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The Essence of the Course
If you walk out of this course with nothing else you should:

Understand database algorithms and techniques in order to:

1) Be a better, "expert" user of database systems.

2) Be able to use and compare different database systems.

3) Adapt the techniques when developing your own software.

This course opens the database system "black box".
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My Course Goals
My goals in teaching this course:
Summarize and present the information in a simple, concise, and 

effective way for learning.

Strive for all students to understand the material and pass the 
course.

Be available for questions during class time, office hours, and at 
other times as needed.

Provide a background on the fundamental concepts of database 
systems including transactions and concurrency.

Create opportunities to learn concepts by experimenting and 
programming with different database systems.

Encourage students to continue studying databases including 
further projects and graduate level research!
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Course Objectives
1) To learn how to manipulate data in memory and secondary 
storage and use index structures for improved performance

2) To understand the steps of query processing including 
parsing, translation, optimization, and execution

3) To understand the principles of transactions, concurrency, 
recovery, and distribution as they apply to databases

4) To apply fundamental knowledge of database techniques to 
be better users with the ability to use different database 
systems and compare their properties
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Your Course Goals
Your goals in taking this course:
To sufficiently learn the material to pass the course.

To learn algorithms and techniques that constitute the 
foundations of database theory and implementation.

To understand how a database system works in order to better 
understand how to use them properly.

To realize that database technology is present in many areas 
including operating systems, networks, and programming.

To form a background knowledge on databases, and determine 
if you want to continue with database related research.

To develop experience in using a variety of database systems.
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Academic Dishonesty
Cheating in all its forms is strictly prohibited and will be taken 
very seriously by the instructor.  

A guideline to what constitutes cheating:
Assignments
Working in groups to solve questions and/or comparing answers to 

questions once they have been solved.

Discussing HOW to solve a particular question instead of WHAT the 
question involves relative to the notes.

Copying code, even small code fragments, from other students.

You may discuss general ideas and syntax, but never share code!

Exams
All exams are closed book, so no course materials should be present.

Academic dishonesty may result in a "F" for the assignment or 
course and all instances are recorded in the Dean's office.
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Assignments
There will be weekly written and programming assignments.

Written Assignments (15% of overall grade):
Practice questions similar to midterm/final exams.

Will have some time in class but mostly as homework.

Programming Assignments (20% of overall grade):
Experience applying concepts to a variety of database systems.

Will be mostly done in lab but may take more than 2 hours.

Both written and programming assignments can be done 
individually or in pairs.

The assignments are critical to learning the material and 
are designed to prepare you for the exams!
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The In-Class Clicker Questions
To encourage attendance and effort, 5% of your overall grade 
is allocated to answering in-class questions using a clicker.
The clicker can be purchased at the bookstore and sold back to 

the bookstore like a used textbook.

The clicker is personalized to you with your student number.

At different times during the lectures, questions reviewing 
material will be asked.  Reponses are given using the clickers.

There will be at least 60 questions throughout the semester.  
Each question is worth 1 mark, and you need at least 50 right 
answers to get the full 5%.
That is, if you answer 40 questions right, you get 40/50 or 80%. 

No make-ups for forgetting clicker or missing class.

Page 9

COSC 404 - Dr. Ramon Lawrence

Database Implementation Project
For graduate students only:

20% of your mark is for a major database development project.

Goal of the project is to experiment with new database systems 
or experiment with novel techniques expanding on class 
material.

This is not implementing a web site with a relational database 
like COSC 304.
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How to Pass This Course
The most important things to do to pass this course:
Attend class
Read notes before class as preparation.

Do the written assignments
Important practice to learn the material for the exams!

Spend time doing the programming assignments
Programming with databases is a valuable, employable skill.

To get an “A” in this course do all the above plus:
Do additional practice questions.
Practice questions are especially helpful to re-enforce concepts.

Spend additional time programming
Programming assignments may take longer than a lab time.  Extra time 

invested will payoff significantly in grades and future jobs.
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Systems and Tools
Connect is used for a discussion board, for posting marks, and 
for anonymous feedback.
Please use the discussion board and feedback survey.

All software is available in the laboratory at SCI 234.

Access to database systems will be provided as needed. 

These systems will have separate user ids and passwords.
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COSC 304 vs. COSC 404

COSC 304
Introduction to 

Database Systems

COSC 404
Database System 
Implementation

Database Design and Programming
• Data models - ER, relational, XML, JSON
• Query languages - SQL, relational algebra
• Design project
• Database skills and techniques as a user
• How to use a DBMS ; how to build a database

Database System Implementation
• Storage and index structures
• Transaction management, concurrency control
• Query processing, recovery and reliability
• How to build a DBMS
• Non-relational systems and architectures
• How to select a DBMS
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Why are you here? 
Reasons Why People Take This Course

A) I need an upper-year Computer Science elective, and this 
course was all there was…

B) I liked COSC 304 (Intro. Databases) and thought this course 
may be okay too.

C) I am curious about what is in the database "black box".

D) I want to be a better developer and database user to improve 
my skills for future jobs.

E) I am interested in database research and advanced studies.
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What to Learn
What Topic are You Most Interested In?

A) Accessing data on hard drives and solid state drives

B) Learning how SQL queries get processed inside a database 
system

C) Learning how a database handles multiple users and 
recovers from failures

D) Experimenting with different databases like PostgreSQL, 
MongoDB, and MySQL

E) None of the above
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What do you expect? 
What Grade are You Expecting to Get?

A) A

B) B

C) C

D) D

E) F
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My Expectations
My goal is for you to learn the material and walk out of this 
course confident in your abilities:
To understand how a DBMS is constructed

To make intelligent decisions on data allocation, indexing, and 
physical designs

To describe how a DBMS supports concurrent users, 
transactions, and recovers from failure

I have high standards on the amount and difficulty of material 
that we cover.  I expect a strong, continual effort in keeping up 
with readings and doing assignments.

The course will be very straightforward – If you do the work, 
you will do well.

Your mark is 60% perspiration and 40% inspiration.
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Database System Implementation
Motivation

Key requirements of a database system:
1) Data Storage and Persistence:
How is data organized?  Where is it located?

2) Query Processing:
How does the user query the data? How efficient is it?

3) Transactions, Consistency, and Reliability:
What happens if the computer crashes while the user is updating data?

4) Concurrency:
Can multiple users access the data at the same time?  What happens if 

multiple users update the same data item?

5) Security:
How do you verify the user has access to the data?

6) Scalability:
How do you handle Big Data and lots of users? Page 18
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Databases Architectures
Not "One Size Fits All"

Relational databases (RDBMS) are still the dominant database 
architecture and apply to many data management problems.
Over $20 billion annual market in 2015.

However, recent research and commercial systems have 
demonstrated that "one size fits all" is not true.  There are better 
architectures for classes of data management problems:
Transactional systems: In-memory architectures

Data warehousing: Column stores, parallel query processing

Big Data: Massive scale-out with fault tolerance

"NoSQL": simplified query languages/structures for high 
performance, consistency relaxation
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COSC 304 Review Question
Question: What was the acronym used to describe  
transactional processing systems?

A) TP

B) OLAP

C) OLTP

D) DBMS
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Research Question
Question: What company is the largest database software 
vendor by sales volume?

A) Microsoft

B) Oracle

C) IBM

D) Google
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Database Architectures:
NoSQL vs Relational

"NoSQL" databases are useful for several problems not well-
suited for relational databases with some typical features:
Variable data: semi-structured, evolving, or has no schema

Massive data: terabytes or petabytes of data from new 
applications (web analysis, sensors, social graphs)

Parallelism: large data requires architectures to handle massive 
parallelism, scalability, and reliability

Simpler queries: may not need full SQL expressiveness

Relaxed consistency: more tolerant of errors, delays, or 
inconsistent results ("eventual consistency")

Easier/cheaper: less initial cost to get started

NoSQL is not really about SQL but instead developing data 
management architectures designed for scale.
NoSQL – "Not Only SQL"
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Example NoSQL Systems
MapReduce – useful for large scale, fault-tolerant analysis
 Hadoop, Pig, Hive

Key-value stores – ideal for retrieving specific items from a 
large set of data (architecture like a distributed hash table)
high-scalability, availability, and performance but weaker 

consistency and simpler query interfaces

Cassandra, Amazon Dynamo, Google BigTable, HBase

Document stores – similar to key-value stores except value is 
a document in some form (e.g. JSON)
MongoDB, CouchDB

Graph databases – represent data as graphs
Neo4J
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Survey Question
Question: Have you used any database system besides 
MySQL and Microsoft SQL Server used in COSC 304?

A) Oracle

B) MongoDB

C) PostgreSQL

D) More than two different databases used

E) No other databases used
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Why this Course is Important
DBMS technology has applications to any system that must 
store data persistently and has multiple users.
Even if you will not be building your own DBMS, some of your 

programs may need to perform similar functions.

The core theories expand on topics covered in operating 
systems related to concurrency and transactions.

A DBMS is one of the most sophisticated software systems. 
Understanding how it works internally helps you be a better user 

of the system.

Understanding of database internals is valuable if you will 
perform database administration duties or be responsible for 
deciding on a database architecture for an application.

Database technology is a key component of our IT infrastructure 
that will continue to require innovation in the future.
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Storage and Organization
Overview

The first task in building a database system is determining how 
to represent and store the data.

Since a database is an application that is running on an 
operating system, the database must use the file system 
provided by the operating system to store its information.
However, many database systems implement their own file 

security and organization on top of the operating system file 
structure.

We will study techniques for storing and representing data.
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Representing Data on Devices 
Physical storage of data is dependent on the computer system 
and its associated devices on which the data is stored.

How we represent and manipulate the data is affected by the 
physical media and its properties.
sequential versus random access

read and write costs

temporary versus permanent memory
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Review: 
Memory Definitions

Temporary memory retains data only while the power is on.
Also referred to as volatile storage.

e.g. dynamic random-access memory (DRAM) (main memory)

Permanent memory stores data even after the power is off.
Also referred to as non-volatile storage.

e.g. flash memory, hard drive, SSD, DVD, tape drives

Most permanent memory is secondary storage because the 
memory is stored in a separate device such as a hard drive.

Cache is faster memory used to store a subset of a larger, 
slower memory for performance.
processor cache (Level 1 & 2), disk cache, network cache
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Research Question
In-Memory Database

Question: Does an in-memory database need a secondary 
storage device for persistence?

A) Yes

B) No
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Review: 
Sequential vs. Random Access

RAM, hard drives, and flash memory allow random access.  
Random access allows retrieval of any data location in any 
order.

Tape drives allow sequential access.  Sequential access
requires visiting all previous locations in sequential order to 
retrieve a given location. 
That is, you cannot skip ahead, but must go through the tape in 

order until you reach the desired location.
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Review: 
Memory Sizes

Memory size is a measure of memory storage capacity.
Memory size is measured in bytes. 
Each byte contains 8 bits - a bit is either a 0 or a 1.

A byte can store one character of text.

Large memory sizes are measured in:
kilobytes (KBs) = 103 = 1,000 bytes 

kibibyte (KiB) = 210 = 1,024 bytes

megabytes (MBs) = 106 = 1,000,000 bytes

mebibyte (MiBs) = 220 = 1,048,576 bytes

gigabytes (GBs)    = 109 = 1,000,000,000 bytes

gibibytes (GiBs)    = 230 = 1,073,741,824 bytes

terabytes (TBs)     = 1012 = 1,000,000,000,000 bytes 

tebibytes (TiBs)     = 240 = 1,099,511,627,776 bytes
Page 8

COSC 404 - Dr. Ramon Lawrence

Transfer Size, Latency, and Bandwidth
Transfer size is the unit of memory that can be individually 
accessed, read and written.
DRAM, EEPROM – byte addressable

Hard drive, flash – block addressable (must read/write blocks)

Latency is the time it takes for information to be delivered after 
the initial request is made.

Bandwidth is the rate at which information can be delivered.
Raw device bandwidth is the maximum sustained transfer rate 

of the device to the interface controller.

Interface bandwidth is the maximum sustained transfer rate of 
the interface device onto the system bus.
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Memory Devices 
Dynamic Random Access Memory

Dynamic random access memory (DRAM) is general 
purpose, volatile memory currently used in computers.
DRAM uses only one transistor and one capacitor per bit.

DRAM needs periodic refreshing of the capacitor.

DRAM properties:
low cost, high capacity

volatile

byte addressable

latency ~ 10 ns

bandwidth = 5 to 20 GB/s
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Memory Devices 
Processor Cache

Processor cache is faster memory storing recently used data 
that reduces the average memory access time.
Cache is organized into lines/blocks of size from 64-512 bytes.

Various levels of cache with different performance.

Cache properties:
higher cost, very low capacity

cache operation is hardware controlled

byte addressable

latency – a few clock cycles

bandwidth – very high, limited by processor bus
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Memory Devices 
Flash Memory

Flash memory is used in many portable devices (cell phones, 
music/video players) and also solid-state drives.

NAND Flash Memory properties:
non-volatile

low cost, high capacity

block addressable

asymmetric read/write performance: reads are fast, writes 
(which involve an erase) are slow

erase limit of 1,000,000 cycles

bandwidth (per chip): 40 MB/s (read), 20 MB/s (write)
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Memory Devices 
EEPROM

EEPROM (Electrically Erasable Programmable Read-Only 
Memory) is non-volatile and stores small amounts of data.
Often available on small microprocessors.

EEPROM properties:
non-volatile

high cost, low capacity

byte addressable

erase limit of 1,000,000 cycles

latency: 250 ns
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Memory Devices
Magnetic Tapes

Tape storage is non-volatile and is used primarily for backup 
and archiving data.
Tapes are sequential access devices, so they are much slower 

than disks.

Since most databases can be stored in hard drives and RAID 
systems that support direct access, tape drives are now 
relegated to secondary roles as backup devices.
Database systems no longer worry about optimizing queries for 

data stored on tapes. 

"Tape is Dead. Disk is Tape. Flash is Disk. RAM Locality is 
King." – Jim Gray (2006), Microsoft/IBM, Turing Award Winner 1998 - For 
seminal contributions to database and transaction processing research and technical leadership 
in system implementation.
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Memory Devices 
Solid State Drives

A solid state drive uses flash memory for storage.

Solid state drives have many benefits over hard drives:
Increased performance (especially random reads)

Better power utilization

Higher reliability (no moving parts)

The performance of the solid state drive depends as much on 
the drive organization/controller as the underlying flash chips.
Write performance is an issue and there is a large erase cost.

Solid state drives are non-volatile and block addressable like 
hard drives.  The major difference is random reads are much 
faster (no seek time).  This has a dramatic affect on the 
database algorithms used, and it is an active research topic.
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Memory Devices 
Hard Drives

Data is stored on a hard drive on the 
surface of platters.  Each platter is 
divided into circular tracks, and each 
track is divided into sectors.  A sector is 
the smallest unit of data that can be read 
or written.   A cylinder i consists of the i-
th track of all the platters (surfaces).

The read-write head is positioned close 
to the platter surface where it 
reads/writes magnetically encoded data.

To read a sector, the head is moved 
over the correct track by the arm 
assembly.  Since the platter spins 
continuously, the head reads the data 
when the sector rotates under the head.

Head-disk assemblies allow multiple 
disk platters on a single spindle with 
multiple heads (one per platter) mounted 
on a common arm. Page 16

COSC 404 - Dr. Ramon Lawrence

Disk Controller and Interface
The disk controller interfaces between the computer system 
and the disk drive hardware.
Accepts high-level commands to read or write a sector. 

Initiates actions such as moving the disk arm to the right track 
and actually reading or writing the data.

Uses a data buffer and will re-order requests for increased 
performance.

The disk controller has the interface to the computer.
E.g. 3.0 Gbit/s SATA can transfer from disk buffer to computer 

at 300 MB/s.  Note that 7200 RPM disk has a sustained disk-to-
buffer transfer rate of only about 70 MB/sec.
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Device Performance Calculations
We will use simple models of devices to help understand the 
performance benefits and trade-offs.

These models are simplistic yet provide metrics to help 
determine when to use particular devices and their 
performance.
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Memory Performance Calculations
Memory model will consider only transfer rate (determined from 
bus and memory speed).  We will assume sequential and 
random transfer rates are the same.

Limitations:
There is an advantage to sequential access compared to 

completely random access, especially with caching.  Cache 
locality has a major impact as can avoid accessing memory.

Memory alignment (4 byte/8 byte) matters.

Memory and bus is shared by multiple processes.



4

Page 19

COSC 404 - Dr. Ramon Lawrence

Memory Performance Calculations
Example

A system has 8 GB DDR4 memory with 20 GB/sec. bandwidth.

Question 1: How long does it take to transfer 1 contiguous 
block of 100 MB memory?

transfer time = 100 MB / 20,000 MB/sec. = 0.005 sec = 5 ms

Question 2: How long does it take to transfer 1000 contiguous 
blocks of 100 KB memory?

transfer time = 1000 * (100 KB / 20,000,000 KB/sec.)

= 0.005 sec = 5 ms
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Disk Performance Measures
Disk capacity is the size of the hard drive.
= #cylinders * #tracks/cylinder * #sectors/track * #bytes/sector

Disk access time is the time required to transfer data.
= seek time + rotational latency + transfer time

Seek time – time to reposition the arm over the correct track.
Average is 1/3rd the worst.  (depends on arm position and target track)

Rotational latency – time for first sector to appear under head. 
Average latency is 1/2 of worst case. (one half rotation of disk)

 Transfer time – time to transfer data to memory.

Data-transfer rate – the rate at which data can be retrieved 
from disk which is directly related to the rotational speed.

Mean time to failure (MTTF) – the average time the disk is 
expected to run continuously without any failure.
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Disk Performance Example
Given a hard drive with 10,000 cylinders, 10 tracks/cylinder, 60 
sectors/track, and 500 bytes/sector, calculate its capacity.

Answer:
capacity = 10000 * 10 * 60 * 500 = 3,000,000,000 bytes

= 3,000,000,000 bytes / 1,048,576 bytes/MiB

= 2,861 MiB = 2.8 GiB

= 3,000 MB = 3 GB
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Disk Performance Example (2)
If the hard drive spins at 7,200 rpm and has an average seek 
time of 10 ms, how long does a 2,000 byte transfer take?

Answer:
transfer size = 2,000 bytes / 500 bytes/sector = 4 sectors

revolution time = 1 / (7200 rpm / 60 rpm/sec) = 8.33 ms

latency = 1/2 revolution time on average = 4.17 ms

transfer time = revolution time * #sectorsTransfered / #sectors/track

= 8.33 ms * 4 / 60 = 0.56 ms

total transfer time = seek time + latency + transfer time

= 10 ms + 4.17 ms + 0.56 ms = 14.73 ms
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Sequential versus Random
Disk Performance Example

A hard drive spins at 7,200 rpm, has an average seek time of 
10 ms, and a track-to-track seek time of 2 ms.   How long does 
a 1 MiB transfer take under the following conditions?  
Assume 512 bytes/sector, 64 sectors/track, and 1 track/cyl.

1) The data is stored randomly on the disk.
transfer size = 1,048,576 bytes / 512 bytes/sector =  2048 sectors

revolution time = 1 / (7200 rpm / 60 rpm/sec) = 8.33 ms

latency = 1/2 revolution time on average = 4.17 ms

transfer time = revolution time / #sectors/track

= 8.33 ms / 64 = 0.13 ms per sector

total transfer time = (seek time + latency + transfer time) * #sectors

= (10 ms + 4.17 ms + 0.13 ms)*2048 

= 29,286.4 ms = 29.3 seconds Page 24
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Sequential versus Random
Disk Performance Example (2)

2) The data is stored sequentially on the disk .
transfer size = 1,048,576 bytes / 512 bytes/sector =  2048 sectors

= 2048 sectors / 64 sectors/track = 32 tracks

latency = 1/2 revolution time on average = 4.17 ms

transfer time = revolution time / #sectors/track

= 8.33 ms / 64 = 0.13 ms per sector

total transfer time = seek time + latency + transfer time * #sectors +

track-to-track seek time * (#tracks-1)

= 10 ms + 4.17 ms + 0.13 ms*2048 + 2 ms * 31

= 342.41 ms = 0.34 seconds

3) What would be the optimal configuration of data if the hard 
drive had 4 heads?  What is the time in this case?
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Disk Performance Practice Questions
A Seagate Cheetah 15K 3.5" hard drive has 8 heads, 50,000 
cylinders, 3,000 sectors/track, and 512 bytes/sector.  Its average 
seek time is 3.4 ms with a speed of 15,000 rpm, and a reported 
data transfer rate of 600 MB/sec on a 6-Gb/S SAS interface.

1) What is the capacity of the drive?

2) What is the latency of the drive?

3) What is the maximum sustained transfer rate?

4) What is the total access time to transfer 400KiB?
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Disk Performance Practice Questions
Older Drive

The Maxtor DiamondMax 80 has 34,741 cylinders, 4 platters, 
each with 2 heads, 576 sectors/track, and 512 bytes/sector.  Its 
average seek time is 9 ms with a speed of 5,400 rpm, and a 
reported maximum interface data transfer rate of 100 MB/sec.

1) What is the capacity of the Maxtor Drive?

2) What is the latency of the drive?

3) What is the actual maximum sustained transfer rate?

4) What is the total access time to transfer 4KB?
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Hard Drive Model Limitations and Notes
1) Disk sizes are quoted after formatting.  
Formatting is done by the OS to divide the disk into blocks.
A sector is a physical unit of the disk while a block is a logical OS unit.

2) Blocks are non-continuous. Interblock gaps store control 
information and are used to find the correct block on a track.
Since these gaps do not contain user data, the actual transfer rate is less 

than the theoretical transfer rate based on the rotation of the disk.
Manufactures quote bulk transfer rates (BTR) that measure the 

performance of reading multiple adjacent blocks when taking gaps into 
account.  BTR = B/(B+G) * TR   (B-block size, G-gap size)

3) Although the bit density on the media is relatively consistent, 
the number of sectors per track is not.
More sectors/track for tracks near outer edge of platter.
Faster transfer speed when reading outer tracks.

4) Buffering and read-ahead at controller and re-ordering 
requests (elevator algorithm) used to increase performance.
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SSD Performance Calculations
SSD model will consider:
IOPS – Input/Output Operations per Second (of given data size)

latency

bandwidth or transfer rate

Different performance for read and write operations.

Limitations:
Write bandwidth is not constant.  It depends on request ordering 

and volume, space left in hard drive, and SSD controller 
implementation.
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SSD Performance Calculations
Examples

Question 1: A SSD has read bandwidth of 500 MB/sec. How 
long does it take to read 100 MB of data?

read time = 100 MB / 500 MB/sec. = 0.2 sec

Question 2: The SSD IOPS for 4 KB write requests is 25,000.  
What is its effective write bandwidth?

write bandwidth = 25,000 IOPS * 4 KB requests

= 100,000 KB/sec. = 100 MB/sec.
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Device Performance
Question: What device would be the fastest to read 1 MB of 
data?

A) DRAM with bandwidth of 20 MB/sec.

B) SSD with read 400 IOPS for 100 KB data chunks.

C) 7200 rpm hard drive with seek time of 8 ms.  Assume all 
data is on one track.
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Summary of Memory Devices

Memory 

Type

Volatile? Capacity Latency Bandwidth Transfer

Size

Notes

DRAM yes High Small High Byte Best price/speed.

Cache Yes Low Lowest Very high Byte Large reduction in 
memory latency.

NAND

Flash
No Very 

high Small High Block Asymmetric 
read/write costs.

EEPROM No Very low Very 
small High Byte High cost per bit.  

On small CPUs.
Tape

Drive
No Very 

high
Very 
high Medium Block Sequential access: 

Even lost backup?

Solid 
State 
Drive

No Very 
high High Medium Block Great random I/O.  

Issue in write costs.

Hard 
drive No Very 

high High Medium block
Beats SSDs by 

cost/bit but not by 
performance/cost.
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RAID
Redundant Arrays of Independent Disks is a disk 
organization technique that utilizes a large number of 
inexpensive, mass-market disks to provide increased reliability, 
performance, and storage.
Originally, the "I" stood for inexpensive as RAID systems were a 

cost-effective alternative to large, expensive disks.  However, 
now performance and reliability are the two major factors.

Page 33

COSC 404 - Dr. Ramon Lawrence

Improvement of Reliability via 
Redundancy

RAID systems improve reliability by introducing redundancy to 
the system as they store extra information that can be used to 
rebuild information lost due to a disk failure.
Redundancy occurs by duplicating data across multiple disks.

Mirroring or shadowing duplicates an entire disk on another.  
Every write is performed on both disks, and if either disk fails, 
the other contains all the data.

By introducing more disks to the system the chance that some 
disk out of a set of N disks will fail is much higher than the 
chance that a specific single disk will fail.
E.g., A system with 100 disks, each with MTTF of 100,000 

hours (approx.  11 years), will have a system MTTF of 1000 
hours (approx. 41 days).
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Review: Parity
Parity is used for error checking.  A parity bit is an extra bit 
added to the data.  A single parity bit can detect one bit error.

In odd parity the number of 1 bits in the data plus the parity bit 
must be odd.  In even parity, the number of 1 bits is even.

Example: What is the parity bit with even parity and the bit 
string: 01010010?
Answer: The parity bit must be a 1, so that the # of 1's is even.
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Parity Question
Question: What is the parity bit with odd parity and the bit 
string: 11111110?

A) 0

B) 1

C) 2
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Improvement in Performance via 
Parallelism

The other advantage of RAID systems is increased parallelism.  
With multiple disks, two types of parallelism are possible: 
1. Load balance multiple small accesses to increase throughput.

2. Parallelize large accesses to reduce response time.

Maximum transfer rates can be increased by allocating 
(striping) data across multiple disks then retrieving the data in 
parallel from the disks. 
Bit-level striping – split the bits of each byte across the disks
In an array of eight disks, write bit i of each byte to disk i.

Each access can read data at eight times the rate of a single disk.

But seek/access time worse than for a single disk.

Block-level striping – with n disks, block i of a file goes to disk 
(i mod n) + 1
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RAID Levels
There are different RAID organizations, or RAID levels, that 
have differing cost, performance and reliability characteristics:
Level 0: Striping at the block level (non-redundant).  

Level 1: Mirrored disks (redundancy) 

Level 2: Memory-Style Error-Correcting-Codes with bit striping.

Level 3: Bit-Interleaved Parity - a single parity bit used for error 
correction. Subsumes Level 2 (same benefits at a lower cost).

Level 4: Block-Interleaved Parity - uses block-level striping, 
and keeps all parity blocks on a single disk (for all other disks).

Level 5: Block-Interleaved Distributed Parity - partitions data 
and parity among all N + 1 disks, rather than storing data in N
disks and parity in 1 disk.  Subsumes Level 4.

Level 6: P+Q Redundancy scheme - similar to Level 5, but 
stores extra info to guard against multiple disk failures. Page 38
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RAID Levels Discussion
Level 0 is used for high-performance 
where data loss is not critical (parallelism). 

Level 1 is for applications that require 
redundancy (protection from disk failures) 
with minimum cost.  
 Level 1 requires at least two disks.

Level 5 is a common because it offers both 
reliability and increased performance.
With 3 disks, the parity block for nth block 

is stored on disk (n mod 3) + 1.   Do not 
have single disk bottleneck like Level 4.

Level 6 offers extra redundancy compared 
to Level 5 and is used to deal with multiple 
drive failures.
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RAID Question
Question: What RAID level offers the high performance but no 
redundancy?

A) RAID 0

B) RAID 1

C) RAID 5

D) RAID 6
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RAID Practice Question
Question: The capacity of a hard drive is 800 GB.  Determine 
the capacity of the following RAID configurations:

i)  8 drives in RAID 0 configuration

ii)  8 drives in RAID 1 configuration

iii) 8 drives in RAID 5 configuration    

A) i) 6400 GB   ii) 3200 GB   iii)  5600 GB

B) i) 3200 GB   ii) 6400 GB   iii)  5600 GB

C) i) 6400 GB   ii) 3200 GB   iii)  6400 GB

D) i) 3200 GB   ii) 3200 GB   iii)  6400 GB
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RAID Summary
Level Performance Protection Capacity (for N disks)

0
Best

(parallel read/write)

Poor

(lose all on 1 failure)
N

1
Good

(write slower as 2x)

Good

(have drive mirror) 
N / 2

5
Good

(must write parity 
block)

Good

(one drive can fail)
N - 1

6
Good

(must write multiple 
parity blocks)

Better

(can have as many 
drives fail as 

dedicated to parity)

N – X

(where X is # of parity 
drives such as 2)
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File Interfaces
Besides the physical characteristics of the media and device, 
how the data is allocated on the media affects performance 
(file organization).

The physical device is controlled by the operating system.  The 
operating system provides one or more interfaces to accessing 
the device.
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Block-Level Interface
A block-level interface allows a program to read and write a 
chunk of memory called a block (or page) from the device.

The page size is determined by the operating system.  A page 
may be a multiple of the physical device's block or sector size.

The OS maintains a mapping from logical page numbers 
(starting at 0) to physical sectors/blocks on the device.
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Block-Level Interface Operations
The block level operations at the OS level include:
read(n,p) – read block n on disk into memory page p

write(n,p) – write memory page p to block n on disk

allocate(k,n) – allocate space for k contiguous blocks on device 
as close to block n as possible and return first block

free(k,n) – marks k contiguous blocks starting at n as unused

The OS must maintain information on which blocks on the 
device are used and which are free.
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Byte-Level Interface
A byte-level interface allows a program to read and write 
individually addressable bytes from the device.

A device will only directly support a byte-level interface if it is 
byte-addressable.  However, the OS may provide a file-level 
byte interface to a device even if it is only block addressable.
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File-Level Interface
A file-level interface abstracts away the device addressable 
characteristics and provides a standard byte-level interface for 
files to programs running on the OS.

A file is treated as a sequence of bytes starting from 0.  File 
level commands allow for randomly navigating in the file and 
reading/writing at any location at the byte level.

Since a device may not support such access, the OS is 
responsible for mapping the logical byte address space in a file 
to physical device sectors/blocks.  The OS performs buffering 
to hide I/O latency costs.
Although beneficial, this level of abstraction may cause poor 

performance for I/O intensive operations.
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Databases and File Interfaces
A database optimizes performance using device characteristics, 
so the file interface provided on the device is critical.

General rules:
The database system needs to know block boundaries if the 

device is block addressable.  It should not use the OS file 
interface mapping bytes to blocks.
Full block I/Os should be used. Transferring groups of blocks is ideal. 

If the device has different performance for random versus 
sequential I/O and reads/writes, it should exploit this knowledge.

If placement of blocks on the device matters, the database 
should control this not the OS.

The database needs to perform its own buffering separate from 
the OS.  Cannot use the OS virtual memory!
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Databases and File Interfaces (2)
Two options:
1) Use a RAW block level interface to the device and manage 

everything.  Very powerful but also a lot of complexity.

2) Use the OS file-level interface for data.  Not suitable in 
general as OS hides buffering and block boundaries.

Compromise: Allocate data in OS files but treat files as raw 
disks.  That is, do not read/write bytes but read/write to the file at 
the block level.
The OS stills maps from logical blocks to physical blocks on the 

device and manages the device.

BUT many performance issues with crossing block boundaries or 
reading/writing at the byte-level are avoided.

Many systems make this compromise.
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Representing Data in Databases
Overview

A database is made up of one or more files.
Each file contains one or more blocks.

Each block has a header and contains one or more records.

Each record contains one or more fields.

Each field is a representation of a data item in a record.
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Representing Data in Memory
Consider an employee database where each employee record 
contains the following fields:
name : string

age : integer

salary : double

startDate : Date

picture : BLOB

Each field is data that is represented as a sequence of bytes.

How would we store each field in memory or on disk?
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Representing Data in Memory
Integers and Doubles

Integers are represented in two's complement format. The 
amount of space used depends on the machine architecture.
e.g. byte, short, int, long

Double values are stored using a mantissa and an exponent:
Represent numbers in scientific format: N = m * 2e

m - mantissa, e - exponent, 2 - radix

Note that converting from base 10 to base 2 is not always precise, since 
real numbers cannot be represented precisely in a fixed number of bits.

The most common standard is IEEE 754 Format:
32 bit float - 1-bit sign; 8-bit exponent; 23-bit mantissa

64 bit double - 1-bit sign; 11-bit exponent; 52-bit mantissa
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Representing Data in Memory
Doubles Example

The salary $56,455.01 stored as 4 consecutive bytes is:
Hexadecimal value is: 475C8703 Stored value is: 56455.012

Divided into bytes looks like this:

01000111 01011100 10000111 00000011

F001 F002 F003 F004
Memory 
Address

sign bit exponent

0 10001110 10111001000011100000011

mantissa
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Representing Data in Memory
Strings and Characters

A character is represented by mapping the character symbol 
to a particular number.
ASCII - maps characters/symbols to a number from 0 to 255.

UNICODE - maps characters to a two-byte number (0 to 
32,767) which allows for the encoding of larger alphabets.

A string is a sequence of characters allocated in consecutive 
memory bytes.  A pointer indicates the location of the first byte.
Null-terminated string - last byte value of 0 indicates end

Byte-length string - length of string in bytes is specified 
(usually in the first few bytes before string starts).

