overshoot-
ing, major collapses, and then eventual recovery of nature. Scenario 5.2.4 shows us that increasing
depletion per capita further can produce a total collapse with no recovery.

Finally, scenario 5.2.5, which is a replication of 5.2.4 with a much higher ratio of Non-Workers
to Workers, shows that a collapse in an equitable society could be avoided by reducing the average
depletion per capita. We note that this scenario could also represent a situation where, rather
than having paid Non-Workers, the workload per capita is reduced, with the whole population
working “fewer days a week”. Such a “work-sharing” policy has been successfully implemented
in Germany over the past few years for reducing unemployment [Baker and Hasset, 2012; Hasset,
2009]. Moreover, Knight et al. [2012] show, through a panel analysis of data for 29 high-income
OECD countries from 1970 to 2010, that reducing work hours can contribute to sustainability by
reducing ecological strain. This conclusion agrees with our comparison of the two scenarios, 5.2.5
and 5.2.4, presented above.

6.4 HANDY and Brander-Taylor Model

As previously mentioned, a similar use of the predator-prey approach was applied in the pioneering
work of Brander and Taylor [1998], hereafter called BT, to study the historical rise and fall of the
Easter Island population. In comparison to their model, with just two equations for Population and
Nature, the introduction of Elites and Commoners, and accumulated Wealth, results in a greater
variety and broader spectrum of potential solutions. Moreover, the collapse scenario presented in
BT is somewhat different from the ones presented above. As a matter of fact, the collapse scenario
presented in figure 3 of BT seems to be more of an oscillatory approach to equilibrium, similar
to the one shown in our figure 5, and not a collapse in the sense that we define in this paper.
Furthermore, the carrying capacity, in the sense we define in this paper, is also different from
what Brander and Taylor [1998] call carrying capacity. Indeed, their carrying capacity (K) is our
maximum nature or Nature’s capacity, λ.

Although our model development was carried out independently from what was done by Bran-
der and Taylor, our underlying approach is the same. However, we make certain different assump-
tions, and develop a more complex model structure that can apply to several types of societies
with different socioeconomic structures. Unlike works that tend to study further implications of
the two-dimensional model of BT [Anderies, 2000], the model we have developed introduces a more
complex set of possible feedbacks and non-linear dynamics, and a greater spectrum of potential
outcomes than the model presented in BT. This allows HANDY to model a different and wider
set of thought experiments.

7 Summary and Future Work

Collapses of even advanced civilizations have occurred many times in the past five thousand years,
and they were frequently followed by centuries of population and cultural decline and economic
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regression. Although many different causes have been offered to explain individual collapses, it
is still necessary to develop a more general explanation. In this paper we attempt to build a
simple mathematical model to explore the essential dynamics of interaction between population
and natural resources. It allows for the two features that seem to appear across societies that have
collapsed: the stretching of resources due to the strain placed on the ecological carrying capacity,
and the division of society into Elites (rich) and Commoners (poor).

The Human And Nature DYnamical model (HANDY) was inspired by the Predator and Prey
model, with the human population acting as predator and nature being the prey. When small,
Nature grows exponentially with a regeneration coefficient γ, but it saturates at a maximum value
λ. As a result, the maximum regeneration of nature takes place at λ/2, not at the saturation
level λ. The Commoners produce wealth at a per capita depletion rate δ, and the depletion is also
proportional to the amount of nature available. This production is saved as accumulated wealth,
which is used by the Elites to pay the Commoners a subsistence salary, s, and pay themselves κs,
where κ is the inequality coefficient. The population of Elites and Commoners grow with a birth
rate β and die with a death rate α which remains at a healthy low level when there is enough
accumulated food (wealth). However, when the population increases and the wealth declines, the
death rate increases up to a famine level, leading to population collapse.

We show how the carrying capacity —the population that can be indefinitely supported by a
given environment [Catton, 1980]— can be defined within HANDY, as the population whose total
consumption is at a level that equals what nature can regenerate. Since the regrowth of Nature is
maximum when y = λ/2, we can find the optimal level of depletion (production) per capita, δ∗ in
an egalitarian society where xE ≡ 0, δ∗∗(≥ δ∗) in an equitable society where κ ≡ 1, and δ∗∗∗ in an
unequal society where xE ≥ 0 and κ ≥ 1.

In sum, results of our experiments, discussed in section 6, indicate that either one of the two
features apparent in historical societal collapses —over-exploitation of natural resources and strong
economic stratification— can independently result in a complete collapse. Given economic strat-
ification, collapse is very difficult to avoid and requires major policy changes, including major
reductions in inequality and population growth rates. Even in the absence of economic stratifica-
tion, collapse can still occur if depletion per capita is too high. However, collapse can be avoided
and population can reach equilibrium if the per capita rate of depletion of nature is reduced to a
sustainable level, and if resources are distributed in a reasonably equitable fashion.

This version of HANDY so far contains only one region, and only renewable natural resources.
In the next version, we plan to include several extensions including:

• Disaggregation of Nature into nonrenewable stocks, renewable stocks, and flows.

• The introduction of “government policies” that can modify parameters such as depletion,
the coefficient of inequality and birth rate, to see whether it is possible to avoid a collapse
when the carrying capacity is exceeded.

• The introduction of multiple coupled regions to represent countries with different policies,
trade carrying capacity and resource wars.

We have posted HANDY on http://www.atmos.umd.edu/~ekalnay/handy-ver1.mdl We wel-
come our readers to download the code, perform other experiments, and post their results at the
same webpage.
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