Fixed-length string - always the same size.
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Representing Data in Memory
Dates

A date value can be represented in multiple ways:
Integer representation - number of days past since a given date
Example: # days since Jan 1, 1900

String representation - represent a date's components (year, 
month, day) as individual characters of a string
Example: YYYYMMDD or YYYYDDD

Please do not reinvent Y2K by using YYMMDD!!

A time value can also be represented in similar ways:
Integer representation - number of seconds since a given time
Example:  # of seconds since midnight

String representation - hours, minutes, seconds, fractions
Example: HHMMSSFF
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Representing Data in Memory
BLOBs and Large Objects

A BLOB (Binary Large Object) type is represented as a 
sequence of consecutive bytes with the size of the object 
stored in the first few bytes.

All variable length types and objects will store a size as the first 
few bytes of the object.

Fixed length objects do not require a size, but may require a 
type identifier.
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Storing Records in Memory
Now that we can allocate space for each field in memory, we 
must determine a way of allocating an entire record.

A record consists of one or more fields grouped together.
Each tuple of a relation in the relational model is a record.

Two main types of records:
Variable-length records - the size of the record varies.

Fixed-length records - all records have the same size.
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Separating Fields of a Record
The fields of a record can be separated in multiple ways:
1) No separator - store length of each field, so do not need a 

separate separator (fixed length field).
Simple but wastes space within a field.

2) Length indicator - store a length indicator at the start of the 
record (for the entire record) and a size in front of each field.
Wastes space for each length field and need to know length beforehand.

3) Use offsets – at start of record store offset to each field

4) Use delimiters - separate fields with delimiters such as a 
comma (comma-separated files).
Must make sure that delimiter character is not a valid character for field.

5) Use keywords - self-describing field names before field 
value (XML and JSON).
Wastes space by using field names.
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Schemas
A schema is a description of the record layout.

A schema typically contains the following information:
names and number of fields

size and type of each field

field ordering in record

description or meaning of each field

Page 59

COSC 404 - Dr. Ramon Lawrence

Schemas
Fixed versus Variable Formats

If every record has the same fields with the same types, the 
schema defines a fixed record format.
Relational schemas generally define a fixed format structure.

It is also possible to have no schema (or a limited schema) 
such that not all records have the same fields or organization.
Since each record may have its own format, the record data 

itself must be self-describing to indicate its contents.

XML and JSON documents are considered self-describing with 
variable schemas (variable record formats).
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Schemas
Fixed Format Example

Employee record is a fixed relational schema format:
Field Name Type Size in Bytes

name char(10) 10

age integer 4

salary double 8

startDate Date 8  (YYYYMMDD)

Example record:
Joe Smith, 35, $50,000, 1995/05/28

Memory allocation:

J OE SM I TH 0 0 3 5 00 0 5 0 0 0 0 1 9 9 5 0 5 2 8

in ASCII? 00000023 in IEEE 754? in ASCII?
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Schemas
Fixed Format with Variable fields

It is possible to have a fixed format (schema), yet have variable 
sized records.
In the Employee example, the picture field is a BLOB which will 

vary in size depending on the type and quality of the image.

It is not efficient to allocate a set memory size for large objects, 
so the fixed record stores a pointer to the object and the size of 
the object which have fixed sizes.

The object itself is stored in a separate file or location from the 
rest of the records.
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Variable Formats
XML and JSON

XML:

JSON:

<employees>
<employee>

<name>Joe Smith</name> <age>35</age>
<salary>50000</salary> <hired>1995/05/28</hired>

</employee>
<employee>

<name>CEO</name><age>55</age><hired>1994/06/23</hired>
</employee>
</employees>

{ "employees": [ { "name":"Joe Smith", "age":35, 
"salary":50000, "hired":"1995/05/28"},
{ "name":"CEO", "age":55, 
"hired":"1994/06/23"} ] }
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Variable Format Discussion
Variable record formats are useful when:
The data does not have a regular structure in most cases.

The data values are sparse in the records.

There are repeating fields in the records.

The data evolves quickly so schema evolution is challenging.

Disadvantages of variable formats:
Waste space by repeating schema information for every record.

Allocating variable-sized records efficiently is challenging.

Query processing is more difficult and less efficient when the 
structure of the data varies.
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Format and Size Question
Question: JSON and XML are best described as:

A) fixed format, fixed size

B) fixed format, variable size

C) variable format, fixed size

D) variable format, variable size
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Relational Format and Size Question
Question: A relational table uses a VARCHAR field for a 
person's name.  It can be best described as:

A) fixed format, fixed size

B) fixed format, variable size

C) variable format, fixed size

D) variable format, variable size
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Fixed vs. Variable Formats Discussion
There are also many variations that have properties of both 
fixed and variable format records:
Can have a record type code at the beginning of each record to 

denote what fixed schema it belongs to.
Allows the advantage of fixed schemas with the ability to define and 

store multiple record types per file.

Define custom record headers within the data that is only used 
once.
Do not need separate schema information, and do not repeat the 

schema information for every record.

It is also possible to have a record with a fixed portion and a 
variable portion.  The fixed portion is always present, while the 
variable portion lists only the fields that the record contains.
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Fixed versus Variable Formats
Discussion (2)

We have seen fixed length/fixed format records, and variable 
length/variable format records.

1) Do fixed format and variable length records make sense?

2) Do variable format and fixed length records make sense?

|320587 | Joe Smith | SC | 95 | 3 |
|184923 | Kathy Li | EN | 92 | 3 |
| 249793 | Albert Chan | SC | 94 | 3 | Padding

Padding
Padding

Surprisingly, Yes.  Allocate a fixed size record then put as 
many fields with different sizes as you want and pad the rest.

Yes, you can have a fixed format schema where certain types 
have differing sizes.  BLOBs are one example.
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Research Question
CHAR versus VARCHAR

Question: We can represent a person's name in MySQL using 
either CHAR(50) or VARCHAR(50).  Assume that the person's 
name is 'Joe'.  How much space is actually used?

A) CHAR = 3    ; VARCHAR = 3

B) CHAR = 50  ; VARCHAR = 3

C) CHAR = 50  ; VARCHAR = 4

D) CHAR = 50  ; VARCHAR = 50
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Storing Records in Blocks
Now that we know how to represent entire records, we must 
determine how to store sets of records in blocks.

There are several issues related to storing records in blocks:
1) Separation - how do we separate adjacent records?

2) Spanning - can a record cross a block boundary?

3) Clustering - can a block store multiple record types?

4) Splitting - are records allocated in multiple blocks?

5) Ordering - are the records sorted in any way?

6) Addressing - how do we reference a given record?
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Storing Records in Blocks
Separation

If multiple records are allocated per block, we need to know 
when one record ends and another begins.

Record separation is easy if the records are a fixed size 
because we can calculate the end of the record from its start.

Variable length records can be separated by:
1) Using a special separator marker in the block.

2) Storing the size of the record at the start of each record.

3) Store the length or offset of each record in the block header.
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A block header contains the number of records, the location 
and size of each record, and a pointer to block free space.

Records can be moved around within a block to keep them 
contiguous with no empty space between them and the header 
is updated accordingly.

Variable Length Records 
Separation and Addressing
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Storing Records in Blocks
Spanning

If records do not exactly fit in a block, we have two choices:
1) Waste the space at the end of each block.

2) Start a record at the end of a block and continue on the next.

Choice #1 is the unspanned option.
Simple because do not have to allocate records across blocks.

Choice #2 is the spanned option.  
Each piece must have a pointer to its other part.  
Spanning is required if the record size is larger than the block size.

R1 R2 R3 R4 R5

Block 1 Block 2

R1 R2
R3
(a)

R3
(b) R6R5R4 R7

(a)

Block 1 Block 2
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Storing Records in Blocks
Spanning Example

If the block size is 4096 bytes, the record size is 2050 bytes, 
and we have 1,000,000 records:
How many blocks are needed for spanned/unspanned records?

What is the block (space) utilization in both cases?

Answer:
Unspanned
put one record per block implies 1,000,000 blocks

each block is only 2050/4096 * 100% = 50% full (utilization = 50%)

Spanned
all blocks are completely full except the last one

# of blocks required = 1,000,000 * 2050 / 4096 = 500,049 blocks

utilization is almost 100%
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Storing Records in Blocks
Clustering

Clustering is allocating records of different types together on 
the same block (or same file) because they are frequently 
accessed together.

Example:
Consider creating a block where a department record is 

allocated together with all employees in the department:

DPT1 EMP1 EMP2 DEPT2 EMP3 EMP4

Block 1
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Storing Records in Blocks
Clustering (2)

If the database commonly processes queries such as:

then the clustering is beneficial because the information about 
the employee and department are adjacent in the same block.

However, for queries such as:

clustering is harmful because the system must read in more 
blocks, as each block read contains information that is not 
needed to answer the query.  

select * from employee, department
where employee.deptId = department.Id

select * from employee

select * from department

Page 76

COSC 404 - Dr. Ramon Lawrence

Storing Records in Blocks
Split Records

A split record is a record where portions of the record are 
allocated on multiple blocks for reasons other than spanning.

Record splitting may be used with or without spanning.

Typically, hybrid records are allocated as split records:
The fixed portion of the record is allocated on one block (with 

other fixed record portions).

The variable portion of the record is allocated on another 
block (with other variable record portions).

Splitting a record is done for efficiency and simplifying 
allocation.  The fixed portion of a record is easier to allocate 
and optimize for access than the variable portion.
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R1 (a)

R2 (a)

Storing Records in Blocks
Split Records with Spanning Example

Fixed 
Block 1

R2 (b)

R3 (a)

Fixed 
Block 2

R1 (b)

R2 (c)

Variable 
Block 1
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Storing Records in Blocks
Ordering Records

Ordering (or sequencing) records is when the records in a 
file (block) are sorted based on the value of one or more fields.

Sorting records allows some query operations to be performed 
faster including searching for keys and performing joins.

Records can either be:
1) physically ordered - the records are allocated in blocks in 

sorted order.

2) logically ordered - the records are not physical sorted, but 
each record contains a pointer to the next record in the sorted 
order.
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Storing Records in Blocks
Ordering Records Example

Physical ordering Logical Ordering

R1
Block 1

Block 2

R1

R3

Block 1

R4

R2

Block 2

R2

R3

R4

What are the tradeoffs between the two approaches?
What are the tradeoffs of any ordering versus unordered?
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Storing Records in Blocks
Addressing Records

Addressing records is a method for defining a unique value or 
address to reference a particular record.

Records can either be:
1) physically addressed - a record has a physical address 

based on the device where it is stored.
A physical disk address may use a sector # or a physical address range 

exposed by the device. 

2) logically addressed - a record that is logically addressed 
has a key value or some other identifier that can be used to 
lookup its physical address in a table.
Logical addresses are indirect addresses because they provide a 

mechanism for looking up the actual physical addresses. They do not 
provide a method for locating the record directly on the device.

E.g. OS provides logical block to physical sector mapping for files.
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Storing Records in Blocks
Addressing Records Tradeoff

There is a tradeoff between physical and logical addressing:
Physical addresses have better performance because the 

record can be accessed directly (no lookup cost).

Logical addresses provide more flexibility because records 
can be moved on the physical device and only the mapping 
table needs to be updated.
The actual records or fields that use the logical address do not have to 

be changed.

Easier to move, update, and change records with logical addresses.
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Pointer Swizzling
When transferring blocks between the disk and memory, we 
must be careful when handling pointers in the blocks.

For example:

Pointer swizzling is the process for converting disk pointers to 
memory pointers and vice versa when blocks move between 
memory and disk.

Memory

Block 1 R1

R3

Block 2

R2

R1

R3

Block 1

R2

Block 2

Disk
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Operations on Files
Once data has been stored to a file consisting of blocks of 
records, the database system will perform operations such as 
update and delete to the stored records.

How records are allocated and addressed affects the 
performance for update and delete operations.
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Operations on Files
Record Deletion

When a record is deleted from a block, we have several 
options:
1) Reclaim deleted space
Move another record to the location or compress file.

2) Mark deleted space as available for future use

Tradeoffs:
Reclaiming space guarantees smaller files, but may be 

expensive especially if the file is ordered.

Marking space as deleted wastes space and introduces 
complexities in maintaining a record of the free space available.
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Operations on Files
Issues with Record Deletion

We must also be careful on how to handle references to a 
record that has been deleted.
If we re-use the space by storing another record in the same 

location, how do we know that the correct record is returned or 
indicate the record has been deleted?

Solutions:
1) Track down and update all references to the record.

2) Leave a "tombstone" marker at the original address 
indicating record deletion and not overwrite that space.
Tombstone is in the block for physical addressing, in the lookup table for 

logical addressing.

3) Allocate a unique record id to every record and every pointer 
or reference to a record must indicate the record id desired.
Compare record id of pointer to record id of record at address to verify 
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Research Question
PostgreSQL VACUUM

Question: What does the VACUUM command do in 
PostgreSQL?

A) Cleans up your dirty house for you

B) Deletes records from a given table

C) Reclaims space used by records marked as deleted

D) Removes tables no longer used
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Operations on Files
Record Insertion

Inserting a record into a file is simple if the file is not ordered.
The record is appended to the end of the file.

If the file is physically ordered, then all records must be shifted 
down to perform insert.
Extremely costly operation!

Inserting into a logically ordered file is simpler because the 
record can be inserted anywhere there is free space and linked 
appropriately.
However, a logically ordered file should be periodically re-

organized to ensure that records with similar key values are in 
nearby blocks.
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Memory and Buffer Management
Memory management involves utilizing buffers, cache, and 
various levels of memory in the memory hierarchy to achieve 
the best performance.
A database system seeks to minimize the number of block 

transfers between the disk and memory.  

A buffer is a portion of main memory available to store copies 
of disk blocks.

A buffer manager is a subsystem responsible for allocating 
buffer space in main memory.
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Buffer Manager Operations
All read and write operations in the database go through the 
buffer manager.  It performs the following operations:
read block B – if block B is currently in buffer, return pointer to 

it, otherwise allocate space in buffer and read block from disk.

write block B – update block B in buffer with new data.

pin block B – request that B cannot be flushed from buffer

unpin block B – remove pin on block B

output block B – save block B to disk (can either be requested 
or done by buffer manager to save space)

Key challenge: How to decide which block to remove from the 
buffer if space needs to be found for a new block?
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Buffer Management
Replacement Strategy

A buffer replacement strategy determine which block should 
be removed from the buffer when space is required.
Note: When a block is removed from the buffer, it must be 

written to disk if it was modified. and replaced with a new block.

Some common strategies:
Random replacement

Least recently used (LRU)

Most recently used (MRU)
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Buffer Replacement Strategies and
Database Performance

Operating systems typically use least recently used for buffer 
replacement with the idea that the past pattern of block 
references is a good predictor of future references.

However, database queries have well-defined access patterns 
(such as sequential scans), and a database system can use 
the information to better predict future references.
LRU can be a bad strategy for certain access patterns involving 

repeated scans of data!

Buffer manager can use statistical information regarding the 
probability that a request will reference a particular relation.
E.g., The schema is frequently accessed, so it makes sense to 

keep schema blocks in the buffer.
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Research Question
MySQL Buffer Management

Question: What buffer replacement policy does MySQL 
InnoDB use?

A) LRU

B) MRU

C) 2Q
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Column Storage
The previous discussion on storage formats assumed records 
were allocated on blocks.  For large data warehouses, it is 
more efficient to allocate data at the column level.

Each file represents all the data for a column.  A file entry 
contains the column value and a record id.  Records are rebuilt 
by combining columns using the record id.

The column format reduces the amount of data retrieved from 
disk (as most queries do not need all columns) and allows for 
better compression.
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Research Question
PostgreSQL Column Layout

Question: Does PostgreSQL support column layout?

A) Yes

B) No
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Issues in Disk Organizations
There are many ways to organize information on a disk.
There is no one correct way.

The "best" disk organization will be determined by a variety of 
factors such as: flexibility, complexity, space utilization, and 
performance.

Performance measures to evaluate a given strategy include:
space utilization

expected times to search for a record given a key, search for 
the next record, insert/append/delete/update records, 
reorganize the file, read the entire file.

Key terms:
Storage structure is a particular organization of data.

Access mechanism is an algorithm for manipulating the data 
in a storage structure. Page 96
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Summary
hard drives, RAID (formulas)
sequential/random accessStorage and 

Organization Fields

Records

Blocks

Files

Memory

Database

Hardware

representing types in memory

variable/fixed format/length
schemas

separation, spanning, splitting, 
clustering, ordering, addressing

insert, delete operations on 
various organizations

buffer management
pointer swizzling

disk organization choices
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Major Objectives
The "One Things":
Perform device calculations such as computing transfer times.

Explain the differences between fixed and variable schemas.

List and briefly explain the six record placement issues in 
blocks.

Major Theme: 
There is no single correct organization of data on disk.   The 

"best" disk organization will be determined by a variety of 
factors such as: flexibility, complexity, space utilization, and 
performance.
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Objectives
Compare/contrast volatile versus non-volatile memory.

Compare/contrast random access versus sequential access.

Perform conversion from bytes to KB to MB to GB.

Define terms from hard drives: arm assembly, arm, read-write 
head, platter, spindle, track, cylinder, sector, disk controller

Calculate disk performance measures - capacity, access time 
(seek,latency,transfer time), data transfer rate, mean time to 
failure.

Explain difference between sectors (physical) & blocks (logical).

Perform hard drive and device calculations.

List the benefits of RAID and common RAID levels.

Explain issues in representing floating point numbers.
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Objectives (2)
List different ways for representing strings in memory.

List different ways for representing date/times in memory.

Explain the difference between fixed and variable length records.

Compare/contrast the ways of separating fields in a record. 

Define and explain the role of schemas.

Compare/contrast variable and fixed formats.

List and briefly explain the six record placement issues in blocks.

Explain the tradeoffs for physical/logical ordering and 
addressing.

List the methods for handling record insertion/deletion in a file.

List some buffer replacement strategies.

Explain the need for pointer swizzling.

Define storage structure and access mechanism.
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Indexing
Overview

An index is a data structure that allows for fast lookup of 
records in a file. 

An index may also allow records to be retrieved in sorted order.

Indexing is important for file systems and databases as many 
queries require only a small set of the data in a file.
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Index Terminology
The data file is the file that actually contains the records.

The index file is the file that stores the index information.

The search key is the set of attributes stored by the index to 
find the records in the data file.
Note that the search key does not have to be unique - more 

than one record may have the same search key value.

An index entry is one index record that contains a search key 
value and a pointer to the location of the record with that value.
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Evaluating Index Methods
Index methods can be evaluated for functionality, efficiency, 
and performance.

The functionality of an index can be measured by the types of 
queries it supports.  Two query types are common:
exact match on search key

query on a range of search key values

The performance of an index can be measured by the time 
required to execute queries and update the index.
Access time, update, insert, delete time

The efficiency of an index is measured by the amount of 
space required to maintain the index structure.
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Types of Indexes
There are several different types of indexes:
Indexes on ordered versus unordered files
An ordered file is sorted on the search key.  Unordered file is not.

Dense versus sparse indexes
A dense index has an index entry for every record in the data file.

A sparse index has index entries for only some of the data file records 
(often indexes by blocks). 

Primary (clustering) indexes versus secondary indexes
A primary index sorts the data file by its search key.  The search key 

DOES NOT have to be the same as the primary key.

A secondary index does not determine the organization of the data file.

Single-level versus multi-level indexes
A single-level index has only one index level.

A multi-level index has several levels of indexes on the same file.
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dense index

(Secondary) Index on Unordered File

unordered data file

Dense, single-level index on an unordered file.
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dense index

Primary Index on Ordered File

ordered data file

Dense, primary, single-level index on an ordered file.
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Index on Unordered/Ordered Files
An index on an unordered file makes immediate sense as it 
allows us to access the file in sorted order without maintaining 
the records in sorted order.
Insertion/deletion are more efficient for unordered files.
Append record at end of file or move record from end for delete.

Must only update index after data file is updated.

Searching for a search key can be done using binary search on 
the index.

What advantage is there for a primary index on an ordered file?  
Less efficient to maintain an ordered file PLUS we must now 

also maintain an ordered index!

Answer: The index will be smaller than the data file as it does not 
store entire records.  Thus, it may be able to fit entirely in memory.
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Index Performance Example
We will calculate the increased performance of a dense index 
on an unordered/ordered file with the following parameters:
Each disk block stores 4000 bytes.  

Each index entry occupies 20 bytes.
10 bytes for search key, 10 bytes for record pointer

Assume 200 index records fit in a disk block.

Each record has size 1000 bytes. 
Assume 4 data records fit in a disk block.

The data file contains 100,000 records.

How long does it take to retrieve a record based on its key?

How much faster is this compared to having no index? 
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Index Performance Example (2)
Answer:

#indexBlocks = 100,000 records / 200 entries/block = 500 blocks

#diskBlocks   = 100,000 records / 4 records/block    = 25,000 blocks

Search index using a binary search = log2N = log2(500) = 8.97 blocks

# of blocks retrieved = 9 index blocks + 1 data block = 10 blocks

Time to find record using linear search (unordered file) = N/2

= 25,000 blocks/2 = 12,500 blocks retrieved on average 

Time to find record using binary search (ordered file) = log2N

= log2(25000) = 14.60 blocks = 15 blocks
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Index Performance
Question: What statement is true for a non-empty, indexed 
table when searching for a single record?

A) Using an index is always faster than scanning the file if the 
data is on a hard drive

B) Using an index is always faster than scanning the file if the 
data is on a SSD

C) Binary searching an index is more suited to a HDD than a 
SSD.

D) None of the above.
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Sparse Index on Ordered Files
A sparse index only contains a subset of the search keys that 
are in the data file.

A better index for an ordered file is a sparse index since we can 
take advantage of the fact that the data file is already sorted.
The index will be smaller as not all keys are stored.
Fewer index entries than records in the file.

Binary search over index can be faster as fewer index blocks to read 
than unordered file approach.

For an ordered file, we will store one search key per block of 
the data file.
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Sparse Index on an Ordered File

ordered data file

Is there another way to 
create a sparse index 

for this file?

sparse index
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Sparse Index versus Dense Index
A sparse index is much more space efficient than a dense 
index because it only stores one search key per block.
If a block can store 10 data records, then a sparse index will be 

10 times smaller than a dense index!

This allows more (or all) of the index to be stored in main 
memory and reduces disk accesses if the index is on disk.

A dense index has an advantage over a sparse index because 
it can answer queries like: does search key K exist? without 
accessing the data file  (by using only the index).
Finding a record using a dense index is easier as the index 

entry points directly to the record.  For a sparse index, the block 
that may contain the data value must be loaded into memory 
and then searched for the correct key.
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Index Performance Question
Calculate the performance of a sparse index on an ordered file 
with the following parameters:
Each disk block stores 2000 data bytes.  

Each index entry occupies 8 bytes.

Each record has size 100 bytes. 

The data file contains 1,000,000 records.

How long does it take to retrieve a record based on its key?

How much faster is this compared to having no index?

How much faster is this compared to a dense index? 
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Multi-level Index
A multi-level index has more than one index level for the 
same data file.
Each level of the multi-level index is smaller, so that it can be 

processed more efficiently.

The first level of a multi-level index may be either sparse or 
dense, but all higher levels must be sparse.  Why?

Having multiple levels of index increases the level of 
indirection, but is often quicker because the upper levels of the 
index may be stored entirely in memory.
However, index maintenance time increases with each level.
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dense index

Multi-level Index on an Ordered File

ordered data file

sparse index
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Multi-level Index Performance Question
Calculate the performance of a multi-level index on an ordered
file with the following parameters:
Each disk block stores 2000 data bytes.  

Each index entry occupies 8 bytes.

Each record has size 100 bytes. 

The data file contains 10,000,000 records.

There are 3 levels of multi-level index.
First level is a sparse index - one entry per block.

How long does it take to retrieve a record based on its key?

Compare this to a single level sparse index.
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Indexes with Duplicate Search Keys
What happens if the search key for our index is not unique?
The data file contains many records with the same search key. 

This is possible because we may index a field that is not a 
primary key of the relation.

Both sparse and dense indexes still apply:
1) Dense index with entry for every record

2) Sparse index containing one entry per block

Note: Search strategy changes if have many records with same 
search key.
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10
10

20
10

30
20

30
30

45
40

10
10

20
10

30
20

30
30

45
40

Handling Duplicate Keys
Dense Index - One Entry per Record

ordered data file

10
10
10
20

10
10
10
20

20
30
30
30

20
30
30
30

dense index

20
30
30
30

40
45
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Handling Duplicate Keys
Sparse Index - One Entry per Block

10
10

20
10

30
20

30
30

45
40

ordered data file

10
10
20
30

sparse index

40

Be careful if 
looking

for 20 or 30!
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Secondary Indexes
A secondary index is an index whose search key does not 
determine the ordering of the data file.

A data file can have only one primary index but many 
secondary indexes. 

Secondary index entries often refer to the primary index instead 
of the data records directly.
Advantage - simpler maintenance of secondary index.
Secondary index changes only when primary index changes not when 

the data file changes.

Disadvantage - less efficient due to indirection.
Multiple levels of indirection as must use secondary index, then go to 

primary index, then access record in data file.
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Secondary Index Example

secondary 
index

primary index
(dense) ordered data file
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Secondary Indexes
Handling Duplicate Search Keys

A secondary index may have duplicate search keys. 

Techniques for handling duplicates:

1) Create an index entry for each record (dense)
Wastes space as key value repeated for each record

2) Use buckets (blocks) to store records with same key
The index entry points to the first record in the bucket.

All other matching records are retrieved from the bucket.
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10
20

40
20

40
10

40
10

40
30

10
10
10
20

20
30
40
40

40
40
...

Problem:
Excess overhead!

• disk space
• search time

Handling Duplicates
Secondary Index - One Entry per Record

data fileindex
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10
20

40
20

40
10

40
10

40
30

10
20
30
40

Handling Duplicates
Secondary Index - Buckets (as blocks)

data fileindex
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Secondary Indexes
Discussion

It is not possible to have a sparse secondary index.  There must 
be an entry in the secondary index for EACH KEY VALUE.

However, it is possible to have a multi-level secondary index with 
upper levels sparse and the lowest level dense.

Secondary indexes are especially useful for indexing foreign key 
attributes. 

The bucket method for handling duplicates is preferred as the 
index size is smaller.
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50
30

70
20

40
80

10
100

60
90

10
20
30
40

50
60
70
...

10
50
90
...

Multi-level Secondary Index

ordered data file
secondary index 
Level 1 (dense)

secondary 
index 

Level 2 
(sparse)

Page 29

COSC 404 - Dr. Ramon Lawrence

Secondary Indexes
Buckets in Query Processing

Consider the query: 

If there were secondary indexes on both Major and Year, then 
we could retrieve the buckets for Major="CS" and Year="3"
and compare the records that are in both.
We then retrieve only the records that are in both buckets.

Question: How would answering the query change if:
a) There were no secondary indexes?

b) There was only one secondary index?

select * from student
where Major = "CS" and Year = "3"
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Secondary Index Example
We will calculate the increased performance of a secondary 
index on a data file with the following parameters:
Each disk block stores 4000 bytes.  

Each index entry occupies 20 bytes.
10 bytes for search key, 10 bytes for record pointer

Assume 200 index records fit in a disk block.

Assume one index entry per record.

Each record has size 1000 bytes. 
Assume 4 data records fit in a disk block.

The data file contains 1,000,000 records.

How long does it take to retrieve a record based on its key?

How much faster is this compared to having no index? 
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Secondary Index Example (2)
Answer:

#indexBlocks = 1,000,000 records / 200 entries/block = 5,000 blocks

#diskBlocks   = 1,000,000 records / 4 records/block  = 250,000 blocks

Search index using a binary search 

= log2N = log2(5000) = 12.28 blocks

# of blocks retrieved 

= 13 blocks + 1 primary index block + 1 data block = 15 blocks

Time to find record using linear scan (unordered file) = N/2

= 250,000 /2 =  125,000 blocks retrieved on average 

Note that need to do full table scan (250,000 blocks) ALWAYS if

want to find all records with a given key value (not just one).

Lesson: Secondary indexes allow significant speed-up because the 
alternative is a linear search of the data file! Page 32

COSC 404 - Dr. Ramon Lawrence

Secondary Index
Question: A secondary index is constructed that refers to the 
primary index to locate its records.  What is the minimum 
number of blocks that must be processed to retrieve a record 
using the secondary index?

A) 0

B) 1

C) 2

D) 3

E) 4
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Index Maintenance
As the data file changes, the index must be updated as well.

The two operations are insert and delete.

Maintenance of an index is similar to maintenance of an 
ordered file.  The only difference is the index file is smaller.

Techniques for managing the data file include:
1) Using overflow blocks

2) Re-organizing blocks by shifting records

3) Adding or deleting new blocks in the file

These same techniques may be applied to both sparse and 
dense indexes.
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Index Maintenance
Summary

In the process of handling inserts and deletes in the data file, 
any of the previous 3 techniques may be used on the data file.

The effect of these techniques on the index file are as follows:
Create/delete overflow block for data file
No effect on both sparse/dense index (overflow block not indexed).

Create/delete new sequential block for data file
Dense index unaffected, sparse index needs new index entry for block.

Insert/Delete/Move record
Dense index must either insert/delete/update entry.

Sparse index may only have to update entry if the smallest key value in 
the block is changed by the operation.
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20
10

40
30

60
50

80
70

10
30
50
70

90
110
130
150

Index Maintenance
Record Deletion with a Sparse Index

ordered data file
sparse index

Delete record with key 
40 from data file.
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10
30
50
70

90
110
130
150

Index Maintenance
Record Deletion with a Sparse Index (2)

ordered data file
sparse index

20
10

40
30

60
50

80
70

Record deleted.
No change to index.
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20
10

40
30

60
50

80
70

10
30
50
70

90
110
130
150

Index Maintenance
Record Deletion with a Sparse Index (3)

ordered data file
sparse index

Delete record with key 
30 from data file.
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3040
10

50
70

90
110
130
150

Index Maintenance
Record Deletion with a Sparse Index (4)

ordered data file
sparse index

20
10

40
30

60
50

80
70

Shift record up in data block.
Update index entry to 40.

Record 30 deleted.

40
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10
40
50
70

90
110
130
150

Index Maintenance
Record Deletion with a Sparse Index (5)

ordered data file
sparse index

Delete record with key 40.

20
10

40
40

60
50

80
70
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70  

10
40
50 40 

90
110
130
150

Index Maintenance
Record Deletion with a Sparse Index (6)

ordered data file
sparse index

Delete record.  Delete block.

20
10

60
50

80
70
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70  

10
40
50 40 

90
110
130
150

Index Maintenance
Record Deletion with a Sparse Index (7)

ordered data file
sparse index

20
10

60
50

80
70

Delete index entry.  
Shift index entries in block up.

50
70
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Index Maintenance
Record Deletion with a Dense Index

ordered data filedense index

Delete record with key 30.
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40  
30

20
10

60
50

80
70

10
20
30
40  

50
60
70
80

Index Maintenance
Record Deletion with a Dense Index (2)

ordered data filedense index

Delete record.  Shift 40 up.

40
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10
20
30
40  

50
60
70
80

40

40  
30

20
10

60
50

80
70

Index Maintenance
Record Deletion with a Dense Index (3)

ordered data filedense index

Delete index entry.
Shift index entry for 40 up.

40
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30
50
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110
130
150

Index Maintenance
Record Insertion with a Sparse Index 

ordered data file
sparse index

20
10

40
30

60
50

80
70

Insert record with key 40.
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30
50
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130
150

Index Maintenance
Record Insertion with a Sparse Index (2) 

ordered data file
sparse index

20
10

40
30

60
50

80
70

Record inserted in free 
space in second block.
No updates to index.
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Index Maintenance
Record Insertion with a Sparse Index (3) 

ordered data file
sparse index

20
10

40
30

60
50

80
70

Insert record with key 15.
Use immediate re-organization.
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Index Maintenance
Record Insertion with a Sparse Index (4) 

ordered data file
sparse index

15
10

30
20

60
50

80
70

Shift records down to make room for 15.
Update index pointer for block 2.
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10
30
50
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110
130
150

Index Maintenance
Record Insertion with a Sparse Index (5) 

ordered data file
sparse index

20
10

40
30

60
50

80
70

Insert record with key 25.
Use overflow blocks.
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Index Maintenance
Record Insertion with a Sparse Index (6) 

ordered data file
sparse index

20
10

40
30

60
50

80
70

25

Create overflow block.
Re-organize later...
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Handling Data Evolution
Since it is common for both the data file and index file to evolve 
as the database is used, often blocks storing data records and 
index records are not filled completely.

By leaving a block 75% full when it is first created, then data 
evolution can occur without having to create overflow blocks or 
move records around.

The tradeoff is that with completely filled blocks the file 
occupies less space and is faster to process.
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Conclusion
Indexes are lookup mechanisms to speed access to particular 
records in the data file.
An index consists of an ordered sequence of index entries 

containing a search key and a pointer.
An index may be either dense (have one entry per record) or sparse

(have one entry per block).

Primary indexes have the index search key as the same key that is used 
to physically order the file.  Secondary indexes do not have an affect on 
the data file ordering.

An index is an ordered data file when inserting/deleting entries.
When the data file is updated the index may be updated.
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Major Objectives
The "One Things":
Explain the types of indexes: ordered/unordered, sparse/dense, 

primary/secondary, single/multi-level

Perform calculations on how fast it takes to retrieve one record 
or answer a query given a certain data file and index type.

Major Theme: 
Indexing results in a dramatic increase in the performance of 

many database queries by minimizing the number of blocks 
accessed.  However, indexes must be maintained, so they 
should not be used indiscriminately. 
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Objectives
Define: index file, search key, index entry

List the index evaluation metrics/criteria. 

Explain the difference between the difference types of indexes: 
ordered/unordered, dense/sparse, primary/secondary, 
single/multi level and be able to perform calculations.

List the techniques for indexing with duplicate search keys.

Discuss some of the issues in index maintenance.

Compare/contrast single versus multi-level indexes.

Explain the benefit of secondary indexes on query performance 
and be able to perform calculations.
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B-Trees and Indexing
Overview

We have seen how multi-level indexes can improve search 
performance.

One of the challenges in creating multi-level indexes is 
maintaining the index in the presence of inserts and deletes.

We will learn B+-trees which are the most common form of 
index used in database systems today.
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B-trees
Introduction
A B-tree is a search tree where each node has >= n data values 

and <= 2n, where we chose n for our particular tree.
Each key in a node is stored in a sorted array.
key[0] is the first key, key[1] is the second key,…,key[2n-1] is the 2nth key

key[0] < key[1] < key[2] < … < key[2n-1]

There is also an array of pointers to children nodes:
child[0], child[1], child[2], …, child[2n]

Recursive definition: Each subtree pointed to by child[i] is also a B-tree.

For any key[i]:
1) key[i] > all entries in subtree pointed to by child[i]

2) key[i] <= all entries in subtree pointed to by child[i+1]

A node may not contain all key values.
# of children = # of keys +1 

A B-tree is balanced as every leaf has the same depth. Page 4
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B-trees
Order Debate

There is an interesting debate on how to define an order of a 
B-tree.  The original definition was the one given:
The order n is the minimum # of keys in a node.  The 

maximum number is 2n.

However, may want to have a B-tree where the maximum # of 
keys in a node is odd.
This is not possible by the above definition.

Consequently, can define order as the maximum # of keys in a 
node (instead of the minimum).
Further, some use maximum # of pointers instead of keys.

Bottom line: B-trees with an odd maximum # of keys will be 
avoided in the class.
The minimum # of nodes for an odd maximum n will be n/2 .
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B-trees Example 
Programming View

16 21 ... 24

15 25 ... 90

81 85 ... 89

1 10 ... 14 91 95 ... 99

26 40 ... 60
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B-Trees Performance
Question: A B-tree has a maximum of 10 keys per node.  
What is the maximum number of children for a given node?

A) 0

B) 1

C) 10

D) 11

E) 20
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2-3 Trees
Introduction

A 2-3 tree is a B-tree where each node has either 1 or 2 data 
values and 2 or 3 children pointers.
It is a special case of a B-tree.

Fact:
A 2-3 tree of height h always has at least as many nodes as a 

full binary tree of height h.
That is, a 2-3 tree will always have at least  2h-1 nodes.
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2-3 Search Tree
Example

50  90

70 93  9820

60

80

10

30  40

91  92

95   96

99

Conceptual View
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2-3 Tree Example 
Programming View

50 90

7020

10

30 40

60

80

9991 92

95 96

93 98
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Searching a 2-3 Tree 
Searching a 2-3 tree is similar to searching a binary search tree.

Algorithm:
Start at the root which begins as the curNode.

If curNode contains the search key we are done, and have found 
the search key we were looking for.

A 2-node contains one key: 
If search key < key[0], go left (child[0]) otherwise go right (child[1])

A 3-node contains two key values: 
If search key < key[0], go left with first child pointer (child[0])

else if search key < key[1] go down middle child pointer (child[1])

else (search key >= key[1]) go right with last child pointer (child[2])

If we encounter a NULL pointer, then we are done and the 
search failed.
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Searching a 2-3 Tree
Example #1

70  90

80 1006010  20

37  50

39

4038

30  35

36

33 34

Find 34

37  50

30  35

33 34
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Searching a 2-3 Tree
Example #2

70  90

80 1006010  20

37  50

39

4038

30  35

36

33 34

Find 82

70  90

80

37  50
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Insertion into a 2-3 Tree 
Algorithm:
Find the leaf node where the new key belongs.

This insertion node will contain either a single key or two keys.

If the node contains 1 key, insert the new key in the node (in 
the correct sorted order).

If the node contains 2 keys:
Insert the node in the correct sorted order.

The node now contains 3 keys (overflow).

Take the middle key and promote it to its parent node. (split node)

If the parent node now has more than 3 keys, repeat the procedure by 
promoting the middle node to its parent node.

This promotion procedure continues until:
Some ancestor has only one node, so overflow does not occur.

All ancestors are “full” in which case the current root node is split into two 
nodes and the tree “grows” by one level. Page 14
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Insertion into a 2-3 Tree
Splitting Algorithm 

Splitting Algorithm:
Given a node with overflow (more than 2 keys in this case), we 

split the node into two nodes each having a single key.

The middle value (in this case key[1]) is passed up to the 
parent of the node.
This, of course, requires parent pointers in the 2-3 tree.

This process continues until we find a node with sufficient room 
to accommodate the node that is being percolated up.

If we reach the root and find it has 2 keys, then we split it and 
create a new root consisting of the “middle” node.

The splitting process can be done in logarithmic time since we 
split at most one node per level of the tree and the depth of the 
tree is logarithmic in the number of nodes in the tree.
Thus, 2-3 trees provide an efficient height balanced tree.
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Insert 39

70  90

50

30

80 100604010  20

Insertion Examples
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Insertion Examples

70  90

50

30

80 1006010  20 39 40

Done!
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Insertion Examples

70  90

50

30

80 1006010  20 39  40

Insert 38
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Insertion Examples

70  90

50

30

80 1006010  20 38 39  40

Insert 38
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Insertion Examples

70  90

50

30

80 1006010  20 38  39  40

Push up, split apart
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Insertion Examples

70  90

50

80 1006010  20

30  39

38 40

Done!
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Insertion Examples

70  90

50

80 1006010  20

30  39

38 40

Insert 37
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Insertion Examples

70  90

50

80 1006010  20

30  39

40

Done!

37 38
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Insertion Examples

70  90

50

80 1006010  20

30  39

4037  38

Insert 36
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Insertion Examples

70  90

50

80 1006010  20

30  39

40

Insert 36

36 37  38
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Insertion Examples

70  90

50

80 1006010  20

30  39

4036 37  38

Push up, split apart
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Insertion Examples

70  90

50

80 1006010  20 40

30  37  39

Need to go further up the tree to resolve overcrowding

36 38
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Insertion Examples

70  90

50

80 1006010  20 40

30  37  39

36 38

Push up, split apart
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Insertion Examples

70  90

80 1006010  20 36

37  50

3930

4038

Done!
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Insertion Examples

70  90

80 1006010  20 36

37  50

3930

4038

Insert 35
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Insertion Examples

70  90

80 1006010  20

37  50

3930

4038

Insert 35

35 36
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Insertion Examples

70  90

80 1006010  20

37  50

3930

4038

Insert 34

35  36
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Insertion Examples

70  90

80 1006010  20

37  50

3930

4038

Insert 34

34 35  36
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Insertion Examples

70  90

80 1006010  20

37  50

3930

403834 35  36

Push up, split apart
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Insertion Examples

70  90

80 1006010  20

37  50

39

4038

Done!

30  35

36

34

Page 35

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70  90

80 1006010  20

37  50

39

4038

30  35

36

34

Insert 33
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Insertion Examples

70  90

80 1006010  20

37  50

39

4038

30  35

36

33 34

Done!
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Insertion Examples

70  90

80 1006010  20

37  50

39

4038

30  35

36

33 34

Insert 32
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Insertion Examples

70  90

80 1006010  20

37  50

39

4038

30  35

36

Insert 32

32 33 34
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Insertion Examples

70  90

80 1006010  20

37  50

39

4038

30  35

36

32 33  34

Push up, split apart
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Insertion Examples

70  90

80 1006010  20

37  50

39

403836

30  33  35

32 34

Push up, split apart
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Insertion Examples

70  90

80 10060

33  37  50

39

4038

Push up, split apart

3530

10  20 32

34 36
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Insertion Examples

33

3530

A new level is born!

37

50

39 70  90

10  20 32

34 36

38 40

60 80 100
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Insertion Special Cases 
There are 3 cases of splitting for insertion:
1) Splitting a leaf node
Promote middle key to parent and create two new nodes containing half 

the keys.

Do not have child pointers to worry about.

2) Splitting an interior node
Promote middle key to parent and create two new nodes containing half 

the keys.

Make sure child pointers are copied over as well as keys.

3) Splitting the root node
Similar to splitting an interior node, but now the tree will grow by one 

level and will have a new root node (must update root pointer).

Case 2 is ONLY possible if a leaf node has been previously 
split.  Case 3 is only possible if all ancestors of the leaf node 
had to be split.
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Special Case: Splitting a Leaf Node

Leaf node overflow

P

S  M  L
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Special Case: Splitting a Leaf Node (2)

Splitting a leaf node

P

LS

M
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Special Case: Splitting an Interior Node

Splitting an internal node

S  M  L

A DCB

P

Interior node overflow
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Special Case: 
Splitting an Interior Node (2)

Splitting an internal node

A DCB

P’s Parent

S L

M
P1 P2
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Special Case: Splitting the Root Node

Splitting the root node

S  M  L

A DCB

Root

Height h
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Special Case: Splitting the Root Node (2)

Height h+1

A DCB

New Root

S L

M
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B-tree Insertion Practice Question
For a B-tree of order 1 (max. keys=2), insert the following 
keys in order: 
10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150

Page 51
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Deletion From a 2-3 Tree
Algorithm:
To delete a key K, first locate the node N containing K.
If K is not found, then deletion algorithm terminates.

If N is an interior node, find K’s in-order successor and swap it 
with K.  As a result, deletion always begins at a leaf node L.

If leaf node L contains a value in addition to K, delete K from L, 
and we’re done.  (no underflow)
For B-trees, underflow occurs if # of nodes < minimum.

If underflow occurs (node has less than required # of keys), we 
merge it with its neighboring nodes.
Check siblings of leaf.  If sibling has two values, redistribute them.

Otherwise, merge L with an adjacent sibling and bring down a value from 
L’s parent.

If L’s parent has underflow, recursively apply merge procedure.

If underflow occurs to the root, the tree may shrink a level. Page 52
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AB

C

L
A

B

L
C

Deletion
Re-distributing values in Leaf Nodes

If deleting K from L causes L to be empty:
Check siblings of now empty leaf.

If sibling has two values, redistribute the values.
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Merging leaf nodes:
If no sibling node has extra keys to spare, merge L with an 

adjacent sibling and bring down a value from L’s parent.

The merging of L may cause the parent to be left without a 
value and only one child.  If so, recursively apply deletion 
procedure to the parent.

A

B

L
AB

L

Deletion
Merging Leaf Nodes
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C

A B

w x y z

B

A C

x zyw

Deletion
Re-distributing values in Interior Nodes

Re-distributing values in interior nodes:
If the node has a sibling with two values, redistribute the values.
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B

A

x     y z

A B

zyx

Deletion
Merging Interior Nodes

Merging interior nodes:
If the node has no sibling with two values, merge the node with 

a sibling, and let the sibling adopt the node’s child.
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A B

zyx

A B

zyx

Deletion
Merging on the Root Node

If the merging continues so that the root of the tree is without a 
value (and has only one child), delete the root. Height will now 
be h-1.
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Deletion Examples

30

40

Original tree

50

60 80 100

70  90

10  20
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Deletion Examples

Delete 70

30

40

50

60 80 100

70 90

10  20
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Deletion Examples

30

40

Swap with in-order successor

50

60 70 100

80  90

10  20
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Deletion Examples

30

40

Merge and pull down

50

60 100

80  90

10  20
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Deletion Examples

30

40

Done!

50

10010  20 60  80

90
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Deletion Examples

30

40

Delete 100

50

10010  20 60  80

90
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Deletion Examples

30

40

Redistribute

50

10  20 60  80

90
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Deletion Examples

30

40

Done!

50

10  20

80

9060
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Deletion Examples

30

40

Delete 80

50

10  20

80

9060
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Deletion Examples

30

40

50

10  20

90

8060

Swap with in-order successor
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Deletion Examples

30

40

50

10  20

90

60

Merge and pull down
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Deletion Examples

30

40

50

10  20

Merge and pull down

60  90
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Deletion Examples

4010  20

Merge and pull down

60  90

30  50
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Deletion Examples

Done

4010  20 60  90

30  50
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B-tree Deletion Practice Question
Using the previous tree constructed by inserting into a B-tree of 
order 1 (max. keys=2) the keys:
10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150

Delete these keys (in order):
40

70

80

Page 72
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B-trees as External Data Structures
Now that we understand how a B-tree works as a data 
structure, we will investigate how it can be used for an index.

A regular B-tree can be used as an index by:
Each node in the B-tree stores not only keys, but also a record 

pointer for each key to the actual data being stored. 
Could also potentially store the record in the B-tree node itself.

To find the data you want, search the B-tree using the key, and 
then use the pointer to retrieve the data.
No additional disk access is required if the record is stored in the node.

Given this description, it is natural to wonder how we might 
calculate the best B-tree order.
Depends on disk block and record size.

We want a node to occupy an entire block.
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Calculating the Size of a B-tree Node
Given a block of 4096 bytes, calculate the order of a B-tree if 
the key size is 4 bytes, the pointer to the data record is 8 bytes, 
and the child pointers are 8 bytes.

Answer:
Assuming no header information is kept in blocks:

node size = keySize*numKeys + dataPtrSize*numKeys 

+ childPtrSize*(numKeys+1)

Let k=numKeys.

size of one node = 4*k + 8*k + 8*(k+1) <= 4096

k = 204 keys

Maximum order is 102.
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B-tree Question
Question: Given a block of 4096 bytes, calculate the maximum 
number of keys in a node if the key size is 4 bytes, internal B-
tree pointers are 8 bytes, and we store the record itself in the 
B-tree node instead of a pointer.  The record size is 100 bytes.

A) 18

B) 36

C) 340

D) 680
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Advantages of B-trees
The advantages of a B-tree are:
1) B-trees automatically create or destroy index levels as the 

data file changes.

2) B-trees automatically manage record allocation to blocks, so 
no overflow blocks are needed.

3) A B-tree is always balanced, so the search time is the same 
for any search key and is logarithmic.

For these reasons, B-trees and B+-trees are the index scheme 
of choice for commercial databases.

Page 76

COSC 404 - Dr. Ramon Lawrence

B+-trees
A B+-tree is a multi-level index structure like a B-tree except 
that all data is stored at the leaf nodes of the resulting tree 
instead of within the tree itself.
Each leaf node contains a pointer to the next leaf node which 

makes it easy to chain together and maintain the data records 
in “sequential” order for sequential processing.

Thus, a B+-tree has two distinct node types:
1) interior nodes - store pointers to other interior nodes or leaf 

nodes.  

2) leaf nodes - store keys and pointers to the data records (or 
the data records themselves).
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B+-tree Example 

Record Pointers

50

10 30 70 90

4 8 90 9910 22 30 45 50 69 70 89
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Operations on B+-trees
The general algorithms for inserting and deleting from a B+-
tree are similar to B-trees except for one important difference:

All key values stay in leaves.

When we must merge nodes for deletion or add nodes during 
splitting, the key values removed/promoted to the parent nodes 
from leaves are copies.
All non-leaf levels do not store actual data, they are simply a 

hierarchy of multi-level index to the data.
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B+-tree Insert Example 

50

10 30 70 90

4 8 90 9910 22 30 45 50 69 70 89

Insert 75
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B+-tree Insert Example (2) 

50

10 30 70 90

4 8 90 9910 22 30 45 50 69

75 goes in 2nd last block.
Split block to handle overflow.
Promote 75.  Note that 75 stays in a leaf!

75 8970
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B+-tree Insert Example (3) 

50

10 30

4 8 90 9910 22 30 45 50 69

Split parent block to handle overflow.
Promote 75.  Note that 75 does not stay!

75 89

7570 90

70
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B+-tree Insert Example (4) 

50 75  

10 30

4 8 90 9910 22 30 45 50 69

Insertion done!

75 89

70 90

70
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B+-tree Delete Example 

50 75  

10 30

4 8 90 9910 22 30 45 50 69

Delete 75.

75 89

70 90

70
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B+-tree Delete Example (2) 

50 75  

10 30

4 8 90 9910 22 30 45 50 69

Remove from leaf node.  
No other updates.

70 90

8970
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B+-Tree Delete Example 2 

50 75  

10 30

4 8 90 9910 22 30 45 50 69

70

Delete 89.

70 90

89
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B+-Tree Delete Example 2  (2) 

50 75  

10 30

4 8 10 22 30 45 50 69

70

Redistribute keys 90 and 99.

70 99

90

99

Page 87

COSC 404 - Dr. Ramon Lawrence

B+-Tree Delete Example 3 

50 75  

10 30

4 8 10 22 30 45 50 69

70

Delete 90.

70 99

90

99
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B+-Tree Delete Example 3 (2) 

50 75  

10 30

4 8 10 22 30 45 50 69

70

Empty leaf node.  Merge with sibling.

70 99

99
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B+-Tree Delete Example 3 (2) 

50 75  

10 30

4 8 10 22 30 45 50 69

Empty interior node.  Merge with sibling.

70

Merge

70

99
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B+-Tree Delete Example 3 (3) 

10 30

4 8 10 22 30 45 50 69

Bring down 75 from parent node.  Done.

70 75

50

70 99
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B+-tree Practice Question
For a B+-tree of order 2 (max. keys=4), insert the following 
keys in order: 
10, 20, 30, 40, 50, 60, 70, 80, 90

Assuming keys increasing by 10, what is the first key added 
that causes the B+-tree to grow to height 3?
a) 110  b) 120 c) 130 d) 140 e) 150

Show the tree after deleting the following keys:
a) 70

b) 90

c) 10

Assume you start with the tree after inserting 90 above.
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B+-tree Challenge Exercise
For a B+-tree with maximum keys=3, insert the following keys 
in order: 
10, 20, 30, 40, 50, 60, 70, 80, 90,100

Show the tree after deleting the following keys:
a) 70

b) 90

c) 10

Try the deletes when the minimum # of keys is 1 and when the 
minimum # of keys is 2.

Page 93

COSC 404 - Dr. Ramon Lawrence

Observations about B+-trees
Since the inter-node connections are done by pointers, there is 
no assumption that in the B+-tree, the “logically” close blocks 
are “physically” close.

The B+-tree contains a relatively small number of levels 
(logarithmic in the size of the main file), thus searches and 
modifications can be conducted efficiently.

Example:
If a B+-tree node can store 300 key-pointer pairs at maximum, 

and on average is 69% full, then 208 (207+1) pointers/block. 

Level 3 B+-tree can index 2083 records = 8,998,912 records!
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B+-trees Discussion
By isolating the data records in the leaves, we also introduce 
additional implementation complexity because the leaf and 
interior nodes have different structures.
Interior nodes contain only pointers to additional index nodes or 

leaf nodes while leaf nodes contain pointers to data records.

This additional complexity is outweighed by the advantages of 
B+-trees which include:
Better sequential access ability.

Greater overall storage capacity for a given block size since the 
interior nodes can hold more pointers each of which requires 
less space.

Uniform data access times.
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B-trees
Summary

A B-tree is a search tree where each node has >= n data 
values and <= 2n, where we chose n for our particular tree.
A 2-3 tree is a special case of a B-tree.

Common operations: search, insert, delete
Insertion may cause node overflow that is handled by promotion.

Deletion may cause node underflow that is handled by mergers.

Handling special cases for insertion and deletion make the 
code for implementing B-trees complex.

Note difference between B+-tree and B-tree for insert/delete!

B+-trees are a good index structure because they can be 
searched/updated in logarithmic time, manage record pointer 
allocation on blocks, and support sequential access.
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Major Objectives
The "One Things":
Insert and delete from a B-tree and a B+-tree.

Calculate the maximum order of a B-tree.

Major Theme: 
B-trees are the standard index method due to their time/space 

efficiency and logarithmic time for insertions/deletions.

Other objectives:
Calculate query access times using B-trees indexes.

Compare/contrast B-trees and B+-trees.
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R-Trees Introduction
R-trees (or region tree) is a generalized B-tree suitable for 
processing spatial queries. Unlike B-trees where the keys have 
only one dimension, R-trees can handle multidimensional data.

The basic R-tree was proposed by Guttman in 1984 and 
extensions and modifications have been later developed.
R+-tree (Sellis et al. 1987)

R*-tree (Beckmann et al. 1990)

We begin by looking at the properties of spatial data and spatial 
query processing.
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Types of Spatial Data
Spatial data includes multidimensional points, lines, rectangles, 
and other geometric objects.  

A spatial data object occupies a region of space, called its 
spatial extent, which is defined by its location and boundary.

Point Data - points in multidimensional space

Region Data - objects occupy a region (spatial extent) with a 
location and a boundary.
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Types of Spatial Queries
Spatial Range Queries - query has associated region and asks 
to find matches within that region
e.g. Find all cities within 50 miles of Kelowna.

Answer to query may include overlapping or contained regions.

Nearest Neighbor Queries - find closest region to a region.
e.g. Find the 5 closest cities to Kelowna.

Results are ordered by proximity (distance from given region).

Spatial Join Queries - join two types of regions
e.g. Find all cities near a lake.

Expensive to compute as join condition involves regions and 
proximity.
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Spatial Data Applications
Geographic Information Systems (GIS) use spatial data for 
modeling cities, roads, buildings, and terrain.

Computer-aided design and manufacturing (CAD/CAM)
process spatial objects when designing systems.
Spatial constraints: "There must be at least 6 inches between 

the light switch and turn signal."

Multimedia databases storing images, text, and video require 
spatial data management to answer queries like "Return the 
images similar to this one." Involves use of feature vectors.
Similarity query converted into nearest neighbor query.
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Spatial Queries
Question: What type of spatial query is: "Find the city with the 
largest population closest to Chicago?"

A) Spatial Range Query

B) Nearest Neighbor Query

C) Spatial Join Query

D) Not a spatial query
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Spatial Indexing
A multidimensional or spatial index utilizes some kind of spatial 
relationship to organize data entries.   Each key value in the 
index is a point (or region) in k-dimensional space, where k is 
the number of fields in the search key.

Although multidimensions (multiple key fields) can be handled 
in a B+-tree, this is accomplished by imposing a total ordering 
on the data as B+-trees are single-dimensional indexes.

For instance, B+-tree index on <x,y> would sort the points by x
then by y.
I.e. <2,70>, <3,10>, <3,20>, <4,60>
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B+-tree versus R-tree

80
70
60
50
40
30
20
10
0
0  1  2  3  4

B+-tree

80
70
60
50
40
30
20
10
0
0  1  2  3  4

R-tree

3,10 3,20

3,20 4,702,80 3,10

R1

R2

R1 R2

3,10 3,20 2,70 4,60

R1=(3,10)-(3,20)
R2=(2,60)-(4,80)
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B+-tree versus R-tree Querying
Consider these three queries on x and y:
1) Return all points with x < 3.
Works well on B+-tree and R-tree.  Most efficient on B+-tree.

2) Return all points with y < 50.
Cannot be efficiently processed with B+-tree as data sorted on x first.

Can be efficiently processed on R+-tree.

3) Return all points with x < 3 and y < 50.
B+-tree is only useful for selection on x.  Not very good if many points 

satisfy this criteria.

Efficient for R-tree as only search regions that may contain points that 
satisfy both criteria.
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R-Tree Structure
R-tree is adaptation of B+-tree to handle spatial data.

The search key for an R tree is a collection of intervals with one 
interval per dimension.  Search keys are referred to as 
bounding boxes or minimum bounding rectangles (MBRs).
Example:

Each entry in a node consists of a pair <n-dimensional box, id> 
where the id identifies the object and the box is its MBR.

Data entries are stored in leaf nodes and non-leaf nodes contain 
entries consisting of <n-dimensional box, node pointer>.  

The box at a non-leaf node is the smallest box that contains all 
the boxes associated with the child nodes.
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R-Tree Notes
The bounding box for two children of a given node can overlap.
Thus, more than one leaf node could potentially store a given 

data region. 

A data point (region) is only stored in one leaf node.
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R-Tree Searching
Start at the root.
If current node is non-leaf, for each entry <E, ptr> if box E

overlaps Q, search subtree identified by ptr.

If current node is leaf, for each entry <E, id>, if E overlaps Q, id
identifies an object that might overlap Q.

Note that you may have to search several subtrees at each 
node.  In comparison, a B-tree equality search goes to just one 
leaf.
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R-Tree Searching Improvements
Although it is more convenient to store boxes to represent 
regions because they can be represented compactly, it is 
possible to get more precise bounding regions by using convex 
polygons.

Although testing overlap is more complicated and slower, this is 
done in main-memory so it can be done quite efficiently.  This 
often leads to an improvement. 
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R-Tree Insertion Algorithm
Start at root and go down to "best-fit" leaf L.
Go to child whose box needs least enlargement to cover B; 

resolve ties by going to smallest area child.

If best-fit leaf L has space, insert entry and stop.

Otherwise, split L into L1 and L2.
Adjust entry for L in its parent so that the box now covers (only) 

L1.

Add an entry (in the parent node of L) for L2.  (This could cause 
the parent node to recursively split.)
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R-Tree Insertion Algorithm
Splitting a Node

The existing entries in node L plus the newly inserted entry 
must be distributed between L1 and L2.

Goal is to reduce likelihood of both L1 and L2 being searched 
on subsequent queries.

Idea: Redistribute so as to minimize area of L1 plus area of L2.

An exhaustive search of possibilities is too slow so quadratic 
and linear heuristics are used.
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Insertion Example

R-tree degree=3

R1 R2

A B C D

R1 R2

A B C D E

New R-tree

E

Extended region R2 to hold E.

Spatial Data

A

BC

D

R1

R2

Insert E

A

BC

R1 DR2
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Insertion Example 2

R1 R2

A B C D E  

Original R-treeInsert X

X

New R-tree

R1 R3 R2

D E  A C B X

A

BC

D
E

R1

R2

Updated Regions

A

BC

D
EX
R2

R3

R1

Split R1 into R1 and R3.
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R+-Tree
R+-tree avoids overlap by inserting an object into multiple 
leaves if necessary.

Reduces search cost as now take a single path to leaf.
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R*-Tree
R*-tree uses the concept of forced reinserts to reduce overlap 
in tree nodes.

When a node overflows, instead of splitting:
Remove some (say 30%) of the entries and reinsert them into 

the tree.

Could result in all reinserted entries fitting on some existing 
pages, avoiding a split.

R*-trees also use a different heuristic, minimizing box 
parameters, rather than box areas during insertion.
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GiST
The Generalized Search Tree (GiST) abstracts the "tree" 
nature of a class of index including B+-trees and R-tree 
variants.
Striking similarities in insert/delete/search and even 

concurrency control algorithms make it possible to provide 
"templates" for these algorithms that can be customized to 
obtain the many different tree index structures.

B+ trees are so important (and simple enough to allow further 
specialization) that they are implemented specifically in all 
DBMSs.

GiST provides an alternative for implementing other index 
types.

Implemented in PostgreSQL.  Make your own index!
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R-Tree Variants
Question: Select a true statement.

A) Searching in a R-tree always follows a single path.

B) R-tree variants may have different ways for splitting nodes 
during insertion.

C) A R+-tree search always follows a single path to a leaf 
node.

D) None of the above
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R-Trees Summary
An R-tree is useful for indexing and searching spatial data.

Variants of R-trees are used in commercial databases.
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Major Objectives
The "One Thing":
Be able to explain the difference between an R-tree and a B+-

tree.

Other objectives:
List some types of spatial data.

List some types of spatial queries.

List some applications of spatial data and queries.

Understand the idea of insertion in a R-tree.
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Hash Indexes
Overview

B-trees reduce the number of block accesses to 3 or 4 even for 
extremely large data sets.  The goal of hash indexes is to make 
all operations require only 1 block access.

Hashing is a technique for mapping key values to locations.

Hashing requires the definition of a hash function f(x), that 
takes the key value x and computes y=f(x) which is the location 
of where the key should be stored.

A collision occurs when we attempt to store two different keys 
in the same location.  
f(x1) = y and f(x2) = y for two keys x1 != x2
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Handling Collisions
A perfect hash function is a function that:
For any two key values x1 and x2, f(x1) != f(x2) for all x1 and x2, 

where x1 != x2.

That is, no two keys map to the same location.

It is not always possible to find a perfect hash function for a set 
of keys depending on the situation.
Recent research on perfect hash functions is useful for databases.

We must determine how to handle collisions where two different 
keys map to the same location.

One simple way of handling collisions is to make the hash table 
really large to minimize the probability of collisions.
This is not practical in general.  However, we do want to make 

our hash table moderately larger than the # of keys. Page 4
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Open Addressing
Open addressing with linear probing is a method for 
handling hash collisions.  

Open addressing:
Computes y=f(x) and attempts to put key in location y.

If location y is occupied, scan the array to find the next open 
location.  Treat the array as circular.
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Open addressing on a 11 element array with f(x) = x % 11:

Insert 917 at location 4.

[3] [4][0] [9][8][6] [7][5] [10][2][1]

917

Open Addressing Example
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Open addressing on a 11 element array with f(x) = x % 11:

Insert 254 at location 1.

[3] [4][0] [9][8][6] [7][5] [10][2][1]

917254

Open Addressing Example (2)
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Open addressing on a 11 element array with f(x) = x % 11:

Insert 589 at location 6.

[3] [4][0] [9][8][6] [7][5] [10][2][1]

917 589254 

Open Addressing Example (3)
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Open addressing on a 11 element array with f(x) = x % 11:

Insert 457 at location 6.
Collision with 589.

Next open location is 7, so insert there.

[3] [4][0] [9][8][6] [7][5] [10][2][1]

917 589   254 457

Open Addressing Example (4)
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Open addressing on a 11 element array with f(x) = x % 11:

Insert 136 at location 4.
Collision with 917.

Next open location is 5, so insert there. 

[3] [4][0] [9][8][6] [7][5] [10][2][1]

917 589   254 457  136

Open Addressing Example (5)
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Open addressing on a 11 element array with f(x) = x % 11:

Insert 654 at location 5.
Collision with 136.

Note that a collision occurs with a key that did not even 
originally hash to location 5.

Keep going down array until find location to insert which is 8.

[3] [4][0] [9][8][6] [7][5] [10][2][1]

917 589   254 457  136   654

Open Addressing Example (6)
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Open addressing on a 11 element array with f(x) = x % 11:

Insert 306 at location 9.

[3] [4][0] [9][8][6] [7][5] [10][2][1]

917 589   254 457  136   654  306

Open Addressing Example (7)
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Open Addressing Example Summary
Insert
 917 1 probe(s)

 589 1

 254 1

 457 2

 136 2

 654 4

 306 1

Average number of probes = 12 / 7 = 1.7
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Open Addressing
Insert and Delete

Insert using linear probing creates the potential that a key may 
be inserted many locations away from its original hash location.

What happens if an element is then deleted in between its 
proper insert location and the location where it was put?
How does this affect insert and delete?

Example: Delete 589 (f(589)=6), then search for 654 (f(654)=5).

Problem! Search would normally terminate at empty location 6! 

[3] [4][0] [9][8][6] [7][5] [10][2][1]

917 ??   254 457  136   654  306

Solution: Have special constants to mark when a location 
is empty and never used OR empty and was used. Page 14
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Open Address Hashing
Question: What location is 19 inserted at?

A) 8

B) 9

C) 6

D) 0

[3] [4][0] [9][8][6] [7][5] [10][2][1]

512 18  8  (del.) 21  
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Separate Chaining
Separate chaining resolves collisions by having each array 
location point to a linked list of elements.
Algorithms for operations such as insert, delete, and search are 

obvious and straightforward.

As with open addressing, separate chaining has the potential to 
degenerate into a linear algorithm if the hash function does not 
distribute the keys evenly in the array.

...

--

--

--
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Hash Limitations and Analysis
Hashing gives very good performance when the hash function 
is good and the number of conflicts is low.
If the # of conflicts is high, then the performance of hashing 

rapidly degrades.  The worse case is O(n).

Collisions can be reduced by minimizing the:                          
load factor = # of occupied locations/size of hash table.

However, on average, inserts, searches, and deletes are O(1)!

The limitations of hashing are:
Ordered traversals are difficult without an additional structure 

and a sort. (hashing randomizes locations of records)

Partial key searches are difficult as the hash function must use 
the entire key.
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Hash Limitations and Analysis (2)
The hash field space is the set of all possible hash field values 
for records.
i.e. It is the set of all possible key values that we may use.

The hash address space is the set of all record slots (or 
storage locations).
i.e. Size of array in memory or physical locations in a file.

Tradeoff:
The larger the address space relative to the hash field space, 

the easier it is to avoid collisions, BUT
the larger the address space relative to the number of records 

stored, the worse the storage utilization.
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Hashing Questions
How to handle real data?

Determine your own hash function for each of the following set 
of keys.  Assume the hash table size is 100,000.

1) The keys are part numbers in the range 9,000,000 to 
9,099,999.

2) The keys are people's names.
E.g. "Joe Smith", "Tiffany Connor", etc.
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…

Block address on disk

0
1
2
3

N-1

H(K)

K

Hash file has relative bucket numbers 0 through N-1. 
Map logical bucket numbers to physical disk block addresses.
Disk blocks are buckets that hold several data records each.

External Hashing
Overview

External hashing algorithms allocate records with keys to blocks on disk 
rather than locations in a memory array.
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External Hashing Example

External Hash Table
- 5 buckets
- 2 records per bucket
- use overflow blocks
- f(x) = x % 5

0

1

2

3

4
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0

1

2

3

4

External Hashing Example
Insertion

Insert:
1,5,3,6,4,24

5

1
6

3

4
24
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0

1

2

3

4

External Hashing Example
Insertion with Overflow

Insert: 11
5

1
6

3

4
24

11
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0

1

2

3

4

5

1
6

3

4
24

External Hashing Example
Deletion

Delete: 4

11

24 Keep bucket in sorted 
order.  Shift up.
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0

1

2

3

4

External Hashing Example
Deletion with Overflow

Delete: 6
5

1
6

3

24

11

Move 11 to main bucket.

Delete overflow block.

11
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Deficiencies of Static Hashing
In static hashing, the hash function maps keys to a fixed set of 
bucket addresses.   However, databases grow with time.  
If initial number of buckets is too small, performance will 

degrade due to too many overflows. 

If file size is made larger to accommodate future needs, a 
significant amount of space will be wasted initially.

If database shrinks, again space will be wasted.

One option is periodic re-organization of the file with a new 
hash function, but it is very expensive.

Bottom line: Must determine optimal utilization of hash table.
Try to keep utilization between 50% and 80%.  Hard when data changes.

These problems can be avoided by using techniques that allow 
the number of buckets to be modified dynamically. 
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Linear Hashing
Linear hashing allows a hash file to expand and shrink 
dynamically.

A linear hash table starts with 2d buckets where d is the # of bits 
used from the hash value to determine bucket membership.
Take the last d bits of H where d is the current # of bits used.

The growth of the hash table can either be triggered:
1) Every time there is a bucket overflow.

2) When the load factor of the hash table reaches a given point.

We will use the load factor method.
Since bucket overflows may not always trigger hash table 

growth, overflow blocks are used.
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Linear Hashing
Load Factor

The load factor lf of the hash table is the number of records 
stored divided by the number of possible storage locations.
The initial number of blocks n is a power of 2.  
As the table grows, it may not always be a power of 2.

The number of storage locations s = #blocks X #records/block.

The initial number of records in the table r is 0 and is increased 
as records are added.

Load factor = r / s = r / n * #records/block

We will expand the hash table when the load factor > 85%.
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Linear Hashing Load Factor
Question: A linear hash table has 5 blocks each with space for 
4 records.  There are currently 2 records in the hash table.  
What is its load factor?

A) 10%

B) 40%

C) 50%

D) 0%
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Linear Hashing Example
Example: 

Assume each hashed key is a sequence of four binary digits.

Store values 0000, 1010, 1111.

d = 1
n = 2
r = 3

0000
1010    0

11111
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Linear Hashing
Insertions

Insertion algorithm:
Insert a record with key K by first computing its hash value H.

Take the last d bits of H where d is the current # of bits used.

Find the bucket m where K would belong using the d bits.

If m < n, then bucket exists.  Go to that bucket.
If the bucket has space, then insert K.  Otherwise, use an overflow block.

If m >= n, then put K in bucket m - 2d-1. 

After each insert, check to see if the load factor lf < threshold.

If lf >= threshold perform a split:
Add new bucket n. (Adding bucket n may increase the directory size d.)

Divide the records between the new bucket n=1b2…bd and bucket 0b2..bd.

Note that the bucket split may not be the bucket where the record 
was added! Update n and d to reflect the new bucket.
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d = 1
n = 2
r = 3

Linear Hashing 
Insertion Example

0000
1010 0

11111

Insert 0101.

0101

4/4 = 100% full.
Above threshold triggers split.
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Linear Hashing 
Insertion Example (2)

000000

0101
1111

01

Added new bucket 10.  (2 in binary - old n!)
Divide records of bucket 00 and 10.

101010

d = 2
n = 3
r = 4
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Linear Hashing 
Insertion Example (3)

000000

0101
1111

01

Insert 0001.

101010

d = 2
n = 3
r = 5

Use overflow block.
(May sort records later.)

0001
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Linear Hashing 
Insertion Example (4)

000000

0101
1111

01

Insert 0111.

101010

0001
0111

6/6 = 100% full.
Above threshold triggers split.

d = 2
n = 3
r = 6
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Linear Hashing 
Insertion Example (5)

Create bucket 11.  
Split records between 01 and 11.

d = 2
n = 4
r = 6

000000

0001
0101

01

101010

0111
1111 

11
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Linear Hashing Question
1) Show the resulting hash directory when hashing the keys: 0, 
15, 8, 4, 7, 12, 10, 11 using linear hashing.
Assume a bucket can hold two records (keys).

Assume 4 bits of hash key.

Add a new bucket when utilization is >= 85%.

Clicker:  What bucket is 11 in?

A) 000

B) 001

C) 1011

D) 011
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B+-trees versus Linear Hashing
B+-trees versus linear hashing: which one is better?

Factors:
Cost of periodic re-organization

Relative frequency of insertions and deletions

Is it desirable to optimize average access time at the expense 
of worst-case access time?

Expected type of queries:
Hashing is generally better at retrieving records having a 

specified value for the key.

If range queries are common, B+-trees are preferred.

Real-world result: PostgreSQL implements both B+-trees and 
linear hashing.  Currently, linear hashing is not recommended 
for use.
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Hash Indexes
Summary

Hashing is a technique for mapping key values to locations.
With a good hash function and collision resolution, insert, delete 

and search operations are O(1).

Ordered scans and partial key searches however are inefficient.

Collision resolution mechanisms include:
open addressing with linear probing - linear scan for open location.

separate chaining - create linked list to hold values and handle collisions 
at an array location.

Dynamic hashing is required for databases to handle updates.

Linear hashing performs dynamic hashing and grows the hash 
table one bucket at a time.
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Major Objectives
The "One Things":
Perform open address hashing with linear probing.

Perform linear hashing.

Major Theme: 
Hash indexes improve average access time but are not suitable 

for ordered or range searches.

Other objectives:
Define: hashing, collision, perfect hash function

Calculate load factor of a hash table.

Compare/contrast external hashing and main memory hashing.

Compare/contrast B+-trees and linear hashing.
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Creating Indexes in SQL
There are two general ways of creating an index:
1) By specifying it in your CREATE TABLE statement:

2) Using a CREATE INDEX command after a table is created:

CREATE TABLE test
( a int,

b int,
c varchar(10)
PRIMARY KEY (a),
UNIQUE (b),
INDEX (c)

);

CREATE INDEX myIdxName ON test (a,b);

Only one primary key index allowed.

UNIQUE index does not allow duplicate keys.

Creates an index that supports duplicates.
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CREATE INDEX Command
CREATE INDEX syntax:

UNIQUE means that each value in the index is unique.

ASC/DESC specifies the sorted order of index.

Note: The syntax varies slightly between systems.

CREATE [UNIQUE] INDEX indexName
ON tableName (colName [ASC|DESC] [,...])

DROP INDEX indexName;
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CREATE INDEX Command
Examples

Examples:
CREATE UNIQUE INDEX idxStudent ON Student(sid)

Creates an index on the field sid in the table Student

idxStudent is the name of the index.

The UNIQUE keyword ensures the uniqueness of sid values in 
the table (and index). 
Uniqueness is enforced even when adding an index to a table with 

existing data. If the sid field is non-unique then the index creation fails.

CREATE INDEX clMajor ON Student(Major) CLUSTER

Creates a clustered (primary) index on the Major field of 
Student table.

Note: Clustered index may or may not be on a key field.
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CREATE INDEX Command 
Examples (2)

CREATE INDEX idxMajorYear ON student(Major,Year)

Creates an index with two fields.

Duplicate search keys are possible.
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Creating Indexes in MySQL
MySQL supports both ways of creating indexes.  The CREATE
INDEX command is mapped to an ALTER TABLE statement.

Syntax for CREATE TABLE: 
CREATE TABLE tbl_Name
(

[CONSTRAINT [name]] PRIMARY KEY [index_type] (index_col,...)
| KEY [index_name] [index_type] (index_col,...)
| INDEX [index_name] [index_type] (index_col,...)
| [CONSTRAINT [symbol]] UNIQUE [INDEX]

[index_name] [index_type] (index_col,...)
| [FULLTEXT|SPATIAL] [INDEX] [index_name] (index_col,...)
| [CONSTRAINT [symbol]] FOREIGN KEY

[index_name] (index_col_name,...)
...

)
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Creating Indexes in MySQL (2)
Notes:
1) By specifying a primary key, an index is automatically 

created by MySQL.  You do not have to create another one!

2) The primary key index (and any other type of index) can 
have more than one attribute.

3) MySQL assigns default names to indexes if you do not 
provide them.

4) MySQL supports B+-tree, Hash, and R-tree indexes but 
support depends on table type. 

5) Can index only the first few characters of a CHAR/VARCHAR
field by using col_name(length) syntax.  (smaller index size)

6) FULLTEXT indexes allow more powerful natural language 
searching on text fields (but have a performance penalty).

7) SPATIAL indexes can index spatial data.
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Creating Indexes in SQL Server
Microsoft SQL Server supports defining indexes in the CREATE 
TABLE statement or using a CREATE INDEX command.

Notes:
1) The primary index is a cluster index (rows sorted and stored 

by indexed column).  Unique indexes are non-clustered.
A clustered (primary) index stores the records in the index.

A secondary index stores pointers to the records in the index.

Clustered indexes use B+-trees.

2) A primary key constraint auto-creates a clustered index. 

2) Also supports full-text and spatial indexing.
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Performance Improvement of Indexes
Indexes can improve query performance, especially when 
indexing foreign keys and for queries with low selectivity.

Experiment: 
Use TPC-H database and perform join between Orders and Customer

where the o_custkey field in Orders table is and is not indexed.

select * from orders o, customers c where o.o_custkey = c.c_custkey
 Result size = 1,500,000 rows in time 40 seconds

add condition: where o_custkey = 10
 # of rows = 20, without index = 7 seconds ; with index = less than a second

add condition: where o_custkey < 100
 # of rows = 979; without index = 7 seconds; with index = less than a second

add condition: where o_custkey < 1000
 What do you think will be faster a) with or b) without an index?

Bottom line: Indexes improve performance but only for queries 
that have low selectivity (get return rows from index).
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Indexing with Multiple Fields
Consider an index with multiple fields:

and a query that could use this index:

Commercial databases use a B+-tree index.  Note order is 
important as the index is sorted on the attributes in order.

There are also other methods for multiple field indexing:
Partitioned Hashing

Grid Files 

CREATE INDEX idxMajorYear ON student(Major,Year)

SELECT * FROM student WHERE Major="CS" and Year="3"
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Multiple Key Indexing
Grid Files

A grid file is designed for multiple search-key queries.
The grid file has a grid array and a linear scale for each search-

key attribute.  

The grid array has a number of dimensions equal to number of 
search-key attributes.

Each cell of the grid points to a disk bucket.  Multiple cells of 
the grid array can point to the same bucket.

To find the bucket for a search-key value, locate the row and 
column of its cell using the linear scales and follow pointer.

If a bucket becomes full, a new bucket can be created if more 
than one cell points to it.  If only one cell points to it, an overflow 
bucket needs to be created.
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Example Grid File for Student Database

grid index

Major

Year
1 2 3 4

BA

BS

CS

ME

BA,1-4
BS-CS,3-4

ME,3-4BS-CS-ME, 1-2
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Grid Files Querying
A grid file on two attributes A and B can answer queries:
Exact match queries:
A=value

B=value

A=value AND B=value

Range queries:
(a1  A  a2)

(b1  B  b2)

(a1  A  a2  b1  B  b2)

For example, to answer (a1  A  a2  b1  B  b2), use linear 
scales to find candidate grid array cells, and look up all the 
buckets pointed to from those cells.

Linear scales must be chosen to uniformly distribute records 
across cells.  Otherwise there will be many overflow buckets.
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Grid Files Discussion
Using grid cells as bucket pointers allows the grid to be regular, 
but increases the indirection.

Note that the linear scales are often allocated in a table where 
each value maps to a number between 0 and N.

This allows easier indexing of the grid, and also permits the 
linear scales to be ranges.   Example:

Overall: Grid files are good for multi-key searches but require 
space overhead and ranges that evenly split keys.

Salary Linear Scale
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Multiple Key Indexing
Partitioned Hashing

The idea behind partitioned hashing is that the overall hash 
location is a combination of the hash values from each key.

For example,

h1 h2

010110 111010

Key 1 Key 2

Hash Location

The overall hash location L is 12 bits long.
The first 6 bits are from h1, the second 6 from h2. 
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111

000
001
010
011
100
101
110

Hash Table
h1 is hash function for Major.
h1(BA) = 0
h1(BS)=0
h1(CS)=1
h1(ME)=1
….

h2 is hash function for Year.
h2(1) = 00
h2(2) = 01
h2(3) = 10
h2(4) = 11
…. 

10567,15973

Partitioned Hashing Example

Hash Table

Insert
<10567,CS,3>, <11589,BA,2>, <15973,CS,3>, 
<29579,BS,1>,<34596,ME,4>, <75623,BA,3>, 
<84920,CS,4>, <96256,ME,2>

11589
29579

75623

96256 

34596,84920
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Hash Table
h1 is hash function for Major.
h1(BA) = 0
h1(BS)=0
h1(CS)=1
h1(ME)=1
….

h2 is hash function for Year.
h2(1) = 00
h2(2) = 01
h2(3) = 10
h2(4) = 11
…. 

Partitioned Hashing Example
Searching

Find Major="CS" AND Year="3"

111

000
001
010
011
100
101
110 10567,15973

Hash Table

11589
29579

75623

96256 

34596,84920
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Hash Table
h1 is hash function for Major.
h1(BA) = 0
h1(BS)=0
h1(CS)=1
h1(ME)=1
….

h2 is hash function for Year.
h2(1) = 00
h2(2) = 01
h2(3) = 10
h2(4) = 11
…. 

Partitioned Hashing Example
Searching (2)

Find Year="2"

111

000
001
010
011
100
101
110 10567,15973

Hash Table

11589
29579

75623

96256 

34596,84920
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Hash Table
h1 is hash function for Major.
h1(BA) = 0
h1(BS)=0
h1(CS)=1
h1(ME)=1
….

h2 is hash function for Year.
h2(1) = 00
h2(2) = 01
h2(3) = 10
h2(4) = 11
…. 

Partitioned Hashing Example
Searching (3)

Find Major="BA"

111

000
001
010
011
100
101
110 10567,15973

Hash Table

11589
29579

75623

96256 

34596,84920
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Hash Table
h1 is hash function for Major.
h1(BA) = 0
h1(BS)=0
h1(CS)=1
h1(ME)=1
….

h2 is hash function for Year.
h2(1) = 00
h2(2) = 01
h2(3) = 10
h2(4) = 11
…. 

Partitioned Hashing Question

Find Major="BS" OR Year="1"

Buckets searched:

A) 2 buckets
B) 4 buckets
C) 5 buckets
D) 6 buckets
E) 8 buckets
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Grid Files versus Partitioned Hashing
Both grid files and partitioned hashing have different query 
performance.

Grid Files:
Good for all types of queries including range and nearest-

neighbor queries.

However, many buckets will be empty or nearly empty because 
of attribute correlation.  Thus, grid can be space inefficient.

Partitioned Hashing:
Useless for range and nearest-neighbor queries because 

physical distance between points is not reflected in closeness 
of buckets.

However, hash function will randomize record locations which 
should more evenly divide records across buckets.
Partial key searches should be faster than grid files.
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Bitmap Indexes
A bitmap index is useful for indexing attributes that have a 
small number of values.  (e.g. gender)
For each attribute value, create a bitmap where a 1 indicates 

that a record at that position has that attribute value.

Retrieve matching records by id.
bitmap index

on Mjr
bitmap index

on Yrstudent table

Mjr bitmap
BA 01000100
BS 00010000
CS 10100010
ME 00001001

Yr bitmap
1 00010000
2 01000001
3 10100100
4 00001010

How could we use bitmap indexes to answer:
SELECT count(*) FROM student
WHERE Mjr = 'BA' and Year=2
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Conclusion
The index structures we have seen, specifically, B+-trees are 
used for indexing in commercial database systems.
There are also special indexing structures for text and spatial 

data. 

When tuning a database, examine the types of indexes you can 
use and the configuration options available.

Grid files and partitioned hashing are specialized indexing 
methods for multi-key indexes. 

Bitmap indexes allow fast lookups when attributes have few 
values and can be efficiently combined using logical 
operations.
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Major Objectives
The "One Things":
Perform searches using grid files.

Perform insertions and searches using partitioned hashing.

Major Theme: 
Various DBMSs give you control over the types of indexes that 

you can use and the ability to tune their parameters.  Knowledge 
of the underlying index structures helps performance tuning. 

Objectives:
Understand how bitmap indexes are used for searching and why 

they provide a space and speed improvement in certain cases.
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Query Processing
Overview

The goal of the query processor is very simple:

Return the answer to a SQL query in the most efficient way 
possible given the organization of the database.

Achieving this goal is anything but simple:
Different file organizations and indexing affect performance.

Different algorithms can be used to perform the relational 
algebra operations with varying performance based on the DB.

Estimating the cost of the query itself is hard.

Determining the best way to answer one query in isolation is 
challenging.  How about many concurrent queries?
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Components of a Query Processor

DB Stats

Database

Query Output

SQL Query

Parser

Translator

Optimizer

Evaluator

Expression
Tree

Logical 
Query Tree

Physical
Query Tree

SELECT Name FROM Student 
WHERE Major="CS"

<Query>

SELECT

<SelList>

FROM

<FromList>

WHERE

<Condition>

<Attr> <Value>=

Major "CS"

<Attr>

Name

<Rel>

Student

Student

Name

Major='CS'

Student

(index scan)

(table scan)
Name

Major='CS'
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Review: SQL Query Summary
The general form of the SELECT statement is:

SELECT <attribute list>

FROM    <table list>

[WHERE   (condition)]

[GROUP BY   <grouping attributes>]

[HAVING   <group condition>]

[ORDER BY   <attribute list>]

Clauses in square brackets ([,]) are optional.

There are often numerous ways to express the same query in 
SQL.
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Review: SQL and Relational Algebra
The SELECT statement can be mapped directly to relational 
algebra.  

SELECT A1, A2, … , An

FROM    R1, R2, … , Rm

WHERE   P

is equivalent to:

A1, A2, …, An
(P (R1 R2 … Rm))
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Review: Relational Algebra Operators
Relational Operators:
selection  - return subset of rows

projection  - return subset of columns

Cartesian product  - all combinations of two relations

join - combines  and 
duplicate elimination  - eliminates duplicates

Set operators:
Union  - tuple in output if in either or both

Difference - - tuple in output if in 1st but not 2nd

Intersection  - tuple in output if in both

Union compatibility means relations must have the same number 
of columns with compatible domains.
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Review: Selection and Projection
The selection operation returns an 
output relation that has a subset of the 
tuples of the input by using a predicate.

The projection operation returns an 
output relation that contains a subset of 
the attributes of the input.  

Note: Duplicate tuples are eliminated.

Emp Relation

salary > 35000 OR title = 'PR' (Emp)

 eno,ename (Emp)

Projection Example

Selection Example

Input Relation
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Review: Cartesian Product

Emp Relation Emp  Proj

Proj Relation

The Cartesian (or cross) product of two relations R (of degree k1) and S 
(of degree k2) combines the tuples of R and S in all possible ways.

The result of R  S is a relation of degree (k1 + k2) and consists of all (k1 + 
k2)-tuples where each tuple is a concatenation of one tuple of R with one 
tuple of S. The cardinality of R  S is |R| * |S|.
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Review: Join
Theta () join combines cross product and selection: R⨝F S = F (R  S).

An equijoin only contains the equality operator (=) in the join predicate.

 e.g. WorksOn⨝ WorksOn.pno = Proj.pno Proj

A natural join R ⨝ S is the equijoin of R and S over a set of attributes 
common to both R and S that removes duplicate join attributes.

Proj RelationWorksOn Relation WorksOn WorksOn.pno = Proj.pno Proj
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Review Question
Given this table and the query:

How many rows in the result?

A) 2

B) 3

C) 4

D) 5

Emp Relation

SELECT eno, salary 
FROM emp
WHERE salary >= 40000

Page 11

COSC 404 - Dr. Ramon Lawrence

Review Question
Given these tables and the query:

How many rows in the result?

A) 0

B) 1

C) 2

D) 8

Πeno, ename (title='EE' (Emp ⨝dno=dno Dept) )

Emp Relation

Dept Relation
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Review Question
Question: What is the symbol for duplicate elimination?

A) 
B) 
C) 
D) ⨝
E) 



3

Page 13

COSC 404 - Dr. Ramon Lawrence

Algorithms for Relational Operators
Our initial focus is developing algorithms to implement the 
relational operators of selection, projection, and join.

The query processor contains these implementations and uses 
them to answer queries. 

We will discuss when the algorithms should be applied when 
discussing optimization.  For now, we will build a toolkit of 
potential algorithms that could be used.
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Query Processing
Classifying Algorithms

Two ways to classify relational algebra algorithms:

1) By the number of times the data is read:
One-Pass - selection or projection operators or binary operators 

where one relation fits entirely in memory.

Two-Pass - data does not fit entirely in memory in one pass, but 
algorithm can process data using only two passes.

Multi-Pass - generalization to larger data sets.

2) By the type of relational algebra operator performed:
Tuple-at-a-time, unary operators - selection, projection
Do not need entire relation to perform operation.  

Full-relation, unary operators - grouping,duplicate elimination

Full-relation, binary operators - join, set operations
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Measuring Cost of Algorithms
Algorithms will be compared using number of block I/Os.
Note: CPU time is important but harder to model.

Assumptions:
The arguments of any operator are found on disk, but the 

operator result is left in memory.
For example, a select operation on a relation, must read the relation from 

disk, but after the operation is performed, the result is left in memory (and 
can be potentially used by the next operator).

This is also true for the query result.  
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Measuring Cost of Algorithms (2)
Some basic statistics will be useful when discussing algorithms:
1) The number of buffer blocks available to the algorithm is M.
We will assume memory blocks are the same size as disk blocks.

The buffers are used to stored input and intermediate results; the buffers 
do not have to be used to store output which is assumed to go elsewhere.

M is always less than the size of memory, but in practice, may even be 
much smaller than that as many operators can be executing at once.

2) B(R) or just B (if R is assumed) is the # of blocks on disk used 
to store all the tuples of R.
Usually, assume that R is clustered and that we can only read 1 block at a 

time.  Note that we will ignore free-space in blocks even though in practice 
blocks are not normally kept completely full.

3) T(R) or just T (if R is assumed) is the # of tuples in R.

4) V(R,a) is the # of distinct values of the column a in R.
Note: V(Student,Id) = T(Student) as Id is a key.
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Metrics Question
Question: The number of rows in table Emp is 50.  There are 
10 possible values for the title attribute.  Select a true 
statement.

A) T(Emp) = 10

B) V(Emp, eno) = 10

C) V(Emp, title) = 10

D) V(Emp, title) = 50
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Scans and Sorts
Two basic operations are scanning and sorting an input.

There are two types of scans:
1) Table scan - read the relation R from disk one block at a time.

2) Index scan - read the relation R or only the tuples of R that 
satisfy a given condition, by using an index on R.

Sorting can be performed in three ways:
1) Index sort - used when the relation R has a B+-tree index on 

sort attribute a.

2) Main-memory sort - read the entire relation R into main 
memory and use an efficient sorting algorithm.

3) External-merge sort - use the external-merge sort if the 
entire relation R is too large to fit in memory.
We will discuss this sorting algorithm later.
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Measuring Cost of Scan Operators
The cost of a table scan for relation R is B.

What would be the cost of an index scan of relation R that has B
data blocks and I index blocks?
Does it depend on the type of index?
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Iterators for Operators
Database operations are implemented as iterators.
Also called pipelining or producer-consumer.

Instead of completing the entire operation before releasing 
output, an operator releases output to other operators as it is 
produced one tuple at a time.

Iterators are combined into a tree of operators.  Iterators execute 
in parallel and query results are produced faster.
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Structure of Iterators
Database iterators implement three methods:
init() - initialize the iterator variables and algorithm.  
Starts the process, but does not retrieve a tuple.

next() - return the next tuple of the result and perform any 
required processing to be able to return the next tuple of the 
result the next time next() is called.
next() returns NULL if there are no more tuples to return.

close() - destroy iterator variables and terminate the algorithm.

Each algorithm we discuss can be implemented as an iterator.
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Iterator Example
Table Scan Iterator
init() {

b = the first block of R;
t = first tuple of R;

}
next() {

if (t is past the last tuple on block b) {
increment b to the next block;
if (there is no next block)

return NULL;
else /* b is a new block */

t = first tuple on block b;
}
oldt = t;
increment t to the next tuple of b;
return oldt;

}
close() {}
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Iterator Example
Main-Memory Sort Iterator
init() {

Allocate buffer array A 
read entire relation R block-by-block into A;
sort A using quick sort;
tLoc = 0; // First tuple location in A

}

next() {
if (tLoc >= T)

return NULL;
else
{ tLoc++;

return A[tLoc-1];
}

}

close() {}

How is this iterator different than 
the table scan iterator?  
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Programming Iterators in Java
We will implement iterators in Java and combine them to build 
execution trees.

Iterators are derived from the Operator class.

This class has the methods init(), next(), hasNext(), 
and close().

The operator has an array of input operators which may consist 
of 0, 1, or 2 operators.
A relation scan has 0 input operators.
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Operator class
public abstract class Operator
{

protected Operator[] input; // Input operators
protected int numInputs; // # of inputs
protected Relation outputRelation; // Output relation
protected int BUFFER_SIZE; // # of buffer pages
protected int BLOCKING_FACTOR; // # of tuples per page

Operator() {this(null, 0, 0); }
Operator(Operator []in, int bfr, int bs){ ... }
// Iterator methods
abstract public void init() throws IOException;
abstract public Tuple next() throws IOException;
public void close() throws IOException
{ for (int i=0; i < numInputs; i++)

input[i].close(); }
public boolean hasNext() throws IOException
{ return false; }
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Scan Operator Example
public class FileScan extends Operator
{ protected String inFileName; // Name of input file to scan

protected BufferedInputStream inFile; // Reader for input file
protected Relation inputRelation; // Schema of file scanned

public FileScan(String inName, Relation r)
{ super(); inFileName = inName;

inputRelation = r; setOutputRelation(r);
}

public void init() throws FileNotFoundException, IOException
{ inFile = FileManager.openInputFile(inFileName);  }

public Tuple next() throws IOException
{ Tuple t = new Tuple(inputRelation);

if (!t.read(inFile)) // Read a tuple from input file
return null;

return t;
}
public void close() throws IOException
{ FileManager.closeFile(inFile); }

}
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Sort Operator Example
public class Sort extends Operator
{ public Sort(Operator in, SortComparator sorter)

{ // Initializes local variables ...}
public void init() throws IOException, FileNotFoundException
{ input[0].init();

buffer = new Tuple[arraySize]; // Initialize buffer
int count = 0;
while (count < arraySize)
{ if ( (buffer[count] = input[0].next()) == null)

break;
count++;

}
curTuple = 0;
Arrays.sort(buffer, 0, count, sorter);
input[0].close();

}
public Tuple next() throws IOException
{ if (curTuple < arraySize)

return buffer[curTuple++];
return null; 

}
// Note: close() method is empty
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Projection Operator Example
public class Projection extends Operator
{ protected ProjectionList plist; // Projection information

public Projection(Operator in, ProjectionList pl)
{ super(new Operator[] {in}, 0, 0);

plist = pl;
}
public void init() throws IOException
{ input[0].init();

Relation inR = input[0].getOutputRelation();
setOutputRelation(inR.projectRelation(plist));

}

public Tuple next() throws IOException
{ Tuple inTuple = input[0].next();

if (inTuple == null)
return null;

return new Tuple(…perform projection using plist from inTuple);
}
public void close() throws IOException
{ super.close(); }

}
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Answering Queries Using Iterators
Given the user query:

This code would answer the query:

SELECT * 
FROM emp

FileScan op = new FileScan("emp.dat", r);
op.init();

Tuple t;
t = op.next();
while (t != null)
{ System.out.println(t);

t = op.next();
}
op.close();
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Iterator Practice Questions
Write the code to answer the query:

Assume that a SortComparator sc has been defined that you 
can pass in to the Sort object to sort appropriately.

Challenge: Answer this query:

Assume you can provide an array of attribute names to the 
Projection operator.

SELECT * 
FROM emp
ORDER BY ename

SELECT eno, ename 
FROM emp
ORDER BY ename
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One-Pass Algorithms
One-pass algorithms read data from the input only once.

Selection and projection are one-pass, tuple-at-a-time operators.

Tuple-at-a-time operators require only one main memory buffer 
(M=1) and cost the same as the scan.
Note that the CPU cost is the dominant cost of these operators.
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One-Pass Algorithms
Grouping and Duplicate Elimination

Duplication elimination () and grouping () require reading the 
entire relation and remembering tuples previously seen.

One-pass duplicate elimination algorithm:
1) Read each block of relation R one at a time.

2) For each tuple read, determine if:
This is the first time the tuple has been seen.  If so, copy to output.

Otherwise, discard duplicate tuple.

Challenge: How do we know if a tuple has been seen before?

Answer: We must build a main memory data structure that 
stores copies of all the tuples that we have already seen.
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One-Pass Algorithms
Duplicate Elimination Overview

Seen 
Before?

How do we use 
these buffers?

Database

R

Output BufferInput Buffer

M-1 Buffers
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One-Pass Algorithms
Duplicate Elimination Discussion

The M-1 buffers are used to store a fast lookup structure such 
that given a tuple, we can determine if we have seen it before.
Main-memory hashing or balanced binary trees are used.
Note that an array would be inefficient.  Why?

Space overhead for the data structure is ignored in our 
calculations.

M-1 buffers allows us to store M-1 blocks of R.  Thus, the 
number of main memory buffers required is approximately:

M >= B((R))
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One Pass Duplicate Elimination 
Question

Question: If T(R)=100 and V(R,a)=1 and we perform (Πa(R)), 
select a true statement.

A) The maximum memory size used is 100 tuples (not counting 
input tuple).

B) The size of the result is 100 tuples.

C) The size of the result is unknown.

D) The maximum memory size used is 1 tuple (not counting 
input tuple).
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One-Pass Algorithms
Grouping

The grouping () operator can be evaluated similar to duplicate 
elimination except now besides identifying if a particular group 
already exists, we must also calculate the aggregate values for 
each group as requested by the user. 

How to calculate aggregate values:
MIN(a) or MAX(a) - for each group maintain the minimum or 

maximum value of attribute a seen so far.  Update as required.
COUNT(*) - add one for each tuple of the group seen.

SUM(a) - keep a running sum for a for each group.

AVG(a) - keep running sum and count for a for each group and 
return SUM(a)/COUNT(a) after all tuples are seen.
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One-Pass Algorithms
Grouping Example

Student Relation

SELECT Major, Count(*), Min(Year), 
Max(Year), AVG(Year)

FROM Student GROUP BY Major

Memory Buffers

Major Count Min Max Avg

CS 1 3 3 3
BA 1 2 2 2
BS 1 1 1 1
ME 1 4 4 4

2
2 3 2.5
3 4 3.33

ME 2 2 4 3

Main memory table copied to output
to answer query.
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One-Pass Algorithms
Grouping Discussion

After all tuples are seen and aggregate values are calculated, 
write each tuple representing a group to the output.

The cost of the algorithm is B(R), and the memory requirement 
M is almost always less than B(R), although it can be much 
smaller depending on the group attributes.
Question:  When would M ever be larger than B(R)?

Both duplicate elimination and grouping are blocking 
algorithms by nature that do not fit well into the iterator model!
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One-Pass Algorithms
Binary Operations

It is also possible to implement one-pass algorithms for the 
binary operations of union, intersection, difference, cross-
product, and natural join.

For the set operators, we must distinguish between the set and 
bag versions of the operators:
Union - set union (S) and bag union (B)

Intersection - set intersection (S) and bag intersection (B)

Difference - set difference (-S) and bag difference (-B)

Note that only bag union is a tuple-at-a-time algorithm.  All other 
operators require one of the two operands to fit entirely in main 
memory in order to support a one-pass algorithm.
We will assume two operand relations R and S, with S being 
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One-Pass Algorithms
Binary Operations - General Algorithm

The general algorithm is similar for all binary operations:
1) Read the smaller relation, S, entirely into main memory and 

construct an efficient search structure for it.
This requires approximately B(S) main memory blocks.

2) Allocate one buffer for reading one block of the larger relation, 
R, at a time.

3) For each block and each tuple of R
Compare the tuple of R with the tuples of S in memory and perform the 

specific function required for the operator.

The function performed in step #3 is operator dependent.

All binary one-pass algorithms take B(R) + B(S) disk operations.

They work as long as B(S) <= M-1 or B(S) < M.
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One-Pass Algorithms
Binary Operations Algorithms

Function performed on each tuple t of R for the operators:
1) Set Union - If t is not in S, copy to output, otherwise discard.
Note: All tuples of S were initially copied to output.

2) Set Intersection-If t is in S, copy to output, otherwise discard.
Note: No tuples of S were initially copied to output.

3) Set difference
R -S S: If t is not in S, copy to output, otherwise discard.

S -S R: If t is in S, then delete t from the copy of S in main memory.  If t is 
not in S, do nothing.  After seeing all tuples of R, copy to output tuples of S
that remain in memory.

4) Bag Intersection
Read S into memory and associate a count for each distinct tuple.

If t is found in S and count is still positive, decrement count by 1 and 
output t.  Otherwise, discard t.

Page 42

COSC 404 - Dr. Ramon Lawrence

One-Pass Algorithms
Binary Operations Algorithms (2)

Function performed on each tuple t of R for the operators: 
5) Bag difference
S -B R: Similar to bag intersection (using counts), except only output 

tuples of S at the end if they have positive counts (and output that many).

R -B S: Exercise - try it for yourself.

6) Cross-product - Concatenate t with each tuple of S in main 
memory.  Output each tuple formed.

7) Natural Join
Assume connecting relations R(X,Y) and S(Y,Z) on attribute set Y.

X is all attributes of R not in Y, and Z is all attributes of S not in Y.

For each tuple t of R, find all tuples of S that match on Y.  

For each match output a joined tuple.
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One-Pass Algorithms
Review Questions

1) How many buffers are required to perform a selection 
operation on a relation that has size 10,000 blocks?

2) Assume the number of buffers M=100.  Let B(R)=10,000 and 
B(S)=90.  How many block reads are performed for R  S?

3) If M=100, B(R)=5,000 and B(S)=1,000, how many block 
reads are performed for R - S using a one-pass algorithm? 
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Nested-Loop Joins
Nested-loop joins are join algorithms that compute a join using 
simple for loops.

These algorithms are essentially "one-and-a-half-pass" 
algorithms because one of the relations is read only once, while 
the other relation is read repeatedly.

There are two variants:
1) Tuple-based nested-loop join

2) Block-based nested-loop join

For this discussion, we will assume a natural join is to be 
computed on relations R(X,Y) and S(Y,Z).
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Nested-Loop Joins
Tuple-based Nested-Loop Join

In the tuple-based nested-loop join, tuples are matched using 
two for loops.  Algorithm:

Notes:
Very simple algorithm that can vary widely in performance if:
There is an index on the join attribute of R, so the entire relation R does 

not have to be read.

Memory is managed smartly so that tuples are in memory when needed 
(use buffers intelligently).

Worse case is T(R)*T(S) if for every tuple we have to read it from disk!

for (each tuple s in S)
for (each tuple r in R)

if (r and s join to make a tuple t)
output t;
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Nested-Loop Joins
Tuple-based Nested-Loop Join Iterator
// Initialize relation iterators and read tuple of S
init() {  R.init(); S.init(); s = S.next(); }

next() {
do {

r = R.next();
if (r == NULL){// R is exhausted for current s

R.close();
s = S.next();
if (s == NULL) return NULL;  // Done
R.open(); // Re-initialize scan of R
r = R.next(); 

}
} while !(r and s join); // Found one joined tuple
return (the tuple created by joining r and s);

}
close() { R.close(); S.close();}
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Nested-Loop Joins
Block-based Nested-Loop Join

Block-based nested-loop join is more efficient because it 
operates on blocks instead of individual tuples.  

Two major improvements:
1) Access relations by blocks instead of by tuples.

2) Buffer as many blocks as available of the outer relation S.  
That is, load chunks of relation S into the buffer at a time.

The first improvement makes sure that as we read R in the inner 
loop, we do it a block at a time to minimize I/O.

The second improvement enables us to join one tuple of R
(inner loop) with as many tuples of S that fit in memory at one 
time (outer loop).
This means that we do not have to continually load a block of S

at time.
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Nested-Loop Joins
Nested-Block Join Algorithm
for (each chunk of M-1 blocks of S)

read these blocks into main memory buffers;
organize these tuples into an efficient search 

structure whose search key is the join attributes;
for (each block b of R)

read b into main memory;
for (each tuple t of b)

find tuples of S in memory that join with t;
output the join of t with each of these tuples;

Note that this algorithm has 3 for loops, but does the same 
processing more efficiently than the tuple-based algorithm. 
Outer loop processes tuples of S, inner loop processes tuples of R.
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Nested-Loop Joins
Analysis and Discussion

Nested-block join analysis:
Assume S is the smaller relation.

# of outer loop iterations = B(S)/M-1
Each iteration reads M-1 blocks of S and B(R) (all) blocks of R.

Number of disk I/O is:

ܤ ܵ  ܤ ܴ ∗
ሺܵሻܤ
ܯ െ 1

In general, this can be approximated by B(S)*B(R)/M.  
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Nested-Loop Joins
Performance Example

If M=1,000, B(R)=100,000, T(R)=1,000,000, B(S)=5,000, and 
T(S)=250,000, calculate the performance of tuple-based and 
block-based nested loop joins.

Tuple-Based Join:
worst case = T(R) * T(S) = 1,000,000 * 250,000 

= 25,000,000,000 = 25 billion!

Block-Based Join:
worst case = B(S) + B(R)*ceiling(B(S)/(M-1)) 

= 5,000 + 100,000 * ceiling(5,000 / 999 )

= 605,000

Question: What is the I/Os if the larger relation R is in the outer loop?
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Nested Loop Join Question
Question: Select a true statement.

A) NLJ buffers the smaller relation in memory.

B) NLJ buffers the larger relation in memory.
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Sorting-based Two-Pass Algorithms
Two-pass algorithms read the input at most twice.

Sorting-based two-pass algorithms rely on the external sort 
merge algorithm to accomplish their goals.

The basic process is as follows:
1) Create sorted sublists of size M blocks of the relation R.

2) Merge the sorted sublists by continually taking the minimum 
value in each list.

3) Apply the appropriate function to implement the operator. 

We will first study the external sort-merge algorithm then 
demonstrate how its variations can be used to answer queries.
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External Sort-Merge Algorithm
1) Create sorted runs as follows:

Let i be 0 initially, and M be the number of main memory blocks.

Repeat these steps until the end of the relation:
(a) Read M blocks of relation into memory.

(b) Sort the in-memory blocks.

(c) Write sorted data to run Ri; increment i.

2) Merge the runs in a single merge step:
Suppose for now that i < M.  Use i blocks of memory to buffer input runs.

We will write output to disk instead of using 1 block to buffer output.  

Repeat these steps until all input buffer pages are empty:
(a) Select the first record in sorted order from each of the buffers.

(b) Write the record to the output.

(c) Delete the record from the buffer page. If the buffer page is empty, 
read the next block (if any) of the run (sublist) into the buffer. 
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External Sort-Merge Example

initial relation

G
A
D

24
19
31

C
B
E

33
14
16

R
D
M

6
21
3

A
D
G

19
31
24

B
C
E

14
33
16

D
M
R

21
3
6

sorted relation

A 19
B 14
C 33
D 21
D 31
E 16
G
M
R

24
3
6

Runs

Create Sorted 
Sublists

Merge 
Pass

Sort by column #1. M=3.  (Note: Not using an output buffer.)
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Multi-Pass External Sort-Merge 
If i  M, several merge passes are required as we can not 
buffer the first block of all sublists in memory at the same time.
In this case, use an output block to store the result of a merge.

In each pass, contiguous groups of M-1 runs are merged. 

A pass reduces the number of runs by a factor of M-1, and 
creates runs longer by the same factor. 

Repeated passes are performed until all runs are merged.
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External Sort-Merge Example 2
Multi-Pass Merge

initial relation

G
A
D

24
19
31

C
B
E

33
14
16

R
D
M

6
21
3

P
D
A

2
7
4

A
D
G

19
31
24

B
C
E

14
33
16

D
M
R

21
3
6

A
D
P

4
7
2

A
B
C

19
14
33

D
E
G

31
16
24

A
D
D

4
7

21
M
P
R

3
2
6

sorted relation

A
A
B

4
19
14

C
D
D

33
7

21
D
E
G

31
16
24

M
P
R

3
2
6

Runs

Create Sorted 
Sublists

Merge 
Pass #1

Merge 
Pass #2
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External Sort-Merge Analysis
Cost analysis:
Two-pass external sort cost is: 3*B.  (B=B(R))
Each block is read twice: once for initial sort, once for merge.

Each block is written once after the first pass.

The cost is 4*B if we include the cost of writing the output.

Multi-pass external sort cost is: B*(2 logM–1(B/M) + 1).
Disk accesses for initial run creation as well as in each pass is 2*B 

(except for final pass that does not write out results). 

Total number of merge passes required: logM–1(B/M)
 B/M is the # of initial runs, and # decreases by factor of M-1 every pass.

 Each pass reads/writes each block (2*B) except final run has no write.

Sort analysis:
A two-pass external sort can sort M2 blocks.

A N-pass external sort can sort MN blocks.
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External Sort-Merge Analysis Example
A main memory size is 64 MB, the block size is 4 KB, and the 
record size is 160 bytes.
1) How many records can be sorted using a two-pass sort?
Sort can sort M2 memory blocks.

# of memory blocks = memory size/block size

Total # of blocks sorted = (64 MB / 4 KB )2 = approx. 268 million

Total # of records sorted = #blocks *blockingFactor = approx. 6.8 billion!

Total size is approximately 1 terabyte.

2) How many records can be sorted using a three-pass sort?
Sort can sort M3 memory blocks.

Same calculation results in 112 trillion records of total size 16 petabytes!

Bottom-line: Two way sort is sufficient for most purposes! 
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External Sort-Merge Usage
The external sort-merge algorithm can be used when:
1) SQL queries specify a sorted output.

2) For processing a join algorithm using merge-join algorithm. 

3) Duplicate elimination.

4) Grouping and aggregation.

5) Set operations.

We will see how the basic external sort-merge algorithm can be 
modified for these operations.
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Duplicate Elimination Using Sorting
Algorithm (two-pass):
Sort the tuples of R into sublists using the available memory 

buffers M.

In the second pass, buffer one block of each sublist in memory 
like the sorting algorithm.

However, in this case, instead of sorting the tuples, only copy 
one to output and ignore all tuples with duplicate values.
Every time we copy one value to the output, we search forward in all 

sublists removing all copies of this value.
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Runs

Duplicate elimination on column #1. M=3. blocking factor=2. 

initial relation
2
5
2
1
2
2
4
5
4
3
4
2
1
5
2 

1
2
2
2
2
5

2
3
4
4
4
5

1
2
5

First blocks (each with 2 
records) are initially 
loaded into memory.

Duplicate Elimination Example
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Duplicate Elimination Example (2)
Runs
1
2
2
2
2
5

2
3
4
4
4
5

1
2
5

initial relation
2
5
2
1
2
2
4
5
4
3
4
2
1
5
2

output result

1
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Duplicate Elimination Example (3)
Runs

2
2
2
2
5

2
3
4
4
4
5

2
5

initial relation
2
5
2
1
2
2
4
5
4
3
4
2
1
5
2

output result

1
2

Load new block. 

Load new block. 

Load new block. 
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Duplicate Elimination Example (4)
Runs

2

initial relation
2
5
2
1
2
2
4
5
4
3
4
2
1
5
2

output result

1
2
3
4
5

Final result. 
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Duplicate Elimination Analysis
The number of disk operations is always 3*B(R).
2*B(R) to read/write each block to create sorted sublists.

B(R) to read each block of each sublist when performing 
duplicate elimination.

Remember the single pass algorithm was B(R).

The two-pass algorithm can handle relations where B(R)<=M2.
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Grouping and Aggregation
Using Sorting

Algorithm (two-pass):
Sort the tuples of R into sublists using the available memory 

buffers M.

In the second pass, buffer one block of each sublist in memory 
like the sorting algorithm.

Find the smallest value of the sort key (grouping attributes) in 
all the sublists.  This value becomes the next group.
Prepare to calculate all aggregates for this group.

Examine all tuples with the given value for the sort key and calculate 
aggregate functions accordingly.

Read blocks from the sublists into buffers as required.

When there are no more values for the given sort key, output a tuple 
containing the grouped values and the calculated aggregate values.

Analysis: This algorithm also performs 3*B(R) disk operations.
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Grouping Question
initial relation

2
5
2
1
2
2
4
5
4
3
4
2

Calculate the output for a query that 
groups by the given integer attribute 
and returns a count of the # of records 
that contains that attribute. 

Assume M=3 and blocking factor=2.

1
5
2 
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Set Operations Using Sorting
The set operations can also be implemented using a sorting 
based algorithm.
All algorithms start with an initial sublist creation step where 

both relations R and S are divided into sorted sublists.

Use one main memory buffer for each sublist of R and S.

Many of the algorithms require counting the # of tuples of R and 
S that are identical to the current minimum tuple t.

Special steps for each algorithm operation:
Set Union - Find smallest tuple t of all buffers, copy t to output, 

and remove all other copies of t.

Set Intersection - Find smallest tuple t of all buffers, copy t to 
output if it appears in both R and S. 

Bag Intersection - Find smallest tuple t of all buffers, output t
the minimum # of times it appears in R and S.
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Set Operations Using Sorting (2)
Set Difference - Find smallest tuple t of all buffers, output t only 

if it appears in R but not in S.  (R -S S). 

Bag difference - Find smallest tuple t of all buffers, output t the 
number of times it appears in R minus the number of times it 
appears in S.

Analysis: All algorithms for set operations perform 
3*(B(R)+B(S)) disk operations, and the two-pass versions will 
only work if B(R)+B(S) <= M2.

Note: More precisely the two-pass set algorithms only work if:

B(R)/M) + B(S)/M) <= M
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Set Operations Example - Intersection

R
2
5
2
1
7
3
4
5

M=4. blocking factor=1. 

S
1
4
9
1
2
4
6
5

First blocks (each with 1 
record) are initially 

loaded into memory.

1
2
2
5

3
4
5
7

1
1
4
9

2
4
5
6
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Set Operations Example - Intersection (2)
Runs

1

1
2
2
5

3
4
5
7

1
1
4
9

2
4
5
6

Output

1 occurs in both R and S. 

R

S
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Set Operations Example - Intersection (3)
Runs

1

Output

Final Result. 

R

S

2
4
5
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Set Operations Questions

R
2
5
2
1
7
3
4
5

Show how the following operations are performed 
using two-pass sorting based algorithms: 
1) Set Union
2) Set Difference (R -S S)
3) Bag Difference
4) Bag Intersection

Assume M=4 and bfr=1.

For set operators, first eliminate duplicates in R and S.

S
1
4
9
1
2
4
6
5
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Sort-Based Join Algorithm
Sorting can be used to join two relations R(X,Y) and S(Y,Z).

One of the challenges of any join algorithm is that the number 
of tuples of the two relations that share a common value of the 
join attribute(s) must be in memory at the same time.
This is difficult if the number exceeds the size of memory.
Worse-case: Only one value for the join attribute(s).  All tuples join to 

each other.  If this is the case, nested-loop join is used.

We will look at two different algorithms based on sorting:
Sort-join - Allows for the most possible buffers for joining.

Sort-merge-join - Has fewer I/Os, but more sensitive to large 
numbers of tuples with common join attribute.
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Sort-Join Algorithm
1) Sort R and S using an external merge sort with Y as the key.

2) Merge the sorted R and S using one buffer for each relation.
a) Find the smallest value y of join attributes Y in the start of 

blocks for R and S.

b) If y does not appear in the other relation, remove the tuples 
with key y.

c) Otherwise, identify all tuples in both relations that have the 
value y.
May need to read many blocks from R and S into memory.  Use the M

main memory buffers for this purpose.

d) Output all tuples that can be formed by joining tuples of R
and S with common value y.

e) If either relation has no tuples buffered in memory, read the 
next block of the relation into a memory buffer.
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Sort-Join Example
Sort Phase

R
2
5
2

A
B
C

1
7
3

D
E
F

4
5

G
H

M=4. blocking factor=1. 

S
1
4
9

z 
r 
w 

1
2
4

x 
v
u 

6
5

t 
s 

1
2
2

D
A
C

5 B

3
4
5

F
G
H

7 E

1
1
4

x 
z 
r 

9 w 

2
4
5

v
u
s

6 t

3 F
4 G

5 H
7 E

1 D
2 A
2 C

5 B

1 x 
1 z 

4 r 

9 w 

2 v

4 u
5 s
6 t
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Sort-Join Example
Merge Phase

R

M=4. blocking factor=1. 

S

3 F
4 G

5 H
7 E

1 D
2 A
2 C

5 B

1 x 
1 z 

4 r 

9 w 

2 v

4 u
5 s
6 t

Output

1 D x
1 D z

Notes:
- Only one block of R and S in memory at a time.
- Use other two buffers to bring in records with 
attribute values that match current join attribute. 

Brought in for join on 1. 
In memory after join on 1. 

In memory after join on 1. 

Buffer 

1 x 
1 D

1 z 

R
S
extra 
extra 
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Sort-Join Example
Merge Phase (2)

R

M=4. blocking factor=1. 

S

3 F
4 G

5 H
7 E

1 D
2 A
2 C

5 B

1 x 
1 z 

4 r 

9 w 

2 v

4 u
5 s
6 t

2 A v

Brought in for join on 2. 

In memory after join on 2. 

Output

1 D x
1 D z

2 C v

Buffer 

2 v 
2 A

2 C 

R
S
extra 
extra 

In memory after join on 2. 



14

Page 79

COSC 404 - Dr. Ramon Lawrence

Sort-Join Example
Merge Phase (3)

R

M=4. blocking factor=1. 

S

3 F
4 G

5 H
7 E

1 D
2 A
2 C

5 B

1 x 
1 z 

4 r 

9 w 

2 v

4 u
5 s
6 t

Brought in for join on 4. 

Output

2 A v

1 D x
1 D z

2 C v

Buffer 

4 r 
4 G

4 u 

R
S
extra 
extra 

In memory after join on 4. 

Note: Skipped 3 in R because no match in S.

In memory after join on 4. 

4 G r
4 G u
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Sort-Join Example
Merge Phase (4)

R

M=4. blocking factor=1. 

S

3 F
4 G

5 H
7 E

1 D
2 A
2 C

5 B

1 x 
1 z 

4 r 

9 w 

2 v

4 u
5 s
6 t

Output

Buffer 

5 s 
5 B

5 H 

R
S
extra 
extra 

Done as 7 (R)  and 6,9 (S) do not match.

In memory after join on 5. 

2 A v

1 D x
1 D z

2 C v
4 G r
4 G u

In memory after join on 5. 

5 B s
5 H s

Brought in for join on 5. 
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Sort-Join Analysis
The sort-join algorithm performs 5*(B(R)+B(S)) disk operations.
4*B(R)+4*B(S) to perform the external merge sort on relations.  
Counting the cost to output relations after sort - hence, 4*B not 3*B.

1*B(R)+1*B(S) as each block of each relation read in merge 
phase to perform join.

Algorithm limited to relations where B(R)<=M2 and B(S)<=M2.

The algorithm can use all the main memory buffers M to merge 
tuples with the same key value.
If more tuples exist with the same key value than can fit in 

memory, then we could perform a nested-loop join just on the 
tuples with that given key value.
Also possible to do a one-pass join if the tuples with the key value for 

one relation all fit in memory.
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Sort-Based Join Algorithm
Algorithm #1 - Example

Let relations R and S occupy 6,000 and 3,000 blocks 
respectively.  Let M = 101 blocks.

Simple sort-join algorithm cost:
= 5*(B(R)+B(S)) =  45,000 disk I/Os

- Algorithm works because 6,000<=1012 and 3,000 <=1012.

- Requires that there is no join value y where the total # of tuples 
from R and S with value y occupies more than 101 blocks.

Block nested-loop join cost:
= B(S) + B(S)*B(R)/(M-1) = 183,000 (S as smaller relation)

= B(S) + B(S)*B(R)/(M-1) = 186,000 (S as larger relation)

or approximately 180,000 disk I/Os
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Sort-Merge-Join Algorithm
Idea: Merge the sorting steps and join steps to save disk I/Os.

Algorithm:
1) Create sorted sublists of size M using Y as the sort key for 

both R and S.

2) Buffer first block of all sublists in memory.
Assumes no more than M sublists in total.

3) Find the smallest value y of attribute(s) Y in all sublists.

4) Identify all tuples in R and S with value y.
May be able to buffer some of them if currently using less than M buffers.

5) Output the join of all tuples of R and S that share value y.
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Sort-Merge-Join Example

R
2
5
2

A
B
C

1
7
3

D
E
F

4
5

G
H

M=4. blocking factor=1. 

S
1
4
9

z 
r 
w 

1
2
4

x 
v
u 

6
5

t 
s 

1
2
2

D
A
C

5 B

3
4
5

F
G
H

7 E

1
1
4

x 
z 
r 

9 w 

2
4
5

v
u
s

6 t

Buffer 

3 F 
1 D

1 x 

R1 
R2 
S1 
S2

Output

1 D x
1 D z

2 v 
1 z 

Brought in for join on 1. 
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Sort-Merge-Join Example (2)

R

S

1
2
2

D
A
C

5 B

3
4
5

F
G
H

7 E

1
1
4

x 
z 
r 

9 w 

2
4
5

v
u
s

6 t

Buffer 

3 F 
2 A

4 r 

R1 
R2 
S1 
S2

Output

1 D x
1 D z

2 v 

Brought in for join. 

2 A v
2 C v

2 C

M=4. blocking factor=1. Page 86
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Sort-Merge-Join Example (3)

R

S

1
2
2

D
A
C

5 B

3
4
5

F
G
H

7 E

1
1
4

x 
z 
r 

9 w 

2
4
5

v
u
s

6 t

Buffer 

3 F 
5 B

4 r 

R1 
R2 
S1 
S2

Output

1 D x
1 D z

4 u 

2 A v
2 C v

M=4. blocking factor=1. 

No match for 3.

4 G

4 G r
4 G u
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Sort-Merge-Join Example (4)

R

S

1
2
2

D
A
C

5 B

3
4
5

F
G
H

7 E

1
1
4

x 
z 
r 

9 w 

2
4
5

v
u
s

6 t

Buffer 

5 H 
5 B

9 w 

R1 
R2 
S1 
S2

Output

1 D x
1 D z

5 s 

2 A v
2 C v

M=4. blocking factor=1. 

4 G r
4 G u
5 B s
5 H s
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Sort-Merge-Join Example (5)

R

S

1
2
2

D
A
C

5 B

3
4
5

F
G
H

7 E

1
1
4

x 
z 
r 

9 w 

2
4
5

v
u
s

6 t

Buffer 

7 E 
9 w 

R1 
R2 
S1 
S2

Output

1 D x
1 D z

6 t 

2 A v
2 C v
4 G r
4 G u
5 B s
5 H s

No match for 9.

No match for 7.

No match for 6.

Done!
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Sort-Merge-Join Analysis
Sort-merge-join algorithm performs 3*(B(R)+B(S)) disk I/Os.
2*B(R)+2*B(S) to create the sublists for each relation.  

1*B(R)+1*B(S) as each block of each relation read in merge 
phase to perform join.

The algorithm is limited to relations where B(R)+B(S)<=M2.
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Sort-Merge-Join Example
Let relations R and S occupy 6,000 and 3,000 blocks 
respectively.  Let M = 101 blocks.

Merge-sort-join algorithm cost:
= 3*(B(R)+B(S)) =  27,000 disk I/Os

- Algorithm works because 6,000+3,000<=1012.

- # of memory blocks for sublists = 90

- 11 blocks free to use where there exists multiple join records 
with same key value y. 
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Summary of Sorting Based Methods
Performance of sorting based methods:
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Hashing-based Two-Pass Algorithms
Hashing-based two-pass algorithms use a hash function to 
group all tuples with the same key in the same bucket.

The basic process is as follows:
1) Use a hash function on each tuple to hash the tuple using a 

key to a bucket (or partition).

2) Perform the required operation by working on one bucket at a 
time.  If there are M buffers available, M-1 is the number of 
buckets.

We start with the general external hash partitioning algorithm. 
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Partitioning Using Hashing Algorithm 
1) Partition relation R using M buffers into M-1 buckets of 
roughly equal size.

2) Use a buffer for the input, and one buffer for each of the M-1
buckets.

3) When a tuple of relation R is read, it is hashed using the hash 
function h(x) and stored in the appropriate bucket.

4) As output buffers (for the buckets) are filled they are written to 
disk.  As the input buffer for R is exhausted, a new block is read.

The cost of the algorithm is 2*B(R).
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h(x) = 0

Partitioning using Hashing Example

initial relation

G
A
D

24
19
31

C
B
E

33
14
16

R
D
M

6
21
3

G 24

Buffers

M=4, bfr=3, h(x) = x % 3  (Hash on column #2.)  

h(x) = 1

h(x) = 2

A 19
D 31

G
A
D

24
19
31

input
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Partitioning using Hashing Example (2)

initial relation

G
A
D

24
19
31

C
B
E

33
14
16

R
D
M

6
21
3

Buffers

M=4, bfr=3, h(x) = x % 3  (Hash on column #2.)  

G 24 
h(x) = 0

h(x) = 1
A 
D 

19 
31 

h(x) = 2

C
B
E

33
14
16

input
Second input block

C 33

B 14

E 16 Save full block to disk.
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Partitioning using Hashing Example (3)

initial relation

G
A
D

24
19
31

C
B
E

33
14
16

R
D
M

6
21
3

Buffers

M=4, bfr=3, h(x) = x % 3  (Hash on column #2.)  

G
C

24 
33 h(x) = 0

h(x) = 2
B 14 

R
D
M

6
21
3

input
Third input block

h(x) = 1
A 
D 
E 

19 
31 
16 

R 6
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Partitioning using Hashing Example (4)

initial relation

G
A
D

24
19
31

C
B
E

33
14
16

R
D
M

6
21
3

Buffers

M=4, bfr=3, h(x) = x % 3  (Hash on column #2.)  

h(x) = 0

h(x) = 1

h(x) = 2
B 14 

R
D
M

6
21
3

input
Third input block

A 
D 
E 

19 
31 
16 

G
C
R 

24 
33 
6 

D 21
M 3
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Duplicate Elimination Using Hashing
Algorithm (two-pass):
Partition tuples of R using hashing and M-1 buckets.

Two copies of the same tuple will hash to the same bucket.

One-pass algorithm can be used on each bucket to eliminate 
duplicates by loading entire bucket into memory.

Analysis:
If all buckets are approximately the same size, each bucket Ri

will be of size B(R)/(M-1).

The two-pass algorithm will work if B(R) <= M*(M-1).

The # of disk operations is the same as for sorting, 3*B(R).
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Grouping and Aggregation 
Using Hashing

Algorithm (two-pass):
Partition tuples of R using hashing and M-1 buckets.

The hash function should ONLY use the grouping attributes.

Tuples with the same values of the grouping attributes will hash 
to the same bucket.

A one-pass algorithm is used on each bucket to perform 
grouping/aggregation by loading the entire bucket into memory.

The two-pass algorithm will work if B(R) <= M*(M-1).

On the second pass, we only need store one record per group.
Thus, even if a bucket size is larger than M, we may be able to 

process it if all the group records in the bucket fit into M buffers.

The number of disk operations is 3*B(R).
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Grouping using Hashing Question
initial relation

2
5
2
1
2
2
4
5
4
3
4
2

Calculate the output for a query that 
groups by the given integer attribute 
and returns a count of the # of records 
that contains that attribute. 

Assume M=4 and blocking factor=2.

1
5
2 
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Set Operations Using Hashing
Set operations can be done using a hash-based algorithm.
Start by hash partitioning R and S into M-1 buckets. 

Perform a one-pass algorithm for the set operation on each of 
the buckets produced.

All algorithms perform 3*(B(R) + B(S)) disk operations.

Algorithms require that min(B(R),B(S)) <= M2, since one of the 
operands must fit in memory after partitioning into buckets in 
order to perform the one-pass algorithm.
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Hash Partitioning Question
Question: Given M memory buffers, how many hash buckets 
are used when hash partitioning?

A) 1

B) M -1

C) M

D) M +1
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Hash-Join Algorithm
Hashing can be used to join two relations R(X,Y) and S(Y,Z).

Algorithm:
Hash partition R and S using the hash key Y.

If any tuple tR of R will join with a tuple tS of S, then tR will be in 
bucket Ri and, tS will be in bucket Si. (same bucket index)

For each bucket pair i, load the smaller bucket Ri or Si into 
memory and perform a one-pass join.

Important notes for hash-based joins:
The smaller relation is called the build relation, and the other 

relation is the probe relation. We will assume S is smaller.
The size of the smaller relation dictates the number of 

partitioning steps needed. Page 104
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Hash Join Example
Partition Phase

R
2
5
2

A
B
C

1
7
3

D
E
F

4
5

G
H

M=4, bfr=2, h(x) = x % 3 

S
1
4
9

z 
r 
w 

1
2
4

x 
v
u 

6
5

t 
s 

3 F
h(x) = 0

Partitions for R

h(x) = 2
2
5

A
B

2
5

C
H

9
6

w
t 

h(x) = 0

Partitions for S

h(x) = 2
2
5

v
s

h(x) = 1
1
4

z
r 

1
4

x
u 

h(x) = 1
1
7

D
E 

4 G
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Hash Join Example
Join Phase on Partition 1

Partition 1 for R

Partition 1 for S

Buffers

Output

1 D x
1 D z
4 G r
4 G u

h(x) = 1
1
7

D
E 

4 G

h(x) = 1
1
4

z
r 

1
4

x
u 

1
7

D
E

4 G

1
4

z
r 

1
4

x
u 

Note that both relations fit entirely in memory, but can 
perform join by having only one relation in memory and 

reading 1 block at a time from the other one. Page 106
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Hash-Join Analysis
The hash-join algorithm performs 3*(B(R)+B(S)) disk I/Os.
2*B(R)+2*B(S) to perform the hash partitioning on the relations.  

1*B(R)+1*B(S) as each block of each relation read in to perform 
join (one bucket at a time).

Algorithm limited to relations where min(B(R),B(S))<=M2.
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Hash-Join Example
Let relations R and S occupy 6,000 and 3,000 blocks 
respectively.  Let M = 101 blocks.

Hash-join algorithm cost:
= 3*(B(R)+B(S)) =  27,000 disk I/Os

- Average # of blocks per bucket is 60 (for R) and 30 (for S).

- Algorithm works because min(60,30)<=101.
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Hybrid-Hash Join Algorithm
Hybrid hash join uses any extra space beyond what is needed 
for buffers for each bucket to store one of the buckets in 
memory.  This reduces the number of I/Os.  Idea:
Assume that we need k buckets in order to guarantee that the 

partitions of the smaller relation S fit in memory after partitioning.

Of the M buffers, allocate k-1 buffers for each of the buckets 
except the first one. Expected bucket size is B(S)/k.

Give bucket 0 the rest of the buffers (M-k+1) to store its tuples in 
memory.  The rest of the buckets are flushed to disk files.

When hash relation R, if tuple t of R hashes to bucket 0, we can 
join it immediately and produce output.  Otherwise, we put it in 
the buffer for its partition (and flush this buffer as needed).

After read R, process all on-disk buckets using a one-pass join.
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Hybrid-Hash Join Analysis
This approach saves two disk I/Os for every block of the 
buckets of S that remain in memory.

Overall cost is:

Note: We are making the simplification that the in-memory partition takes 
up all of memory M (in practice it gets M-k+1) buffers.  This is usually a 
small difference for large M and small k.

ሺ3 െ
ܯ2
ܤ ܵ

ሻሺܤ ܴ  ܤ ܵ ሻ
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Hash Join Example
Partition Phase

M=4, bfr=2, buckets=2
Keep bucket 0 in memory.
Bucket 0 can use up to 3 blocks.

S
1
4
9

z 
r 
w 

1
2
4

x 
v
u 

6
5

t 
s 

Partitions for S

4
2

r
v

h(x) = 0
4
6 

u
t

h(x) = 1
1
9

z
w

1
5

x
s 

Buffers

Blocks for 
bucket #0 stay 

in buffer.

Last block for 
bucket #1.

4
2

r
v

4
6

u
t
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4
2

r
v

4
6

u
t

Hash Join Example
Buffered Join Phase

R
2
5
2

A
B
C

1
7
3

D
E
F

4
5

G
H

Partition R.  
Join immediately if hash to
bucket 0. h(x) = 1

5 B

Output
2 A v
2 C v

On Disk

1 D

0
1
0
1

Buffers
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Hash Join Example
Buffered Join Phase (2)

R
2
5
2

A
B
C

1
7
3

D
E
F

4
5

G
H

Partition R.  
Join immediately if hash to
bucket 0.

Output
2 A v
2 C v

On Disk

1

4
2

r
v

4
6 

u
t

h(x) = 1

Buffers

7 E

1

3 F
5 B
1 D
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Hash Join Example
Buffered Join Phase (3)

R
2
5
2

A
B
C

1
7
3

D
E
F

4
5

G
H

Partition R.  
Join immediately if hash to
bucket 0.

Output

0
1

2 A v
2 C v
4 G r
4 G u

On Disk

4
2

r
v

4
6 

u
t

h(x) = 1

Buffers

5 B
1 D

7 E
3 F

5 H
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Hash Join Example
Disk Join Phase

Perform regular hash join 
on partition 1 of R and S 
currently on disk. Output

5 B s
1 D z
1 D x
5 H s

2 A v
2 C v
4 G r
4 G u

Partition 1 On Disk for R

Partition 1 On Disk for S

Blocks 
of S.

Buffer 1 
block of R 
at at time.

5 B
1 D

7 E
3 F

5 H

1
9

z
w

1
5

x
s 

Buffers

5
1

B
D 

1 z
9 w

1 x
5 s
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Hash-Join Example Analysis
Hash-join algorithm cost 26 total block I/Os. (Expected 24!)
Total partition cost = 17 I/Os.
Partition of R: 4 reads, 5 writes.

Partition of S: 4 reads, 4 writes.

Join phase cost = 9 reads (5 for R and 4 for S).

Total cost of 26 is larger than expected cost of 24 because 
tuples did not hash evenly into buckets.

Hybrid-hash join algorithm cost 16 block I/Os. (Expected 16!)
Partition cost is 12 disk I/Os.
Partition of R: 4 reads, 2 writes (for bucket #1) (do not write last block).

Partition of S: 4 reads, 2 writes.

Memory join is free.

Regular hash join: 2 read for R, 2 reads for S.
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Hash Join Question
Question: Select a true statement.

A) The probe relation is the smallest relation.

B) The probe relation has an in-memory hash table built on its 
tuples.

C) The build relation is the smallest relation.

D) The probe relation is buffered in memory.
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Multi-Pass Hash Joins
We have examined two-pass hash joins where only one 
partitioning step is needed.  Hash-based joins can be extended 
to support larger relations by performing recursive partitioning.

Unlike sort-based joins where the number of partition steps is 
determined by the larger relation, for hash-based joins the 
number of partition steps is determined by the smaller build 
relation.  This is often a significant advantage.
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Adaptive Hash Join
During its execution, a join algorithm may be required to give up 
memory or be given memory from the execution system based 
on system load and execution factors.

An adaptive hash join algorithm [Zeller90] is able to adapt to 
changing memory conditions by allowing the partition buckets to 
change in size.

Basic idea (that makes it different from hybrid hash):
Each partition can hold a certain number of buffers and all are 

initially memory resident.  Tuples are inserted as usual.

When memory is exhausted, a victim partition is flushed to disk 
and frozen (no new tuples can be added).  This is repeated until 
partitioning is complete.

The description of adaptive join algorithm above is for the 
simpler version called dynamic hash join [DeWitt95].
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Local Research
Skew-Aware Hash Join

Skew-aware hash join [Cutt09] selects the build partition tuples 
to buffer based on their frequency of occurrence in the probe 
relation.

When data is skewed (some data is much more common than 
others), this can have a significant improvement on the number 
of I/Os performed.

Algorithm optimization is currently in PostgreSQL hash join 
implementation.
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Summary of Hashing Based Methods
Performance of hashing based methods:
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Comparison of 
Sorting versus Hashing Methods

Speed and memory requirements for the algorithms are almost 
identical.  However, there are some differences:
1) Hash-based algorithms for binary operations have size 

requirement based on the size of the smaller of the two 
arguments rather than the sum of the argument sizes.

2) Sort-based algorithms allow us to produce the result in 
sorted order and use this for later operations.

3) Hash-based algorithms depend on the buckets being of 
equal size.
Hard to accomplish in practice, so generally, we limit bucket sizes to 

slightly smaller values to handle this variation.

4) Sort-based algorithms may be able to write sorted sublists to 
consecutive disk blocks saving rotational and seek times.

5) Both algorithms can save disk access time by writing/reading 
several blocks at once if memory is available. Page 122
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Comparison of 
Sorting versus Hashing Methods (2)
6) Hash based joins are usually best if neither of the input 

relations are sorted or there are no indexes for equi-join.

Note that for small relation sizes, the simple nested-block join is 
faster than both the sorting and hashing based methods!
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Join Question
Question: For what percentage of join memory available 
compared to the smaller relation size (i.e. M / B(S)) is block 
nested-loop join faster than hybrid hash join?

A) 0% to 10%

B) 10% to 25%

C) 25% to 50%

D) 50% to 100%
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Index-Based Algorithms
Index-based algorithms use index structures to improve 
performance.

Indexes are especially useful for selections instead of 
performing a table scan.

For example, if the query is a=v(R), and we have a B+-tree 
index on attribute a then the query cost is the time to access 
the index plus the time to read all the records with value v.

Page 125

COSC 404 - Dr. Ramon Lawrence

Index-Based Algorithms
Query Costs Example

Let B(R) = 1,000 and T(R) = 20,000.  
That is, R has 20,000 tuples, and 20 tuples fit in a block.

Let a be an attribute of R, and evaluate the operation a=v(R).

Evaluation Cases (# of disk I/Os):
1) R is clustered and index is not used = B(R) = 1000.

2) V(R,a) = 100 and use a clustering index=(20,000/100)/20= 10.

3) V(R,a) = 10 and use a non-clustering index = 20,000/10 = 
2000 I/Os.
Must retrieve on average 2000 tuples for condition and possible that each 

tuple can be on a separate block.

4) V(R,a) = 20,000 (a is a key) - cost = 1 (+ index cost)
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Evaluate query cost assuming:
V(Student, Major)=4  (4 different Major values: "BA", "BS", "CS", "ME")

B(Student) = 500, T(Student) = 10,000, blocking factor = 20

Cost estimate for query using Major index:
Since V(Student,Major)=4 , we expect that 10000/4 = 2,500 tuples have 

"CS" as the value for the Major attribute.

If the index is a clustering index, 2,500/20 = 125 block reads are required 
to read the Student tuples. (What would be the strategy?)

If the index is non-clustering, how many index blocks are read?  
 The height of the index depends on the # of unique entries which is 4.  The 

B+-tree index would be of depth 1.  We can assume that it would be in main 
memory, only the pointer blocks would have to be read.  If a leaf node can 
store 200 pointers, then 2,000/200 = 13 index blocks would have to be read. 

How many block I/Os in total for a non-clustering index?

How does this compare to doing a sequential scan?

Cost Estimate Example with Indices
Query:    Major = “CS”(Student)



22

Page 127

COSC 404 - Dr. Ramon Lawrence

Index-Based Algorithms
Complicated Selections

Indexes can also be used to answer other types of selections:
1) A B-tree index allows efficient range query selections such 

as  a<=v(R) and a>=v(R).

2) Complex selections can be implemented by an index-scan 
followed by another selection on the tuples returned.

Complex selections involve more than one condition connected 
by boolean operators.  
For example, a=v AND b>=10(R) is a complex selection.

This query can be evaluated by using the index to find all tuples 
where a=v, then apply the second condition b >=10 to all the 
tuples returned from the index scan.
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Index Joins
An index can also be used to speed-up certain types of joins.

Consider joining R(X,Y) and S(Y,Z) by using a nested-block 
join with S as the outer relation and R as the inner relation.  We 
have an index on R for attribute(s) Y.

We can modify the algorithm that for every tuple t of S, we use 
the value of Y for t to lookup in the index for R.

This lookup will return only the tuples of R with matching values 
for Y, and we can compute the join with t.

Cost: T(S)*(T(R)/V(R,Y)) tuples will be read
T(S)*T(R)/V(R,Y) (non-clustered)

T(S)*B(R)/V(R,Y) (clustered)

Not always faster than a nested-block join!  Makes sense when 
V(R,Y) is large and R is small.
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Index-Merge Join Variant Example
Join R(X,Y) with S(Y,Z) by sorting R and read S using index.
with B(R)=6000,B(S)=3000,M = 101 blocks.

1) Assume only index on S for Y:
Sort R first = 2*B(R) =  12,000 disk I/Os (to form sorted sublists)

Merge with S using 60 buffers for R and 1 for index block for S.

Read all of R and S = 9,000 disk I/Os

Total = 21,000 disk I/Os

2) Assume index for both R and S for Y:
Do not need to sort either R or S.

Read all of R and S = 9,000 disk I/Os

Remember that there is always a small overhead of accessing 
the index itself. Page 130
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Multi-Pass Algorithms
The two-pass algorithms based on sorting and hashing can be 
extended to any number of passes using recursion.
Each pass partitions the relations into smaller pieces.

Eventually, the partitions will entirely fit in memory (base case).

Analysis of k-pass algorithm:
Memory requirements M = (B(R))1/k

Maximum relation size B(R) <= Mk

Disk operations = 2*k*B(R)
Note: If do not count write in final k pass, cost is: 2*k*B(R) - B(R).
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Parallel Operators
We have discussed implementing selection, project, join, 
duplicate elimination, and aggregation on a single processor.

Many algorithms have been developed to exploit parallelism in 
the form of additional CPUs, memory, and hard drives.

We will not study these algorithms, but realize that they exist.
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Join Algorithms 
that Produce Results Early

One of the problems of join algorithms is that they must read 
either one (hash-based) or both (sort-based) relations before 
any join input can be produced.  
This is not desirable in interactive settings where the goal is to 

get answers to the user as soon as possible.

Research has been performed to define algorithms that can 
produced results early and are capable of joining sources over 
the Internet.  These algorithms also handle network issues.
Sort-based algorithms: Progressive-Merge join [Dittrich02]

produces results early by sorting and joining both inputs 
simultaneously in memory.

Hash-based algorithms: Hash-merge join [Mokbel04], X-Join 
[Urban00] and Early Hash Join [Lawrence05] use two hash 
tables.  As tuples arrive they are inserted in their table and 
probe the other. 
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Research Challenges
There are several open research challenges for database 
algorithms:
1) Optimizing algorithms for cache performance

2) Examination of CPU costs as well as I/O costs

3) The migration to solid-state drives changes many of the 
algorithm assumptions.  
Random I/O does NOT cost more any more which implies algorithms 

that performed more random I/O (index algorithms) may be more 
competitive on the new storage technology.
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Conclusion
Every relational algebra operator may be implemented using 
many different algorithms.  The performance of the algorithms 
depend on the data, the database structure, and indexes.

Classify algorithms by:
1) # of passes: Algorithms only have a fixed buffered memory 

area to use, and may require one, two, or more passes 
depending on input size.

2) Type of operator: selection, projection, grouping, join.

3) Algorithms can be based on sorting, hashing, or indexing.

The actual algorithm is chosen by the query optimizer based on 
its query plan and database statistics.
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Major Objectives
The "One Things":
Diagram the components of a query processor and explain their 

function (slide #5). 

Calculate block access for one-pass algorithms.

Calculate block accesses for tuple & block nested joins.

Perform two-pass sorting methods including all operators, sort-
join and sort-merge-join and calculate performance.

Perform two-pass hashing methods including all operators, hash-
join and hybrid hash-join and calculate performance.

Major Theme: 
The query processor can select from many different algorithms 

to execute each relational algebra operator.  The algorithm 
selected depends on database characteristics. Page 136
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Objectives
Explain the goal of query processing.

Review: List the relational and set operators.

Diagram and explain query processor components.

Explain how index and table scans work and calculate the block 
operations performed.

Write an iterator in Java for a relational operator.

List the tuple-at-a-time relational operators.

Illustrate how one-pass algorithms for selection, project, 
grouping, duplicate elimination, and binary operators work and 
be able to calculate performance and memory requirements.

Calculate performance of tuple-based and block-based nested 
loop joins given relation sizes (memorize formulas!).
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Objectives (2)
Perform and calculate performance of two-pass sorting based 

algorithms - sort-merge algorithm, set operators, sort-merge-
join/sort-join.

Perform and calculate performance of two-pass hashing based 
algorithms - hash partitioning, operation implementation and 
performance, hash join, hybrid-hash join.

Compare/contrast sorting versus hashing methods

Calculate performance of index-based algorithms - cost 
estimate, complicated selections, index joins

Explain how two-pass algorithms are extended to multi-pass 
algorithms.

List some recent join algorithms: adaptive, hash-merge, XJoin, 
progressive-merge.



1

COSC 404 
Database System Implementation

Query Optimization

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 404 - Dr. Ramon Lawrence

Query Optimization
Overview

The query processor performs four main tasks:

1) Verifies the correctness of an SQL statement

2) Converts the SQL statement into relational algebra

3) Performs heuristic and cost-based optimization to build the 
more efficient execution plan

4) Executes the plan and returns the results
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Components of a Query Processor

DB Stats

Database

Query Output

SQL Query

Parser

Translator

Optimizer

Evaluator

Expression
Tree

Logical 
Query Tree

Physical
Query Tree

SELECT Name FROM Student 
WHERE Major='CS'

<Query>

SELECT

<SelList>

FROM

<FromList>

WHERE

<Condition>

<Attr> <Value>=

Major "CS"

<Attr>

Name

<Rel>

Student

Student

Name

Major='CS'

Student

(index scan)

(table scan)
Name

Major='CS'
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Query Processor Components
The Parser

The role of the parser is to convert an SQL statement 
represented as a string of characters into a parse tree.

A parse tree consists of nodes, and each node is either an:
Atom - lexical elements such as words (WHERE), attribute or 

relation names, constants, operator symbols, etc.

Syntactic category - are names for query subparts.
E.g. <SFW> represents a query in select-from-where form.

Nodes that are atoms have no children.  Nodes that correspond 
to categories have children based on one of the rules of the 
grammar for the language.
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A Simple SQL Grammar
A grammar is a set of rules dictating the structure of the 
language.  It exactly specifies what strings correspond to the 
language and what ones do not.
Compilers are used to parse grammars into parse trees.
Same process for SQL as programming languages, but somewhat 

simpler because the grammar for SQL is smaller.

Our simple SQL grammar will only allow queries in the form of 
SELECT-FROM-WHERE.  
We will not support grouping, ordering, or SELECT DISTINCT.

We will support lists of attributes in the SELECT clause, lists of 
relations in the FROM clause, and conditions in the WHERE
clause.
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Simple SQL Grammar
<Query> ::= <SFW>
<Query> ::= ( <Query> )

<SFW> ::= SELECT <SelList> FROM <FromList> WHERE 
<Condition>

<SelList> ::= <Attr>
<SelList> ::= <Attr> , <SelList>

<FromList> ::= <Rel>
<FromList> ::= <Rel> , <FromList>

<Condition> ::= <Condition> AND <Condition>
<Condition> ::= <Tuple> IN <Query>
<Condition> ::= <Attr> = <Attr>
<Condition> ::= <Attr> LIKE <Value>
<Condition> ::= <Attr> = <Value>
<Tuple> ::= <Attr> // Tuple may be 1 attribute
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A Simple SQL Grammar Discussion
The syntactic categories of <Attr>, <Rel>, and <Value> are 
special because they are not defined by the rules of the 
grammar.
<Attr> - must be a string of characters that matches an 

attribute name in the database schema.
<Rel> - must be a character string that matches a relation 

name in the database schema.
<Value> - is some quoted string that is a legal SQL pattern or 

a valid numerical value.
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Query Example Database

Student Relation

Student(Id,Name,Major,Year)
Department(Code,DeptName,Location)

Department Relation
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Query Parsing Example
Return all students who major in computer science.

SELECT Name FROM Student WHERE Major='CS'

Rules applied:
<Query> ::= <SFW>
<SFW> ::= SELECT <SelList> FROM <FromList> WHERE <Condition>
<SelList> ::= <Attr>   (<Attr> = “Name”)
<Condition> ::= <Attr> = <Value> (<Attr>=“Major”, <Value>=“CS”)
<FromList> ::= <Rel>   (<Rel> = “Student”)

<Query>

SELECT

<SelList>

FROM

<FromList>

WHERE

<Condition>

<Attr> <Value>=

Major "CS"

<Attr>

Name

<Rel>

Student

<SFW>
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Query Parsing Example 2
Return all departments who have a 4th year student.

SELECT DeptName FROM Department, Student 
WHERE Code = Major AND Year = 4

Can you determine what rules are applied?

<SFW>

SELECT

<SelList>
FROM <FromList> WHERE <Condition>

<Attr>

DeptName

<FromList>,

<Rel>

Student

<Rel>

Department

<Query>

<Attr> <Value>=

Year 4

<Condition> <Condition>AND

<Attr> <Attr>=

Code Major
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Query Parsing Example 3
Return all departments who have a 4th year student.

SELECT DeptName FROM Department WHERE Code IN 
(SELECT Major FROM Student WHERE Year=4)

<SFW>

SELECT

<SelList>
FROM <FromList> WHERE

<Condition>

<Tuple>

<Query>

IN

<Attr>

DeptName

<Rel>

Department

<Query>

SELECT

<SelList> FROM
<FromList>

WHERE <Condition>

<Attr>

Major
<Rel>

Student

<Attr> <Value>=

Year 4

<SFW>

<Query>

)(<Attr>

Code

Page 12

COSC 404 - Dr. Ramon Lawrence

Query Processor Components
The Parser Functionality

The parser converts an SQL string to a parse tree.
This involves breaking the string into tokens.

Each token is matched with the grammar rules according to the 
current parse tree.

Invalid tokens (not in grammar) generate an error.

If there are no rules in the grammar that apply to the current 
SQL string, the command will be flagged to have a syntax error.

We will not concern ourselves with how the parser works.  
However, we will note that the parser is responsible for 
checking for syntax errors in the SQL statement.
That is, the parser determines if the SQL statement is valid 

according to the grammar.
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Query Processor Components
The Preprocessor

The preprocessor is a component of the parser that performs 
semantic validation.

The preprocessor runs after the parser has built the parse tree.  
Its functions include:
Mapping views into the parse tree if required.

Verify that the relation and attribute names are actually valid 
relations and attributes in the database schema.

Verify that attribute names have a corresponding relation name 
specified in the query.  (Resolve attribute names to relations.)

Check types when comparing with constants or other attributes.

If a parse tree passes syntax and semantic validation, it is 
called a valid parse tree.  

A valid parse tree is sent to the logical query processor, 
otherwise an error is sent back to the user. Page 14
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Query Parsing Question
Question: Select a true statement.

A) The SQL grammar contains information to validate if a given 
field name is a valid field in the database.

B) The preprocessor runs before the parsing process.

C) SQL syntax errors are checked by the preprocessor.

D) Errors indicating a table does not exist are generated by the 
preprocessor.
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Query Processor Components
Translator 

The translator, or logical query processor,  is the component 
that takes the parse tree and converts it into a logical query tree.

A logical query tree is a tree consisting of relational operators 
and relations.  It specifies what operations to apply and the order 
to apply them. A logical query tree does not select a particular 
algorithm to implement each relational operator.

We will study some rules for how a parse tree is converted into a 
logical query tree.
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Parse Trees to Logical Query Trees 
The simplest parse tree to convert is one where there is only 
one select-from-where (<SFW>) construct, and the 
<Condition> construct has no nested queries.

The logical query tree produced consists of:
1) The cross-product () of all relations mentioned in the 
<FromList> which are inputs to:

2) A selection operator, C, where C is the <Condition>
expression in the construct being replaced which is the input to:

3) A projection, L, where L is the list of attributes in the 
<SelList>.
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Parse Tree to Logical Tree Example

<Query>

SELECT

<SelList>

FROM

<FromList>

WHERE

<Condition>

<Attr> <Value>=

Major "CS"

<Attr>

Name

<Rel>

Student

<SFW>

SELECT Name FROM Student WHERE Major='CS'

Name

Major='CS'

Student
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Parse Tree to Logical Tree Example 2

<SFW>

SELECT

<SelList>
FROM <FromList> WHERE <Condition>

<Attr>

DeptName

<FromList>,

<Rel>

Student

<Rel>

Department

<Query>

<Attr> <Value>=

Year 4

<Condition> <Condition>AND

<Attr> <Attr>=

Code Major

SELECT DeptName FROM Department, Student 
WHERE Code = Major AND Year = 4

Student


Department

Code=Major AND Year = 4

DeptName
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Converting Nested Parse Trees to 
Logical Query Trees 

Converting a parse tree that contains a nested query is slightly 
more challenging.

A nested query may be correlated with the outside query if it 
must be re-computed for every tuple produced by the outside 
query.  Otherwise, it is uncorrelated, and the nested query can 
be converted to a non-nested query using joins.

We will define a two-operand selection operator  that takes 
the outer relation R as one input (left child), and the right child 
is the condition applied to each tuple of R.
The condition is the subquery involving IN.
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Converting Nested Parse Trees to 
Logical Query Trees (2)

The nested subquery translation algorithm involves defining a 
tree from root to leaves as follows:
1) Root node is a projection, L, where L is the list of attributes 

in the <SelList> of the outer query.

2) Child of root is a selection operator, C, where C is the 
<Condition> expression in the outer query ignoring the 
subquery.

3) The two-operand selection operator  with left-child as the 
cross-product () of all relations mentioned in the <FromList>
of the outer query, and right child as the <Condition>
expression for the subquery.

4) The subquery itself involved in the <Condition> expression 
is translated to relational algebra.
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Parse Tree to Logical Tree Example 3
SELECT DeptName FROM Department WHERE Code IN 

(SELECT Major FROM Student WHERE Year=4)

<SFW>

SELECT

<SelList>
FROM <FromList> WHERE

<Condition>

<Tuple>

<Query>

IN

<Attr>

DeptName

<Rel>

Department

<Query>

SELECT

<SelList> FROM
<FromList>

WHERE <Condition>

<Attr>

Major
<Rel>

Student

<Attr> <Value>=

Year 4

<SFW>

<Query>

)(<Attr>

Code
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Parse Tree to Logical Tree Example 3 (2)
SELECT DeptName FROM Department WHERE Code IN 

(SELECT Major FROM Student WHERE Year=4)

<Tuple>

Department <Condition>

IN

<Attr>

Code

Student

No outer level selection. 

Only one outer
relation. 

Condition in parse tree. 

Subquery translated to
logical query tree. 

Major

Year=4

TRUE



DeptName
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Converting Nested Parse Trees to 
Logical Query Trees (3)

Now, we must remove the two-operand selection and replace it 
by relational algebra operators.

Rule for replacing two-operand selection (uncorrelated): 
Let R be the first operand, and the second operand is a 
<Condition> of the form t IN S.  (S is uncorrelated subquery.)

1) Replace <Condition> by the tree that is expression for S.
May require applying duplicate elimination if expression has duplicates.

2) Replace two-operand selection by one-argument selection, 
C, where C is the condition that equates each component of 
the tuple t to the corresponding attribute of relation S.

3) Give C an argument that is the product of R and S.
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Parse Tree to Logical Tree Conversion

Replaced  with C

and .

t

R <Condition>

IN S
May need to 
eliminate 
duplicates. 




S

R

C
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Parse Tree to Logical Tree Example 3 (3)

<Tuple>

Department <Condition>

IN

<Attr>

Code

Student

Replaced  with C

and .

Major is not 
a key. 



DeptName

Major

Year=4

Year=4

Department

Student




DeptName

Major

Code=Major
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Correlated Nested Subqueries
Translating correlated subqueries is more difficult because the 
result of the subquery depends on a value defined outside the 
query itself.

Correlated subqueries may require the subquery to be 
evaluated for each tuple of the outside relation as an attribute 
of each tuple is used as the parameter for the subquery.
We will not study translation of correlated subqueries.

Example:

Return all students that are more senior than the 
average for their majors.

SELECT Name FROM Student s WHERE year > 
(SELECT Avg(Year) FROM student AS s2 

WHERE s.major = s2.major)
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Logical Query Tree Question
Question: True or False: A logical query tree has relational 
algebra operators and specifies the algorithm used for each of 
them.

A) True

B) False
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Logical Query Tree Question (2)
Question: True or False: A logical query tree is the final plan 
used for executing the query.

A) True

B) False
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Parsing Review Question
Build the parse tree for the following SQL query then convert it 
into a logical query tree.

SELECT Name, DeptName FROM Department, Student
WHERE Code = Major and Code = 'CS'
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Optimizing the Logical Query Plan
The translation rules converting a parse tree to a logical query 
tree do not always produce the best logical query tree.

It is possible to optimize the logical query tree by applying 
relational algebra laws to convert the original tree into a more 
efficient logical query tree.

Optimizing a logical query tree using relational algebra laws is 
called heuristic optimization because the optimization 
process uses common conversion techniques that result in 
more efficient query trees in most cases, but not always.
The optimization rules are heuristics.

We begin with a summary of relational algebra laws.



6

Page 31

COSC 404 - Dr. Ramon Lawrence

Relational Algebra Laws
Just like there are laws associated with the mathematical 
operators, there are laws associated with the relational algebra 
operators.

These laws often involve the properties of:
commutativity - operator can be applied to operands 

independent of order.
E.g. A + B = B + A   - The “+” operator is commutative.

associativity - operator is independent of operand grouping.
E.g. A + (B + C) = (A + B) + C  - The “+” operator is associative.
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Associative and Commutative Operators
The relational algebra operators of cross-product (), join (   ), 
set and bag union (S and B), and set and bag intersection 
(S and B) are all associative and commutative.

R  S = S  R

Commutative Associative 

R  S = S  R

R  S = S  R

R S = S R

(R  S)  T = R  (S  T)

(R  S)  T = R  (S  T)

(R  S)  T = R  (S  T)

(R S)  T = R (S    T)
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1) Complex selections involving AND or OR can be broken into 
two or more selections: (splitting laws)

2) Selection operators can be evaluated in any order:

3) Selection can be done before or after set operations and 
joins:

Laws Involving Selection

C1 AND C2
(R) = C1

(C2
(R))

C1 OR C2
(R) = (C1

(R) ) S (C2
(R) )

C1 AND C2
(R) = C2

(C1
(R)) = C1

(C2
(R)) 

C(R  S) = C(R)  C(S)
C(R - S) = C(R) – S = C(R) - C(S)

C(R S) = C(R) S
C(R  S) = C(R)  S = C(R)  C(S)
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1) Selection and cross-product can be converted to a join:

2) Selection and join can also be combined:

Laws Involving Selection and Joins

C(R  S) = R C S

C(R    D S) = R   C AND D S
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1) Example relation is R(a,b,c).

Given expression:

Can be converted to:      

then to:

There is another way to divide up the expression.  What is it?

2) Given relations R(a,b) and S(b,c).

Given expression: 

Can be converted to:

then to:

finally to:

Is there anything else we could do?

Laws Involving Selection Examples

(a=1 OR a=3) AND b<c(R)

a=1 OR a=3(b<c(R))
a=1(b<c(R))  a=3(b<c(R))

(a=1 OR a=3) AND b<c(R S)

(a=1 OR a=3) b<c(R S))

(a=1 OR a=3)(R b<c(S))
(a=1 OR a=3)(R) b<c(S)
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Like selections, it is also possible to push projections down the 
logical query tree.  However, the performance gained is less 
than selections because projections just reduce the number of 
attributes instead of reducing the number of tuples.
Unlike selections, it is common for a pushed projection to also 

remain where it is.

General principle: We may introduce a projection anywhere 
in an expression tree, as long as it eliminates only attributes 
that are never used by any of the operators above, and are not 
in the result of the entire expression.

Note that discussion considers bag projection as normally 
implemented in SQL (duplicates are not eliminated).

Laws Involving Projection
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1) Projections can be done before joins as long as all attributes 
required are preserved.

L is a set of attributes to be projected.  M is the attributes of R that are 
either join attributes or are attributes of L.  N is the attributes of S that are 
either join attributes or attributes of L. 

2) Projection can be done before bag union but NOT before set 
union or set/bag intersection and difference.

3) Projection can be done before selection.

4) Only the last projection operation is needed:

Laws Involving Projection (2)

L(R  S) = L(M(R)  N(S))
L(R S) = L((M(R) N(S))

L(R B S) = L(R) B L(S)

L (C (R)) = L(C (M(R)))

L (M (R)) = L(R) Page 38
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1) Given relations R(a,b,c) and S(c,d,e).

Given expression:

Can be converted to:      

2) Using R(a,b,c) and the expression:

Can be converted to:

Laws Involving Projection Examples

b,d(R S) 
b,d(b,c(R) c,d(S))

b(a=5(R)) 

b(a=5(a,b(R)) 
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Duplicate elimination () can be done before many operators.  

Note that (R) = R occurs when R has no duplicates:
1) R may be a stored relation with a primary key.

2) R may be the result after a grouping operation.

Laws for pushing duplicate elimination operator ():

Duplicate elimination () can also be pushed through bag 
intersection, but not across union, difference, or projection.

Laws Involving Duplicate Elimination

(R  S) = (R)  (S)

(C(R) = C((R))

(R S) = (R)    (S)
(R  D S) = (R) D (S)

(R  S) = (R)  (S)
Page 40
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The grouping operator () laws depend on the aggregate 
operators used.

There is one general rule, however, that grouping subsumes 
duplicate elimination:

The reason is that some aggregate functions are unaffected by 
duplicates (MIN and MAX) while other functions are (SUM, 
COUNT, and AVG).

Laws Involving Grouping

(L(R)) = L(R)
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Relational Algebra Question
Question: How many of the following equivalences are true? 
Let C = predicate with only R attributes, D = predicate with only 
S attributes, and E = predicate with only R and S attributes. 

A) 0

B) 1

C) 2

D) 3

E) 4

C AND D (R S) = C(R)    D(S)

C AND D AND E (R S) = E(C(R)    D(S))
C OR D (R S) = [C(R)    S] S [R   D(S)]

L(R S S) = L(R) S L(S)
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Give examples to show that:
a) Bag projection cannot be pushed below set union.

b) Duplicate elimination cannot be pushed below bag projection.

Relational Algebra Question

L(R S S) != L(R) S L(S)

( L(R) )  != L( (R) )
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Heuristic query optimization takes a logical query tree as 
input and constructs a more efficient logical query tree by 
applying equivalence preserving relational algebra laws.

Equivalence preserving transformations insure that the 
query result is identical before and after the transformation is 
applied.  Two logical query trees are equivalent if they produce 
the same result.

Note that heuristic optimization does not always produce the 
most efficient logical query tree as the rules applied are only 
heuristics!

Heuristic Query Optimization

Page 44
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Rules of Heuristic Query Optimization
1. Deconstruct conjunctive selections into a sequence of single 
selection operations.

2. Move selection operations down the query tree for the 
earliest possible execution.

3. Replace Cartesian product operations that are followed by a 
selection condition by join operations.

4. Execute first selection and join operations that will produce 
the smallest relations.

5. Deconstruct and move as far down the tree as possible lists 
of projection attributes, creating new projections where needed.
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Heuristic Optimization Example

SELECT Name FROM Student WHERE Major="CS"

No optimization possible.

Student

Name(Major=“CS’(Student)) 

Name

Major='CS'
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Heuristic Optimization Example 2
SELECT DeptName FROM Department, Student 

WHERE Code = Major AND Year = 4

Optimizations
- push selection down
- push projection down
- merge selection and 

cross-product
Student Department

Year=4 DeptName,Code

Major=Code

DeptName

DeptName(Code=Major AND Year=4(Student  Department)) 
Original:

Optimized:

DeptName(( Year=4(Student))    Code=Major (DeptName,Code(Department))) 

Student


Department

DeptName

Code=Major AND Year=4
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Heuristic Optimization Example 3
SELECT DeptName FROM Department WHERE Id IN 

(SELECT Major FROM Student WHERE Year=4)

Optimizations
- merge selection and 

cross-product
- push projection down

Department

DeptName,Code

Major=Code

DeptName

Student



Major

Year=4

Department

Student




DeptName

Major

Year=4

Id=Major
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A canonical logical query tree is a logical query tree where all 
associative and commutative operators with more than two 
operands are converted into multi-operand operators.
This makes it more convenient and obvious that the operands 

can be combined in any order.

This is especially important for joins as the order of joins may 
make a significant difference in the performance of the query.

Canonical Logical Query Trees
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Canonical Logical Query Tree Example

R





S T

U V W

Original Query Tree Canonical Query Tree

R



S T

U V W
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Canonical Query Tree Question
Question: What does the original logical query tree imply that 
the canonical tree does not?

A) an order of operator execution

B) the algorithms used for each relational operator

C) the sizes of each input
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Query Optimization
Physical Query Plan

A physical query plan is derived from a logical query plan by:
1) Selecting an order and grouping for operations like joins, 

unions, and intersections.

2) Deciding on an algorithm for each operator in the logical 
query plan.
 e.g. For joins: Nested-loop join, sort join or hash join

3) Adding additional operators to the logical query tree such as 
sorting and scanning that are not present in the logical plan.

4) Determining if any operators should have their inputs 
materialized for efficiency. 

Whether we perform cost-based or heuristic optimization, we 
eventually must arrive at a physical query tree that can be 
executed by the evaluator.
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Query Optimization
Heuristic versus Cost Optimization

To determine when one physical query plan is better than 
another, we must have an estimate of the cost of the plan.

Heuristic optimization is normally used to pick the best logical 
query plan.

Cost-based optimization is used to determine the best physical 
query plan given a logical query plan.

Note that both can be used in the same query processor (and 
typically are).  Heuristic optimization is used to pick the best 
logical plan which is then optimized by cost-based techniques.
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Query Optimization
Estimating Operation Cost

To determine when one physical query plan is better than 
another for cost-based optimization, we must have an estimate 
of the cost of a physical query plan.

Note that the query optimizer will very rarely know the exact 
cost of a query plan because the only way to know is to 
execute the query itself!
Since the cost to execute a query is much greater than the cost 

to optimize a query, we cannot execute the query to determine 
its cost!

It is important to be able to estimate the cost of a query plan 
without executing it based on statistics and general formulas. 
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Query Optimization
Estimating Operation Cost (2)

Statistics for base relations such as B(R), T(R), and V(R,a)
are used for optimization and can be gathered directly from the 
data, or estimated using statistical gathering techniques.

One of the most important factors determining the cost of the 
query is the size of the intermediate relations.  An intermediate 
relation is a relation generated by a relational algebra operator 
that is the input to another query operator.
The final result is not an intermediate relation.

The goal is to come up with general rules that estimate the 
sizes of intermediate relations that give accurate estimates, are 
easy to compute, and are consistent.
There is no one set of agreed-upon rules!
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Estimating Operation Cost
Estimating Projection Sizes

Calculating the size of a relation after the projection operation 
is easy because we can compute it directly.
Assuming we know the size of the input, we can calculate the 

size of the output based on the size of the input records and the 
size of the output records.

The projection operator decreases the size of the tuples, not 
the number of tuples.

For example, given relation R(a,b,c) with size of a = size of b = 
4 bytes, and size of c = 100 bytes.  T(R) = 10000 and 
unspanned block size is 1024 bytes.  If the projection operation 
is a,b, what is the size of the output U in blocks?

T(U) = 10000.  Output tuples are 8 bytes long.
bfr = 1024/8 = 128  B(U) = 10000/128 = 79
B(R) = 10000 / (1024/108) = 1112
Savings = (B(R) - B(U))/B(R)*100% = 93% Page 56
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Estimating Operation Cost
Estimating Selection Sizes

A selection operator generally decreases the number of tuples 
in the output compared to the input.  By how much does the 
operator decrease the input size?

The selectivity (sf) is the fraction of tuples selected by a 
selection operator.  Common cases and their selectivities:
1) Equality: S = a=v (R) - sf = 1/V(R,a) T(S) = T(R)/V(R,a)
Reason: Based on the assumption that values occur equally likely in the 

database.  However, estimate is still the best on average even if the 
values v for attribute a are not equally distributed in the database.

2) Inequality: S = a<v (R) - sf = 1/3               T(S) = T(R)/3
Reason: On average, you would think that the value should be T(R)/2.  

However, queries with inequalities tend to return less than half the 
tuples, so the rule compensates for this fact.

3) Not equals: S = a!=v (R) - sf = 1                  T(S) = T(R)
Reason:  Assume almost all tuples satisfy the condition.
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Estimating Operation Cost
Estimating Selection Sizes (2)

Simple selection clauses can be connected using AND or OR.

A complex selection operator using AND (a=10 AND b<20(R)) is the 
same as a cascade of simple selections (a=10 (b<20(R)).  

The selectivity is the product of the selectivity of the individual 
clauses.

Example: Given R(a,b,c) and S =a=10 AND b<20(R), what is the 
best estimate for T(S)?  Assume T(R)=10,000 and V(R,a) = 50.

The filter a=10 has selectivity of 1/V(R,a)=1/50.
The filter b<20 has selectivity of 1/3.
Total selectivity = 1/3 * 1/50 = 1/150.
T(S) = T(R)* 1/150 = 67
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Estimating Operation Cost
Estimating Selection Sizes (3)

For complex selections using OR (S =C1 OR C2(R)), the # of 
output tuples can be estimated by the sum of the # of tuples for 
each condition.  
Measuring the selectivity with OR is less precise, and simply 

taking the sum is often an overestimate.  

A better estimate assumes that the two clauses are 
independent, leading to the formula:

n * (1 - (1-m1/n) * (1 – m2/n) )

m1 and m2 are the # of tuples that satisfy C1 and C2 respectively.

n is the number of tuples of R (i.e. T(R)).

1-m1/n and 1-m2/n are the fraction of tuples that do not satisfy C1 (resp. 
C2).  The product of these numbers is the fraction that do not satisfy 
either condition.  
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Estimating Operation Cost
Estimating Selection Sizes (4)

Example: Given R(a,b,c) and S =a=10 OR b<20(R), what is the 
best estimate for T(S)?  Assume T(R)=10,000 and V(R,a) = 50.

The filter a=10 has selectivity of 1/V(R,a)=1/50.
The filter b<20 has selectivity of 1/3.
Total selectivity = (1 - (1 - 1/50)(1 - 1/3)) = .3466 
T(S) = T(R) *.3466 = 3466

Simple method results in T(S) = 200 + 3333 = 3533.
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Estimating Operation Cost
Estimating Join Sizes

We will only study estimating the size of natural join.
Other types of joins are equivalent or can be translated into a 

cross-product followed by a selection.

The two relations joined are R(X,Y) and S(Y,Z).
We will assume Y consists of only one attribute.

The challenge is we do not know how the set of values of Y in 
R relate to the values of Y in S.  There are some possibilities:
1) The two sets are disjoint.  Result size = 0.

2) Y may be a foreign key of R joining to a primary key of S.  
Result size in this case is T(R).

3) Almost all tuples of R and S have the same value for Y, so 
result size in the worst case is T(R)*T(S).
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Estimating Join Sizes (2)
The result size of joining relations R(X,Y) and S(Y,Z) can be 
approximated by:

Argument:
Every tuple of R has a 1/V(S,Y) chance of joining with every tuple of S.  

On average then, each tuple of R joins with T(S)/V(S,Y) tuples.  If there 
are T(R) tuples of R, then the expected size is T(R) * T(S)/V(S,Y).

A symmetric argument can be made from the perspective of joining  
every tuple of S.  Each tuple has a 1/V(R,Y) chance of joining with every 
tuple of R.  On average, each tuple of R joins with T(R)/V(R,Y) tuples.  
The expected size is then T(S) * T(R)/V(R,Y).

In general, we choose the smaller estimate for the result size (divide by 
the maximum value).
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Estimating Operation Cost
Estimating Join Sizes Example

Example:
R(a,b) with T(R) = 1000 and V(R,b) = 20.

S(b,c) with T(S) = 2000, V(S,b) = 50, and V(S,c) = 100

U(c,d) with T(U) = 5000 and V(U,c) = 500

Calculate the natural join R S U. 
1) (R S)     U -

T(R    S) = T(R)T(S)/max(V(R,b),V(S,b))

= 1000 * 2000 / 50 = 40,000

Now join with U.

Final size = T(R    S)*T(U)/max(V(R    S,c),V(U,c))

= 40000 * 5000 / 500 = 400,000

Now, calculate the natural join like this: R (S U).
Which of the two join orders is better?
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Estimating Join Sizes
Estimating V(R,a)

The database will keep statistics on the number of distinct 
values for each attribute a in each relation R, V(R,a). 

When a sequence of operations is applied, it is necessary to 
estimate V(R,a) on the intermediate relations.

For our purposes, there will be three common cases:
a is the primary key of R then V(R,a) = T(R)
The number of distinct values is the same as the # tuples in R.

a is a foreign key of R to another relation S then V(R,a) = T(S)
In the worst case, the number of distinct values of a cannot be larger than 

the number of tuples of S since a is a foreign key to the primary key of S.

If a selection occurs on relation R before a join, then V(R,a) after 
the selection is the same as V(R,a) before selection.
This is often strange since V(R,a) may be greater than # of tuples in 

intermediate result!  V(R,a) <> # of tuples in result.
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Estimating Operation Cost
Estimating Sizes of Other Operators

The size of the result of set operators, duplicate elimination, 
and grouping is hard to determine.  Some estimates are below:
Union 
bag union = sum of two argument sizes

set union = minimum is the size of the largest relation, maximum is the 
sum of the two relations sizes.  Estimate by taking average of min/max.

Intersection
minimum is 0, maximum is size of smallest relation.  Take average.

Difference
Range is between T(R) and T(R) - T(S) tuples.  Estimate: T(R) - 1/2*T(S)

Duplicate Elimination
Range is 1 to T(R).  Estimate by either taking smaller of 1/2*T(R) or 

product of all V(R,ai) for all attributes ai.

Grouping
Range and estimate is similar to duplicate elimination. 
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Query Optimization
Cost-Based Optimization

Cost-based optimization is used to determine the best 
physical query plan given a logical query plan.

The cost of a query plan in terms of disk I/Os is affected by:
1) The logical operations chosen to implement the query (the 

logical query plan).

2) The sizes of the intermediate results of operations.

3) The physical operators selected.

4) The ordering of similar operations such as joins.

5) If the inputs are materialized.
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Cost-Based Optimization
Obtaining Size Estimates

The cost calculations for the physical operators relied on 
reasonable estimates for B(R), T(R), and V(R,a).

Most DBMSs allow an administrator to explicitly request these 
statistics be gathered.  It is easy to gather them by performing 
a scan of the relation.  It is also common for the DBMS to 
gather these statistics independently during its operation.
Note that by answering one query using a table scan, it can 

simultaneously update its estimates about that table!

It is also possible to produce a histogram of values for use with 
V(R,a) as not all values are equally likely in practice.  
Histograms display the frequency that attribute values occur.

Since statistics tend not to change dramatically, statistics are 
computed only periodically instead of after every update.
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Using Size Estimates
in Heuristic Optimization

Size estimates can also be used during heuristic optimization.

In this case, we are not deciding on a physical plan, but rather 
determining if a given logical transformation will make sense.

By using statistics, we can estimate intermediate relation sizes 
(independent of the physical operator chosen), and thus 
determine if the logical transformation is useful.
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Using Size Estimates 
in Cost-based Optimization

Given a logical query plan, the simplest algorithm to determine 
the best physical plan is an exhaustive search.

In an exhaustive search, we evaluate the cost of every 
physical plan that can be derived from the logical plan and pick 
the one with minimum cost.

The time to perform an exhaustive search is extremely long 
because there are many combinations of physical operator 
algorithms, operator orderings, and join orderings.
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Using Size Estimates 
in Cost-based Optimization (2)

Since exhaustive search is costly, other approaches have been 
proposed based on either a top-down or bottom-up approach.

Top-down algorithms start at the root of the logical query tree 
and pick the best implementation for each node starting at the 
root.

Bottom-up algorithms determine the best method for each 
subexpression in the tree (starting at the leaves) until the best 
method for the root is determined.
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Cost-Based Optimization
Choosing a Selection Method

In building the physical query plan, we will have to pick an 
algorithm to evaluate each selection operator.

Some of our choices are:
table scan

index scan

There also may be several variants of each choice if there are 
multiple indexes.

We evaluate the cost of each choice and select the best one.
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Cost-Based Optimization
Choosing a Join Method

In building the physical query plan, we will have to pick an 
algorithm to evaluate each join operator:
nested-block join - one-pass join or nested-block join used if 

reasonably sure that relations will fit in memory.

sort-join is good when arguments are sorted on the join 
attribute or there are two or more joins on the same attribute.

index-join may be used when an index is available.

hash-join is generally used if a multipass join is required, and 
no sorting or indexing can be exploited.
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Cost-Based Optimization
Pipelining versus Materialization

The default action for iterators is pipelining when the inputs to 
the operator provide results a tuple-at-a-time.

However, some operators require the ability to scan the inputs 
multiple times.  This requires the input operator to be able to 
support rescan.

An alternative to using rescan is to materialize the results of an 
input to disk.  This has two benefits:
Operators do not have to implement rescan.

It may be more efficient to compute the result once, save it to 
disk, then read it from disk multiple times than to re-compute it 
each time.

Plans can use a materialization operator at any point to 
materialize the output of another operator.
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Selecting a Join Order
Since joins are the most costly operation, determining the best 
possible join order will result in more efficient queries.

Selecting a join order is most important if we are performing a 
join of three or more relations.  However, a join of two relations 
can be evaluated in two different ways depending on which 
relation is chosen to be the left argument.
Some algorithms (such as nested-block join and one-pass join) 

are more efficient if the left argument is the smaller relation.

A join tree is used to graphically display the join order.
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Join Tree Examples

Left-Deep Join Tree

T

U

SR

Balanced Join Tree Right-Deep Join Tree

S

R

T U

T USR
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Join Tree Question
Question: How many possible join tree shapes (different trees 
ignoring relations at leaves) are there for joining 4 nodes?

A) 3

B) 4

C) 5

D) 6

E) 8
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Join Tree Question (2)
Question: Assuming that every relation can join with every 
other relation, how many distinct join trees (considering 
different relations at leaf nodes) are there for joining 4 nodes?

A) 256

B) 120

C) 60

D) 20

E) 5
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Cost-Based Optimization
Selecting a Join Order

Dynamic programming is used to select a join order.

Algorithm to find best join tree for a set of n relations:
1) Find the best plan for each relation.
File scan, index scan

2) Find the best plan to combine pairs of relations found in step 
#1.  If have two plans for R and S, test
R ⨝ S and S ⨝ R for all types of joins.

May also consider interesting sort orders.

3) Of the plans produced involving two relations, add a third 
relation and test all possible combinations.

In practice the algorithm works top down recursively and 
remembers the best subplans for later use.
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Join Order Dynamic Programming 
Algorithm

// S is set of relations to join

procedure findBestPlan(S)
{ if (bestplan[S].cost  ) // bestplan stores computed plans

return bestplan[S];

// else bestplan[S] has not been computed. Compute it now.
for each non-empty subset S1 of S such that S1  S
{ P1= findBestPlan(S1);

P2= findBestPlan(S - S1);
A = best algorithm for join of P1 and P2;
cost = P1.cost + P2.cost + cost of A;
if (cost < bestplan[S].cost) 
{ bestplan[S].cost = cost;

bestplan[S].plan = P1 ⨝	P2 using A;

}

}

return bestplan[S];

}
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Cost-Based Optimization Example
We will perform cost-based optimization on the three example 
queries giving the following statistics:
T(Student) = 200,000 ; B(Student) = 50,000

T(Department) = 4 ; B(Department) = 4

V(Student, Major) = 4 ; V(Student, Year) = 4

Student has B+-tree secondary indexes on Major and Year, and 
primary index on Id.

Department has a primary index on Code.
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Cost-Based Optimization Example

Student

SELECT Name FROM Student WHERE Major="CS"

Logical Query Tree

Selection will return T(Student)/V(Student,Major) = 200,000/4 = 50,000 tuples.
Since tuples are not sorted by Major, each read may potentially require reading
another block (results in another seek + rotational latency).
Thus, table scan will be more efficient.
Projection performed using table scan of pipelined output from selection.

Name

Major='CS'

Physical Query Tree

Student

(table scan)

(table scan)

Name

Major='CS'
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Cost-Based Optimization Example 2
SELECT DeptName FROM Department, Student 

WHERE Code = Major AND Year = 4

Student Department

Year=4 DeptName,Code

Major=Code

DeptName

Logical Query Tree

(table scan)

Student Department

Year=4 DeptName,Code

Major=Code

DeptName

(table scan) 

(one-pass join)

(scan)

Physical Query Tree

Selection uses table scan again due to high selectivity.
One-pass join chosen as result from Department subtree is small.  Index-join cannot
be used as already performed projection on base relation. Page 82
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Cost-Based Optimization Example 3
Consider a query involving the join of relations: 
Enrolled(StudentID,Year,CourseID)

Course(CID, Name)

and the relations Student and Department.

That is, Student Department Enrolled Course.

Determine the best join ordering given this information:
T(Enrolled) = 1,000,000; B(Enrolled) = 200,000

V(Enrolled,StudentID) = 180,000 ; V(Enrolled,CourseID) = 900

T(Course) = 1000 ; B(Course) = 100

The best join ordering would have the minimum sizes for the 
intermediate relations, and we would like to perform the join 
with the greatest selectivity first.
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Cost-Based Optimization Example 3 (2)
Possible join pairs and intermediate result sizes:
Student Department = 200,000 * 4 / max(4,4) = 200,000

Student Enrolled

= 200,000*1,000,000 / max(200,000,180,000) = 1,000,000

Enrolled Course

=1,000,000 * 1,000 / max(900,1000) = 1,000,000

Conclusion: Join Student and Department first as it results in 
smallest intermediate relation.  Then, join that result with 
Enrolled, finally join with Course.
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Cost-based Optimization Question
Question: Would it be better or worse if we joined Enrolled
with Course then joined that with the result of Student and 
Department?

A) same

B) better

C) worse
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Join Ordering Example
Query:

Relation statistics:
B(C) = 100, B(E) = 200,000, B(S) = 20,000
T(C) = 1,000 ; T(E) = 1,000,000 ; T(S) = 200,000
Assume block size = 1000 bytes.
Tuple sizes: C = 100 bytes ; E = 200 bytes ; S = 100 bytes
V(E,sid) = 180,000 ; V(E,cid) = 900
Student has secondary B-tree index on Year.
Course has primary B-tree index on cid.

SELECT * FROM Course C, Enrolled E, Student S
WHERE Year = 4 AND C.cid = 'COSC404' AND

E.cid = E.cid and E.sid = S.sid 
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Join Ordering Example (2)
The first step is to calculate best plan for each relation:

Enrolled
only choice is file scan at cost = 200,000

Course with filter cid = 'COSC404':

file scan cost = 100 

index scan cost = 1 (assume get record in 1 block with index)

Best plan = index scan with cost = 1

Student with filter Year = 4:

file scan cost = 20,000

index scan will return approximately ¼ of records (50,000).  If 
assume each does a block access that is 50,000 cost.

Best plan = file scan with cost = 20,000
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Join Ordering Example (3)
Now calculate all pairs of relations (sets of size two).  Test all types of joins 
(sort, hash, block).  Assume left is build input and M= 1000.

Enrolled, Course: (output size tuples = 1111  blocks = 334)

Enrolled ⨝ Course 
Sort =  600,003 ; Hash = 598,003 ; Block nested  = 200,201

Course ⨝ Enrolled
Sort =  600,003 ; Hash =  200,001; Block nested  = 200,001

Enrolled, Student: (output size tuples = 1,000,000  blocks = 300,000)

Enrolled ⨝ Student 
Sort =  660,000 ; Hash =  657,800 ; Block nested  = 4,040,000

Student ⨝ Enrolled
Sort =  660,000 ; Hash = 638,000 ; Block nested  = 4,220,000

Student, Course  (Note: This may not be done if cross-products are not allowed.)

Student X Course cost = 20,000  output size = 40,000 blocks Page 88
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{Enrolled, Course}, {Student}         {Enrolled, Student}, {Course}

{Student, Course}, {Enrolled} Best plan:

Join Ordering Example (4)

??

C

HJ

E

S

C

HJ

E

??

S

S

HJ

E S

HJ

E

?? ??

C C

??

E

C S



??

E

C S



HJ = 20,334
SJ = 61,002
NLJ = 20,334
Overall:  220,335

HJ = 58,969
SJ = 61,002
NLJ = 27,014
Overall: 227,015

HJ = 898,002
SJ = 900,003
NLJ = 300,301
Overall = 938,301

HJ = 300,001
SJ = 900,003
NLJ = 300,001
Overall = 938,001

HJ = 708,000 
SJ =  720,000
NLJ = 8,240,000
Overall = 728,000

HJ = 717,600
SJ = 720,000
NLJ = 8,240,000
Overall = 737,000

HJ

C

HJ

E

S

Overall:  220,335
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Conclusion
A query processor first parses a query into a parse tree, 
validates its syntax, then translates the query into a relational 
algebra logical query plan.

The logical query plan is optimized using heuristic optimization
that uses equivalence preserving transformations.

Cost-based optimization is used to select a join ordering and 
build an execution plan which selects an implementation for 
each of the relational algebra operations in the logical tree.
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Major Objectives
The "One Things":
Convert an SQL query to a parse tree using a grammar.

Convert a parse tree to a logical query tree. 

Use heuristic optimization and relational algebra laws to optimize 
logical query trees.

Convert a logical query tree to a physical query tree.

Calculate size estimates for selection, projection, joins, and set 
operations.

Major Theme: 
The query optimizer uses heuristic (relational algebra laws) and 

cost-based optimization to greatly improve the performance of 
query execution.
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Objectives
Explain the difference between syntax and semantic validation 

and the query processor component responsible for each.

Define: valid parse tree, logical query tree, physical query tree

Explain the difference between correlated and uncorrelated 
nested queries.

Define and use canonical logical query trees.

Define: join-orders: left-deep, right-deep, balanced join trees

Explain issues in selecting algorithms for selection and join.

Compare/contrast materialization versus pipelining and know 
when to use them when building physical query plans.
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Transaction Management
Overview

The database system must ensure that the data stored in the 
database is always consistent.

There are several possible types of failures that may cause the 
data to become inconsistent.

A transaction is an atomic program that executes on the 
database and preserves the consistency of the database.  
The input to a transaction is a consistent database, AND the 

output of the transaction must also be a consistent database.

A transaction must execute completely or not at all.
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Transaction Management
Motivating Example

Consider a person who wants to transfer $50 from a savings 
account with balance $1000 to a checking account with current 
balance = $250.
1) At the ATM, the person starts the process by telling the bank 

to remove $50 from the savings account.

2) The $50 is removed from the savings account by the bank.

3) Before the customer can tell the ATM to deposit the $50 in 
the checking account, the ATM “crashes.”

Where has the $50 gone?  

It is lost if the ATM did not support transactions!  
The customer wanted the withdraw and deposit to both 
happen in one step, or neither action to happen.
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Transaction Definition
A transaction is an atomic program that executes on the 
database and preserves the consistency of the database.  

The basic assumption is that when a transaction starts 
executing the database is consistent, and when it finishes 
executing the database is still in a consistent state.
Do not consider malicious or incorrect transactions.

This assumption is called The Correctness Principle.

Note that the database may be inconsistent during transaction 
execution.
For the bank example, the $50 is removed from the savings 

account and is not yet in the checking account at some point in 
time.
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Consistency Definition
A database is consistent if the data satisfies all constraints 
specified in the database schema.  A consistent database is 
said to be in a consistent state.

A constraint is a predicate (rule) that the data must satisfy.
Examples:
StudentID is a key of relation Student.

StudentID  Name holds in Student.

No student may have more than one major.

The field Major can only have one of the 4 values: {“BA”,”BS”,”CS”,”ME”}.

The field Year must be between 1 and 4.

Note that the database may be internally consistent but not 
reflect the real-world reality.
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Consistency Issues 
There are two major challenges in preserving consistency:
1) The database system must handle failures of various kinds 

such as hardware failures and system crashes.

2) The database system must support concurrent execution
of multiple transactions and guarantee that this concurrency 
does not lead to inconsistency.
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ACID Properties
To preserve integrity, transactions have the following properties:
Atomicity - Either all operations of the transaction are properly 

reflected in the database or none are.

Consistency - Execution of a transaction in isolation preserves 
the consistency of the database.

Isolation - Although multiple transactions may execute 
concurrently, each transaction must be unaware of other 
concurrently executing transactions.  
Intermediate transaction results must be hidden from other concurrently 

executing transactions.  That is, for every pair of transactions Ti and Tj, it 
appears to Ti that either Tj, finished execution before Ti started, or Tj
started execution after Ti finished.

Durability - After a transaction completes successfully, the 
changes it has made to the database persist, even if there are 
system failures. 
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Transaction Operations
Since a transaction is a general program, there are an enormous 
number of potential operations that a transaction can perform.

However, there are two really important operations:
read(A,t)  (or read(A) when t is not important)
Read database element A into local variable t. 

write(A,t) (or write(A) when t is not important)
Write the value of local variable t to the database element A.

For most of the discussion, we will assume that the buffer 
manager insures that database element is in memory.  We could 
make the memory management more explicit by using:
input(A)
Read database element A into local memory buffer. 

output(A)
Write the block containing A to disk.
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Fund Transfer Transaction Example
Transaction to transfer $50 from account A to account B:

1. read(A,t)

2. t := t – 50

3. write(A,t)

4. read(B,t)

5. t := t + 50

6. write(B,t)
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Fund Transfer Transaction Example (2)
Atomicity requirement – If the transaction fails after step 3 
and before step 6, the system should ensure that its updates 
are not reflected in the database, or inconsistency will result.

Consistency requirement – The sum of A and B is 
unchanged by the execution of the transaction.

Isolation requirement – If between steps 3 and 6, another 
transaction accesses the partially updated database, it will see 
an inconsistent database (A + B is less than it should be).
Can be ensured trivially by running transactions serially, that is 

one after the other.  However, executing multiple transactions 
concurrently has significant benefits.

Durability requirement – Once the user has been notified that 
the transaction has completed (i.e., the $50 transfer occurred), 
the updates by the transaction must persist despite failures.
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ACID Properties
Question: Two transactions running at the same time can see 
each other's updates.  What ACID property is violated?

A) atomicity

B) consistency

C) isolation

D) durability

E) none of them
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ACID Properties (2)
Question: A company stores a customer's address in the 
database.  The customer moves and does not tell the company 
to update its database. What ACID property is violated?

A) atomicity

B) consistency

C) isolation

D) durability

E) none of them
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Transaction Questions
Example database:

1) Write a transaction to change the name of a student to “Joe 
Smith.”  Let A represent the database object currently storing 
the name.

2) Write a transaction to swap the names of two students with 
names A and B.

3) Write a transaction to increase the Year attribute of all 
students by 1. 

Student(Id,Name,Major,Year)
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Transaction States
An executing transaction can be in one of several states:
Active - is the initial state.  The transaction stays in this state 

while it is executing.

Partially committed - A transaction is partially committed after 
its final statement has been executed.

Failed - A transaction enters the failed state after the discovery 
that normal execution can no longer proceed.

Aborted - A transaction is aborted after it has been rolled back 
and the database restored to its prior state before the 
transaction.  There are two options after abort:
restart the transaction – only if no internal logical error

kill the transaction - problem with transaction itself

Committed - Commit state occurs after successful completion.
May also consider terminated as a transaction state.
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Transaction State Diagram

Partially
Committed Committed

Aborted

Active

Failed
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Transaction States
Question: Is it possible for a transaction to be in the aborted 
and committed states at different times during its lifetime?

A) yes

B) no
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Concurrent Executions
Multiple transactions are allowed to run concurrently in the 
system.  Advantages are:
Increased processor and disk utilization, leading to better 

transaction throughput: one transaction can be using the CPU 
while another is reading from or writing to the disk.

Reduced average response time for transactions as short 
transactions need not wait behind long ones.

Concurrency control schemes are mechanisms to control the 
interaction among the concurrent transactions in order to 
prevent them from destroying the consistency of the database.
We will study concurrency control schemes after examining the 

notion of correctness of concurrent executions.
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Schedules
A schedule is the chronological order in which instructions of 
concurrent transactions are executed.
A schedule for a set of transactions must consist of all 

instructions of those transactions.

We must preserve the order in which the instructions appear in 
each individual transaction.

It is useful to think of a schedule as a journal of the database 
actions.  It is a historical record that the database keeps as it is 
processing transactions.

A serial schedule is a schedule where the instructions 
belonging to each transaction appear together.
i.e. There is no interleaving of transaction operations.

For n transactions, there are n! different serial schedules.
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Let T1 transfer $50 from A to B, and T2 transfer 10% of the 
balance from A to B. Let A=100 and B=200. The following is a 
serial schedule, in which T1 is followed by T2:

T1 T2
read(A,t)
t := t – 50
write(A,t)
read(B,o)
o := o + 50
write(B,o)

read(A,t)
temp := t*0.1;
t := t – temp
write(A,t)
read(B,o)
o := o + temp
write(B,o)

Example Schedules

After schedule:
A=45, B=255

Is there another 
serial schedule?
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Let T1 and T2 be the transactions defined previously. The 
following schedule is not a serial schedule, but it is equivalent
to the previous serial schedule:

T1 T2
read(A,t)
t := t – 50
write(A,t)

read(A,t)
temp := t*0.1;
t := t – temp
write(A,t)

read(B,o)
o := o + 50
write(B,o)

read(B,o)
o := o + temp
write(B,o)

Example Schedules (2)

After schedule:
A=45, B=255
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Example Schedules (3)
The following concurrent schedule does not preserve the value 
of the sum A + B: (inconsistent state)

T1 T2
read(A,t)
t := t – 50

read(A,t)
temp := t*0.1;
t := t – temp
write(A,t)
read(B,o)

write(A,t)

read(B,o)
o := o + 50
write(B,o)

o := o + temp
write(B,o)

After schedule:
A=50, B=210

Is there another 
schedule with a 
different result?
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Correct Schedules
Since the operating system can interleave the operations of 
concurrent transactions in any order, the database 
management system must ensure that only correct schedules 
are possible.

The database system guarantees only correct schedules are 
possible by implementing concurrency control protocols that 
guarantee that the schedule actually executed is equivalent to 
some serial schedule.
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Schedules
Question: Is the following schedule valid for the two 
transactions below?

Schedule:

T1 T2
read(A,t)

read(B,o) 

write(A,t)
write(B,o)

read(A,t)
write(A,t)
read(B,o)
write(B,o)

Transaction T1:
read(A,t)
write(A,t)
read(B,o) 
write(B,o)

Transaction T2:
read(A,t)
write(A,t)
read(B,o) 
write(B,o)

A) yes B) no
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Why is Concurrency Control Needed?
Concurrency control is needed to ensure that the schedules 
executed leave the database in a consistent state.

Examples of concurrency control problems include:
The Lost Update Problem - occurs when two transactions 

access the same data item, and one transaction reads the data 
item before the other transaction commits its written version.  
(The update from this transaction is lost.)

Dirty Read Problem - occurs when a transaction reads a data 
value written by another transaction which later aborts.

Incorrect Summary Problem - occurs when a transaction is 
calculating an aggregate function and some other transaction(s) 
is updating record values that may not all be reflected correctly 
in the summation calculation.
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Lost Update Example
The lost update problem occurs when two transactions read 
the same value before either of them commits their write.

T1 T2

read(A,t)
t := t – 50

read (A,t)
temp := t *0.1
t = t – temp
write(A,t)

read(B,o)
write(A,t)

write(B,o)

A is written without 
T1’s changes!
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Dirty Read Example
The dirty read (or temporary update) problem occurs when a 
transaction reads a value of a later aborted transaction.

T1 T2

read(A,t)
t := t – 50
write(A,t)

read (A,t)
temp := t *0.1
t = t – temp
write(A,t)

read(B,o)
abort If T1 aborts, then T2 has used its 

incorrect value of A, and should 
not be allowed to commit.
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Y is updated after its value is used in 
summation. (not consistent with X)

Incorrect Summary Example

sum = 0
read(A) 
sum = sum + A
... 

read(X)
X = X -100
write(X)

read (X)
sum = sum + X
read (Y)
sum = sum + Y
... 

read(Y)
Y = Y +100
write(Y)

The incorrect summary problem occurs when a transaction 
updates values when another transaction is calculating a sum.

T1 T2

X is updated before its value is 
used in summation.
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Consistency Issues

Question: What consistency issue does this schedule have?

T1 T2

read(A,t)
read (A,t)

write(A,t)

write(B, 10)
read(B,u)

write(C,t)

write(C,t+u)

A) lost update B) dirty read C) incorrect summary D) none 
E) more than one
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Serializability
A schedule is serializable if it is equivalent to a serial schedule.  

There are two different forms of serializability:
1. conflict serializability

2. view serializability

We ignore operations other than read and write instructions, 
and we assume that transactions may perform arbitrary 
computations on data in local buffers in between reads and 
writes.  Our simplified schedules consist of only read and write 
instructions.
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Conflict Serializability
Conflicting Operations

To understand conflict serializability, we must understand what 
it means for two operations to conflict.

Operations Oi and Oj of transactions Ti and Tj respectively, 
conflict if and only if there exists some item Q accessed by 
both Oi and Oj, and at least one of these operations wrote Q. 

Possibilities:
1. Oi = read(Q), Oj = read(Q).  Oi and Oj do not conflict.
2. Oi = read(Q), Oj = write(Q).   Conflict - order is important
3. Oi = write(Q), Oj = read(Q).   Conflict - reverse of #2
4. Oi = write(Q), Oj = write(Q). Conflict - who writes last?

Intuitively, a conflict between Oi and Oj forces a (logical) 
temporal order between them.  If Oi and Oj are consecutive in a 
schedule and they do not conflict, their results would remain 
the same even if they had been interchanged in the schedule.
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If a schedule S can be transformed into a schedule S´ by a 
series of swaps of non-conflicting instructions, we say that S
and S´ are conflict equivalent.

We say that a schedule S is conflict serializable if it is conflict 
equivalent to a serial schedule.

Example of a schedule that is not conflict serializable:

T3 T4
read(Q)

write(Q)
write(Q)

We are unable to swap instructions in the above schedule to obtain 
either the serial schedule < T3, T4 >, or the serial schedule < T4, T3 >.

Conflict Serializability

Page 32

COSC 404 - Dr. Ramon Lawrence

Conflict Serializability (3)
The schedule below can be transformed into a serial schedule 
by a series of swaps of non-conflicting instructions.   It is 
conflict serializable.

T1 T2
read(A)
write(A)

read (A)
write(A)

read (B)
write(B)

read (B)
write(B)

What is the serial 
schedule?
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Conflict Serializability Question
Question: Is this schedule conflict serializable?

T1 T2
read(A)

write(A)
read(B)

write(B)
read(C)

read(C)
write(C)

A) yes B) no
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Serializability Questions
T1: r1(A); w1(A); r1(B); w1(B); 

T2: r2(B); w2(B); r2(A); w2(A);

Questions:
1) How many possible serial schedules are there?

2) How many schedules are conflict equivalent to the serial 
order (T1 ,T2)?

3) Write one non-serial schedule that is conflict equivalent to 
the serial execution (T2 ,T1), if possible.

Note shorthand notation! 
E.g. r1(A) = T1 does read(A)
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Testing for Serializability
It is possible to determine if some schedule of transactions T1, 
T2, ..., Tn is serializable using a precedence graph.

A precedence graph is a directed graph where the vertices 
are the transactions, and there is an arc from Ti to Tj if the two 
transactions conflict, and Ti accessed the data item on which 
they conflict earlier.
We may label the arc using the item that was accessed.

Example: r1(X); w1(X); r2(X); r2(Y); w2(Y); r1(Y); w1(Y); 
X

Y

T1 T2
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Precedence Graph Example Schedule
T1 T2 T3 T4 T5

read(X)
read(Y)
read(Z)

read(V)
read(W)
read(W)

read(Y)
write(Y)

write(Z)
read(U)

read(Y)
write(Y)
read(Z)
write(Z)

read(U)
write(U)
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Precedence Graph for Schedule
y

T1 T2

T5

T3 T4

y
z

z

y,z
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Test for Conflict Serializability
A schedule is conflict serializable if and only if its precedence 
graph is acyclic.

Cycle-detection algorithms exist which take O(n2) time, where n 
is the number of vertices in the graph.
Better algorithms take O(n + e) where e is the # of edges.

If the precedence graph is acyclic, the serializability order can 
be obtained by a topological sorting of the graph.
This is a linear order consistent with the partial order of the 

graph.

For example, one possible serializability order for the previous 
example would be:

T5  T1  T3  T2  T4
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Precedence Graph Questions
Give the precedence graph for the following schedules:

1) r2(B); w2(B); r1(A); w1(A); r1(B); w1(B); r2(A); w2(A);

2) w1(A); w2(B); w3(C); w4(D); w5(E); w5(A); 

3) Construct a non-serial schedule with 3 transactions and 3 
data items that has a precedence graph containing 6 arcs, but 
is still conflict serializable.
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Other Schedule Properties
There are other desirable schedule properties:

Recoverability - A recoverable schedule insures that a 
database can recover from failure even when concurrent 
transactions have been executing.

Cascade-Free - A cascading rollback occurs when a single 
transaction failure leads to a series of transaction rollbacks.  A 
cascade-free schedule avoids cascading rollbacks.

Strict - Strict schedules simplify recovery procedures in the 
advent of failure.

Each of these properties subsumes the next.  That is, all strict 
schedules are also cascade-free and recoverable.  All 
cascade-free schedules are recoverable.
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All Schedules

Schedule Properties Diagram

Recoverable

Cascade-Free 

Strict

Serializable

Serial
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Schedule Properties Questions
Question: How many of the following statements are true?
i) Every serial schedule is a strict schedule.

ii) A serializable schedule may not be recoverable.

iii) Every cascade-free schedule is also a strict schedule.

iv) There are more recoverable schedules than cascade-free 
schedules.

A) 0

B) 1

C) 2

D) 3

E) 4
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Recoverability
We need to address the effect of transaction failures on 
concurrently running transactions.
Let a transaction Tj read a data value written by another 

transaction Ti . If Ti aborts, then Tj should also abort because 
the data it read was inconsistent.

A recoverable schedule has the property that if a transaction Tj
reads a data item previously written by a transaction Ti , the 
commit of Ti appears before the commit of Tj.
Note that if Ti aborts before Tj commits then the schedule is 

recoverable.  It is not recoverable if Ti aborts after Tj commits. 

Obviously, the database system wants to only allow 
recoverable schedules in advent of failures.
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Non-Recoverable Schedules
The following schedule is not recoverable if T9 commits 
immediately after the read:

T8 T9
read(A)
write(A)

read(A)

commit
read(B)
abort

The schedule is not recoverable because the commit for T9 
cannot be undone, but it should be because T8 was never 
committed!

T8 aborts, but T9 is already 
committed based on update of T8! 

Page 45

COSC 404 - Dr. Ramon Lawrence

Recoverable Schedule Question
Question: Is this schedule recoverable?

T8 T9
read(A)
write(A)

read(A)

commit
read(B)
commit

A) yes B) no
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Cascading rollback occurs when a single transaction failure 
leads to a series of transaction rollbacks.

Consider the following schedule where no transactions have 
yet committed (so the schedule is recoverable):

T10 T11 T12
read(A)
read(B)
write(A)

read(A)
write(A)

read(A)

abort

If T10 fails, T11 and T12 must also be rolled back.
Can lead to the undoing of a significant amount of work!
Note that T10 does not have to abort for the schedule to have cascading 

rollback.  T11 and T12 will be FORCED to abort if T10 aborts.  However, 
even if T10 commits, the schedule is not cascade-free because               
it has the potential for cascading aborts (but they did not occur).

Cascading Rollback
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Cascadeless Schedules
In a cascadeless schedule, cascading rollbacks cannot occur. 
For each pair of transactions Ti and Tj such that Tj reads a data 

item previously written by Ti, the commit of Ti appears before 
the read operation of Tj.

That is, transactions only read committed values.

Every cascadeless schedule is also recoverable.

A recoverable schedule never rolls back committed 
transactions, but may cascade rollback uncommitted
transactions.
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Cascade-Free Schedule Question
Question: Is this schedule cascade-free?

T8 T9
read(A)
write(A)

read(B)                                                      
read(B)
commit

commit

A) yes B) no
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Strict Schedules
In a strict schedule, a transaction can neither read nor write a 
data item until the last transaction that wrote the data item 
commits (or aborts).
Strict schedules simplify recovery procedures because undoing 

an item write of an aborted transaction just involves restoring 
the before image (old value) of the item.

A strict schedule is always recoverable and cascadeless, but 
not vice versa.

Example: T10 T11
read(A)
read(B)
write(A)

write(A)
commit

abort
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T1: r1(A); w1(A); r1(B); w1(B); c1

T2: r2(A); w2(A); r2(B); w2(B); c2

T3: r3(B); r3(A); w3(B); c3

Given the three transactions T1, T2, T3, come up with the 
following schedules:
a) A serial schedule

b) A conflict serializable schedule (non-serial)

c) A non-conflict serializable schedule

d) A non-recoverable, non-serial schedule 

e) A cascade-free, non-serial schedule 

f) A strict, non-serial schedule

Schedule Questions
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View Serializability
Let S and S´ be two schedules with the same transactions.  S
and S´ are view equivalent if these three conditions are met:
1. For each data item Q, if transaction Ti reads the initial value of 

Q in schedule S, then transaction Ti must also read the initial 
value of Q in schedule S´.

2. For each data item Q, if transaction Ti executes read(Q) in 
schedule S, and that value was produced by transaction Tj, 
then transaction Ti must also read the value of Q that was 
produced by transaction Tj in schedule S´.

3. For each data item Q, the transaction (if any) that performs the 
final write(Q) operation in schedule S must perform the final
write(Q) operation in schedule S´.

Conditions 1 and 2 ensure each transaction reads the same 
values, and condition 3 ensures the same final result.
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A schedule S is view serializable if it is view equivalent to a 
serial schedule.
Every conflict serializable schedule is also view serializable.
Every view serializable schedule which is not conflict serializable has 

blind writes.  (A write without a read.)

This schedule is view serializable but not conflict serializable:

T3 T4 T8
read(Q)

write(Q)
write(Q)

write (Q)

Schedule is equivalent to serial schedule: T3  T4  T8

View Serializability (2)
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Test for View Serializability
The precedence graph test for conflict serializability can be 
modified to test for view serializability:
Construct a labeled precedence graph.

Look for an acyclic graph that is derived from the labeled 
precedence graph by choosing one edge from every pair of 
edges with the same non-zero label.  (2n such graphs)

Schedule is view serializable if and only if such an acyclic graph 
can be found.

The problem of looking for such an acyclic graph falls in the 
class of NP-complete problems.  
Thus existence of an efficient algorithm is unlikely.

However practical algorithms that just check some sufficient 
conditions for view serializability can still be used.
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The schedule below produces the same outcome as the serial 
schedule < T1, T5 >, yet is not conflict or view equivalent. 

T1 T5
read(A)

A := A – 50
write(A)

read(B)
B := B – 10
write(B)

read(B)
B := B + 50
write(B)

read(A)
A := A + 10
write(A)

Determining such equivalence requires analysis of operations 
other than read and write.

Other Notions of Serializability

Why DO these 
schedules result in the 
same answer?
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Concurrency Control and 
Serializability Tests

Testing a schedule for serializability after it has executed is a 
little too late!

The goal is to develop concurrency control protocols that will 
ensure serializability.  
They do not use the precedence graph as it is being created.

Instead a protocol will impose a discipline that avoids non-
serializable schedules.

Tests for serializability help understand why a concurrency 
control protocol is correct. 
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Transaction Management
Summary

A transaction is a unit of program execution that accesses and 
may update data values and must be executed atomically.

Transactions should demonstrate the ACID properties:
atomicity, consistency, isolation, and durability

A schedule is the sequence of operations (possibly interleaved) 
from multiple concurrent transactions.  A schedule is serializable 
if it can be proven equivalent to a serial schedule.
Two types: conflict serializability and view serializability

Tests for conflict serializability involves defining a precedence 
graph and checking for cycles.

A schedule may also be recoverable, cascade-free, or strict.

Serializability tests are re-active, concurrency control protocols 
are pro-active. (prevent non-serializability)
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Major Objectives
The "One Things":
List and explain the ACID properties of transactions.

Test for conflict serializability using a precedence graph.

Major Theme: 
Transactions are used to guarantee a set of operations are 

performed in an atomic manner.  The DBMS must ensure 
interleaving of concurrent transactions is (conflict) serializable 
using a concurrency control method.
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Objectives
Define: transaction, atomic, consistent, constraint

Explain the two challenges in preserving consistency.

List and explain the ACID properties of transactions.

Write a transaction using read/write operations.

List the transactions states and draw the state diagram.

Define schedules and serial schedules.

List three problems that motivate concurrency control.

Define conflict serializability and conflicting operations.

Test for conflict serializability using a precedence graph.

Define, recognize, and create examples of recoverable, 
cascade-free,  and strict schedules.

Draw the Venn diagram for schedules.
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Objectives (2)
Define view serializability and the 3 rules for view equivalent 

schedules.

Define and give an example of a blind write.

Recognize and create view serializable schedules.
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Concurrency Control Overview
Concurrency control (CC) is a mechanism for guaranteeing 
that concurrent transactions in the database exhibit the ACID 
properties.  Specifically, the isolation property.

There are different concurrency control protocols:
lock-based protocols

timestamp protocols

validation protocols

snapshot isolation
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Lock-Based Protocols
A lock is a mechanism to control concurrent access to data.
An item can only be accessed through the lock.

Data items can be locked in two modes:
exclusive (X) mode: Data item can be both read as well as 

written.  X-lock is requested using lock-X instruction.

shared (S) mode: Data item can only be read.  S-lock is          
requested using lock-S instruction.

Lock requests are made to the concurrency control manager. A 
transaction can only proceed after the request is granted and 
must follow the restrictions of the lock.
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Lock-Based Protocols (2)
Lock-compatibility matrix:

A transaction may be granted a lock on an item if the requested 
lock is compatible with locks already held on the item by other 
transactions.
Any # of transactions can hold shared locks on an item.

If any transaction holds an exclusive lock on the item, no other 
transaction may hold any lock on the item.

If a lock cannot be granted, the requesting transaction is made 
to wait until all incompatible locks held by other transactions 
are released.  The lock is then granted.

S X

falsetrueS

X false false
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Lock-Based Protocol Example
Example of a transaction performing locking:

lock-S(A);

read (A);

unlock(A);

lock-S(B);

read (B);

unlock(B);

display(A+B)

Simple locking is not sufficient to guarantee serializability.
 If A and B get updated in-between the read of A and B, the 

displayed sum would be wrong.

A locking protocol is a set of rules followed by all transactions 
while requesting and releasing locks. Locking protocols restrict 
the set of possible schedules.

Another transaction updates B here. 
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Pitfalls of Lock-Based Protocols
Consider the partial schedule:

Neither T3 nor T4 can make progress as executing  lock-S(B)
causes T4 to wait for T3 to release its lock on B, while executing  
lock-X(A) causes T3 to wait for T4 to release its lock on A.

Such a situation is called a deadlock. To handle a deadlock 
one of T3 or T4 must be rolled back and its locks released.

T3 T4

lock-X(B)
read(B)
B:- B-50
write(B)

lock-S(A)
read(A)
lock-S(B)

lock-X(A)
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Pitfalls of Lock-Based Protocols (2)
The potential for deadlock exists in most locking protocols. 

Starvation is also possible if the concurrency control manager 
is badly designed. Examples:
A transaction may be waiting for an exclusive lock on an item, 

while a sequence of other transactions request and are granted 
a shared lock on the same item.  

The same transaction is repeatedly rolled back due to 
deadlocks.

The concurrency control manager can be designed to prevent 
starvation.
For example, do not grant a shared lock if the item is 

exclusively locked or a transaction is waiting for a lock-X.
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Locking Question
Question: Which of the following statements are true?

A) A shared lock allows a transaction to write a data item.

B) More than one transaction can have a shared lock on an 
item.

C) More than one transaction can have an exclusive lock on an 
item.

D) Deadlock can be avoided by releasing locks as early as 
possible.

E) More than one statement is true.
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The Two-Phase Locking Protocol
Two-Phase Locking (2PL) ensures conflict-serializable 
schedules by requiring all locks be acquired before first unlock.

Phase 1: Growing Phase
transaction may obtain locks 

transaction may not release locks

Phase 2: Shrinking Phase
transaction may release locks

transaction may not obtain locks

The protocol ensures serializability. It can be proved that the 
transactions can be serialized in the order of their lock points 
(i.e. the point where a transaction acquired its final lock). Page 10
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The Two-Phase Locking Protocol (2)
2PL does not ensure freedom from deadlocks.

Cascading roll-back is also possible under two-phase locking. 

Conservative 2PL is deadlock free as all locks must be pre-
declared and allocated at transaction start time.

Strict 2PL prevents cascading rollback as a transaction holds 
all its exclusive locks until it commits/aborts.

Thus, uncommitted data is locked and cannot be accessed.

Rigorous 2PL is even stricter as all locks are held till 
commit/abort.  (also cascade free)

Transactions can be serialized in the order that they commit.

Database systems that use locking use strict or rigorous 2PL.
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Lock Conversions
Increased concurrency is possible by allowing lock conversions.
Upgrade - convert shared lock to exclusive lock

Downgrade - convert exclusive lock to shared lock

For two-phase locking with lock conversions:
Upgrades and lock acquires are allowed in growing phase.

Downgrades and lock releases are in the shrinking phase.
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Automatic Acquisition of Locks

A simple automated algorithm can place lock requests for a 
transaction Ti issuing the standard read/write instructions:

The operation read(D) is processed as:

if Ti has a lock on D then read(D) otherwise

request a lock-S on D (may be necessary to wait for a lock-X)

when lock-S request is granted, then read(D)

The operation write(D) is processed as:
if Ti has a lock-X on D then write(D) otherwise

if Ti has a lock-S on D then upgrade lock on D to lock-X
 may have to wait for upgrade

otherwise request a new lock-X

finally write(D) when receive upgrade or new lock

All locks are released after commit or abort.
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Example on Auto Lock Insertion
Abbreviations:
A transaction Ti requesting a lock-S on D is given as: sli (D).

A transaction Ti requesting a lock-X on D is given as: xli (D).

A transaction Ti unlocking a data item D is given as: uli(D).

Given transaction T1, insert lock operations according to 2PL:
T1: r1(A); r1(C); w1(B); w1(C);  

Basic 2PL:
sl1(A); r1(A); sl1(C); r1(C); xl1(B); ul1(A); w1(B); ul1(B); xl1(C); w1(C); 

ul1(C); c1;

locks may be released anytime after 
this operation when not needed
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Example on Auto Lock Insertion (2)
Conservative 2PL:
atomic(sl1(A), xl1(C), xl1(B)) 

r1(A); r1(C); w1(B); w1(C); c1;ul1(A); ul1(B); ul1(C);

Strict 2PL:
sl1(A); r1(A); xl1(C); r1(C); xl1(B); w1(B); xl1(C); ul1(A); w1(C); c1; ul1(B); 

ul1(C);

Rigorous 2PL:
sl1(A); r1(A); xl1(C); r1(C); xl1(B); w1(B); ); xl1(C); w1(C); c1; ul1(A);

ul1(B); ul1(C);

locks may be released after they are 
no longer needed

read locks may be released before commit 
(after last lock operation)

all locks released after commit

Page 15

COSC 404 - Dr. Ramon Lawrence

2PL Question
Question: How many of the following statements are true?
i) Conservative 2PL is deadlock-free.

ii) Rigorous 2PL releases only write locks after commit.

iii) Lock upgrades are allowed during the shrinking phase of 2PL.

iv) Strict 2PL produces strict schedules.

A) 0

B) 1

C) 2

D) 3

E) 4
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Questions on 2PL
1) Given the following transactions, insert lock operations 
according to 2PL:

T1: r1(A); w1(A); r1(B); w1(B); 

T2: r2(B); w2(B); r2(A); w2(A);

2) Write one non-serial schedule that obeys to 2PL, or argue 
why one is not possible.

3) Repeat #1 and #2 for these transactions:

T1: r1(A); w1(A); r1(B); w1(B); c1

T2: r2(A); w2(A); r2(B); w2(B); c2

T3: r3(C); r3(A); w3(C); c3
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Multiple Granularity
To this point, we have been locking individual data items.  It is 
beneficial to allow locking of various size data items.
Define a hierarchy of data granularities, where the small 

granularities are nested within larger ones.

Can be represented graphically as a tree.

When a transaction locks a node in the tree explicitly, it 
implicitly locks all the node's descendents in the same mode.

Granularity of locking (level in tree where locking is done):
fine granularity (lower in tree): high concurrency, high locking 

overhead  (e.g. record locking, attribute locking)

coarse granularity (higher in tree): low locking overhead, low 
concurrency (e.g. table locking, database locking)
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The highest level in the hierarchy is the entire database.

The levels below are relation, tuple and field in that order.

Example of Granularity Hierarchy

R1

t1 t2 t3

f1 f2 f3

DB

R2 R3

t1 t2 t3

f1 f2 f3

t1 t2 t3

f1 f2 f3



4
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Intention Lock Modes
In addition to S and X lock modes, there are three additional 
lock modes with multiple granularity:
intention-shared (IS): indicates explicit locking at a lower level 

of the tree but only with shared locks.

intention-exclusive (IX): indicates explicit locking at a lower 
level with exclusive or shared locks

shared and intention-exclusive (SIX): the subtree rooted by 
that node is locked explicitly in shared mode and explicit locking 
is being done at a lower level with exclusive-mode locks.

Intention locks allow a higher level node to be locked in S or X 
mode without having to check all descendent nodes.
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Compatibility Matrix with 
Intention Lock Modes

The compatibility matrix for all lock modes is: 

IS IX S SIX X 

IS

IX

S

SIX

X 
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X

SIX

S IX

IS

Strongest

Weakest

Multi Granularity Lock "Strength"
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Multiple Granularity Locking
Transaction Ti can lock a node Q using the rules:
The lock compatibility matrix must be observed.

The root of the tree must be locked first (in any mode).

A node Q can be locked by Ti in S or IS mode only if the parent 
of Q is currently locked by Ti in either IX or IS mode.

A node Q can be locked by Ti in X, SIX, or IX mode only if the 
parent of Q is currently locked by Ti in either IX or SIX mode.

Ti can lock a node only if it has not previously unlocked any 
node (that is, this is a variant of two-phase locking).

Ti can unlock a node Q only if none of the children of Q are 
currently locked by Ti.

Locks are acquired in root-to-leaf order, and released in 
leaf-to-root order.
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Multiple Granularity Locking Example
T1 wants to lock R1.t2.f1 in X-mode.

R1

t1 t2 t3

f1 f2 f3

DB

R2 R3

t1 t2 t3

f1 f2 f3

t1 t2 t3

f1 f2 f3

DBT1(IX)

R1

T1(IX)

t2

T1(IX)

f1

T1(X)
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Multiple Granularity Locking Example (2)
T2 wants to lock R1.t2.f2 in X-mode.  Does it work?

R1

t1 t2 t3

f1 f2 f3

DB

R2 R3

t1 t2 t3

f1 f2 f3

t1 t2 t3

f1 f2 f3

DBT1(IX)

R1

T1(IX)

t2

T1(IX)

f1

T1(X)

T2(IX)

T2(IX)

T2(IX)

f2

T2(X)

Yes, it works!
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Multiple Granularity Locking Example (3)
T2 wants to lock R1.t2.f2 in X-mode.  Does it work?

R1

t1 t2 t3

f1 f2 f3

DB

R2 R3

t1 t2 t3

f1 f2 f3

t1 t2 t3

f1 f2 f3

DBT1(IX)

R1

T1(IX)

t2

T1(X)

T2(IX)

T2(IX)
T2(IX) 
conflicts

No, conflict at t2! Page 26
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Multiple Granularity Locking Example (4)
T2 wants to lock R1.t2.f2 in X-mode.  Does it work?

R1

t1 t2 t3

f1 f2 f3

DB

R2 R3

t1 t2 t3

f1 f2 f3

t1 t2 t3

f1 f2 f3

DBT1(IS)

R1

T1(IS)

t1

T1(S)

T2(IX)

T2(IX)

T2(IX)

t2

f2

T2(X)

Yes, it works!
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Multiple Granularity Locking Example (5)
T2 wants to lock R1.t2.f2 in S-mode.  Does it work?

R1

t1 t2 t3

f1 f2 f3

DB

R2 R3

t1 t2 t3

f1 f2 f3

t1 t2 t3

f1 f2 f3

DBT1(IX)

R1

T1(SIX)

T2(IS)

T2(IS)

T2(IS)

f2

T2(S)

t2

T1(IX)

f1

T1(X)

Yes, it works!
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Multiple Granularity Locking Example (6)
T2 wants to lock R1.t2.f2 in X-mode.  Does it work?

R1

t1 t2 t3

f1 f2 f3

DB

R2 R3

t1 t2 t3

f1 f2 f3

t1 t2 t3

f1 f2 f3

DBT1(IX)

R1

T1(SIX)

T2(IX)

T2(IX)
conflicts

t2

T1(IX)

f1

T1(X)

No, conflict at R1!
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Multiple Granularity Locking Question
Question: How many of the following statements are true?
i) The protocol always must lock the root node first.

ii) If a child node is locked, its parent node must also be locked.

iii) The protocol allows locking several tables at the same time.

iv) The protocol is deadlock free.

A) 0

B) 1

C) 2

D) 3

E) 4
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Deadlock Handling
A system is deadlocked if there is a set of transactions such 
that every transaction in the set is waiting for another 
transaction in the set.

Two mechanisms for deadlock handling:
deadlock prevention - do not allow system to enter deadlock 

state

deadlock detection - detect deadlock condition and abort 
transactions to remove deadlock state

Cost of deadlock handling includes:
overhead of scheme itself

potential losses in transaction processing due to rollbacks
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Deadlock Prevention
Deadlock prevention protocols ensure that the system will 
never enter into a deadlock state. 

Some strategies:
Require that each transaction locks all its data items before it 

begins execution (predeclare locks, e.g. conservative 2PL).

Impose a partial ordering on data items and require that a 
transaction lock data items only in the order specified.

Wound-wait and wait-die strategies use timestamps to 
determine transaction age and determine if a transaction should 
wait or be rolled back on a lock conflict.
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Wound-Wait and Wait-Die Strategies
Wait-Die scheme — non-preemptive
Older transaction may wait for younger one to release data 

item. Younger transactions never wait for older ones; they are 
rolled back instead.

A transaction may die several times before acquiring needed 
data item.

Wound-Wait scheme — preemptive
Older transaction wounds (forces rollback) of younger 

transaction instead of waiting for it. Younger transactions may 
wait for older ones.

May cause fewer rollbacks than wait-die scheme.

Note: A rolled back transaction is restarted with its original 
timestamp. Older transactions have precedence over newer 
ones, and starvation is avoided.
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Timeout-Based Schemes
In a Timeout-Based Schemes:
A transaction waits for a lock only for a specified amount of 

time. After that, the transaction times out and is rolled back.

Thus deadlocks are not possible.

Simple to implement, but starvation is possible. 

Difficult to determine good value of the timeout interval.
Too short - false deadlocks (unnecessary rollbacks)

Too long - wasted time while system is in deadlock
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Deadlock Detection & Recovery
If deadlocks are not prevented, then a detection and recovery 
procedure is needed to recover when the system enters the 
deadlock state.

An algorithm is run periodically to check for deadlock. If the 
system is in deadlock, then transactions are aborted to resolve 
the deadlock.

Deadlock detection requires the system:
Maintain information about currently allocated locks.

Provide an algorithm to detect a deadlock state.

Recover from deadlock by aborting transactions efficiently.

Page 35

COSC 404 - Dr. Ramon Lawrence

Wait-for Graphs
Deadlocks can be detected using a wait-for graph, G = (V,E):
V is a set of vertices (all the transactions in the system).

E is a set of edges; each element is an ordered pair Ti Tj.  

If Ti  Tj is in E, then there is a directed edge from Ti to Tj, 
implying that Ti is waiting for Tj to release a data item.

When Ti requests a data item currently being held by Tj, then 
the edge Ti  Tj is inserted into the graph.
This edge is removed only when Tj is no longer holding a data 

item needed by Ti.

The system is in a deadlock state if and only if the wait-for 
graph has a cycle.  Must invoke a deadlock-detection algorithm 
periodically to look for cycles.
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Wait-for graph with no cycle Wait-for graph with a cycle

Wait-for Graph Examples
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Deadlock Recovery
When a deadlock is detected three factors to consider:
Victim selection - Some transaction will have to rolled back 

(made a victim) to break deadlock.  
Select the victim transaction that will incur minimum cost (computation 

time, data items used, etc.).

Rollback - determine how far to roll back transaction
Total rollback: Abort the transaction and then restart it.

More effective to roll back transaction only as far as necessary to break 
deadlock. (requires system store additional information)

Starvation happens if same transaction is always chosen as 
victim. 
Include the number of rollbacks in the cost factor to avoid starvation.
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Deadlock Question
Question: How many of the following statements are true?
i) A deadlock prevention protocol ensures deadlock never 

occurs.

ii) In Wound-Wait, an older transaction waits on a younger one.

iii) A wait-for graph has undirected edges between transactions.

iv) A wait-for graph with 5 nodes but only 3 in a cycle is not in a 
deadlock state.

A) 0

B) 1

C) 2

D) 3

E) 4
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Questions on Deadlocks
1) Assume a read-lock is requested before each read, and a 
write lock before each write.  All unlocks occur after the last 
operation of a transaction.  Explain what operations are denied 
during each schedule, draw the wait-for graph, and pick a 
transaction to abort if a deadlock does occur.

a) r1(A); r2(B); w1(C); r3(D); r4(E); w3(B); w2(C); w4(A); w1(D);

b) r1(A); r2(B); r3(C); w1(B); w2(C); w3(D);

c) r1(A); r2(B); r3(C); w1(B); w2(C); w3(A);
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Timestamp-Based Protocol

A timestamp protocol serializes transactions in the order they 
are assigned timestamps by the system.

Each transaction Ti is issued a timestamp TS(Ti) when it enters 
the system. 

If an old transaction Ti has timestamp TS(Ti), a new transaction 
Tj has timestamp TS(Tj) where TS(Ti) < TS(Tj). 

The timestamp can be assigned using the system clock or some 
logical counter that is incremented for every timestamp.

Timestamp protocols do not use locks, so deadlock cannot 
occur!
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Timestamp-Based Protocol
Read and Write Timestamps

To ensure serializability, the protocol maintains for each data Q 
two timestamp values:

W-timestamp(Q) is the largest timestamp of any transaction 
that executed write(Q) successfully.

R-timestamp(Q) is the largest timestamp of any transaction 
that executed read(Q) successfully.

The timestamp ordering protocol ensures that any conflicting 
read and write operations are executed in timestamp order.
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Timestamp-Based Protocol Rules
Suppose a transaction Ti issues a read(Q):
If TS(Ti) < W-timestamp(Q), then Ti needs to read a value of Q

that was already overwritten.  
Hence, the read operation is rejected, and Ti is rolled back.

If TS(Ti) W-timestamp(Q), then the read operation is executed. 
The R-timestamp(Q) is set to the maximum of R-timestamp(Q) and TS(Ti).

Suppose that transaction Ti issues a write(Q):
If TS(Ti) R-timestamp(Q) AND TS(Ti) W-timestamp(Q), then 

the write operation is executed. 

If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is 
producing was previously read by newer transaction.
Hence, the write operation is rejected, and Ti is rolled back.

If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an 
obsolete value of Q. Ti is rolled back.
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Timestamp Example
A partial schedule for several data items for transactions with 
timestamps 1, 2, 3, 4, 5:

T1 T2 T3 T4 T5

read(Y)
read(X) 

read(Y)
write(Y) 

read(Z) 
write(X) 
abort 

read(X) 
write(Z) 
abort

write(Y) 
write(Z)  
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Correctness of Timestamp-Ordering Protocol

The timestamp-ordering protocol guarantees serializability 
since all the arcs in the precedence graph are of the form:

Thus, there will be no cycles in the precedence graph.

Timestamp protocol ensures freedom from deadlock as no 
transaction ever waits.  

Protocol is not recoverable or cascade-free.

Can achieve both properties if perform all writes atomically at 
end of the transaction.

transaction
with smaller
timestamp

transaction
with larger
timestamp 
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Thomas’ Write Rule
Modified version of the timestamp-ordering protocol in which 
obsolete write operations may be ignored under certain 
circumstances:

When Ti attempts to write data item Q, if TS(Ti) < W-
timestamp(Q), then Ti is attempting to write an obsolete value of 
{Q}. Hence, rather than rolling back Ti as the timestamp 
ordering protocol would have done, this write operation can be 
ignored.  Otherwise protocol is unchanged. 

Thomas' Write Rule allows greater potential concurrency. 
Unlike previous protocols, it allows some view-serializable 
schedules that are not conflict-serializable.
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Timestamp Protocol Question
Question: How many of the following statements are true?
i) Deadlock is not possible with timestamp protocols.

ii) A transaction that arrives later to the system always has a 
smaller timestamp.

iii) The precedence graph for the timestamp algorithm has edges 
from smaller timestamp transactions to larger ones.

iv) A write is only performed if transaction has a timestamp >= 
the read timestamp for the data item.

A) 0

B) 1

C) 2

D) 3

E) 4

Page 47

COSC 404 - Dr. Ramon Lawrence

Questions on Timestamping
1) Indicate what happens during each of these schedules 
where concurrency control is performed using timestamps:

a) st1; st2; r1(A); r2(B); w2(A); w1(B); 

b) st1; r1(A); st2; w2(B); r2(A); w1(B);

c) st1; st2; st3; r1(A); r2(B); w1(C); r3(B); r3(C); w2(B); w3(A);

d) st1; st3; st2; r1(A); r2(B); w1(C); r3(B); r3(C); w2(B); w3(A);

Page 48

COSC 404 - Dr. Ramon Lawrence

Validation Protocols
Validation or optimistic concurrency control protocols
assume that the number of conflicts is low and verify correctness 
after a transaction is completed.  Three phases:
1) Read phase – Transaction reads data items and performs 

operations.  Writes are stored in local transaction memory.

2) Validation phase – Transaction checks if can proceed to 
write phase without violating serializability.

3) Write phase – All writes are copied to the database.

The validation test uses timestamps to guarantee that for two 
transactions Ti and Tj with TS(Ti) < TS(Tj) either:
1) Ti finished before Tj started OR

2) Set of data items written by Ti does not intersect with items 
read by Tj and Ti completes writes before Tj validates.
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Multiversion Schemes
Multiversion schemes keep old versions of data to increase 
concurrency.  This is especially useful for read transactions.

Each successful write creates a new version of the data item.  
Use timestamps or transaction ids to label versions.

When a read operation is issued, select an appropriate version 
of the data item based on the timestamp.  

Reads never have to wait as an appropriate version is returned 
immediately.
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Multiversion Timestamp Ordering
Each data item Q has a sequence of versions <Q1, Q2, ...., Qm>. 
Each version Qk contains three fields:
Content - the value of version Qk

W-timestamp(Qk) - timestamp of the transaction that created 
(wrote) version Qk

R-timestamp(Qk) - largest timestamp of a transaction that 
successfully read version Qk

When a transaction Ti creates a new version Qk of Q, Qk's W-
timestamp and R-timestamp are initialized to TS(Ti). 

R-timestamp of Qk is updated whenever a transaction Tj reads 
Qk, and TS(Tj) > R-timestamp(Qk).
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Multiversion Timestamp Scheme
The following scheme ensures serializability:

Let Qk denote the version of Q whose write timestamp is the 
largest write timestamp less than or equal to TS(Ti).

If transaction Ti issues a read(Q) then:

 The value returned is the content of version Qk.

If transaction Ti issues a write(Q):

If TS(Ti) < R-timestamp(Qk), then Ti is rolled back.

If TS(Ti) = W-timestamp(Qk), Qk is overwritten.

Otherwise a new version of Q is created.
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Multiversion Timestamp Scheme (2)
Reads always succeed; writes may be rejected if:
Some other transaction Tj that (in the serialization order defined 

by the timestamp values) should read Ti's write, has already 
read a version created by a transaction older than Ti.

Challenges:
Must have an efficient way of handling versions (and discarding 

when no longer needed).

Conflicts resolved through rollbacks rather than waiting so user 
application must be prepared to resubmit failed transactions.
Only update transactions can be rolled back.
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Multiversion 2PL
Multiversion 2PL requires:
1) An integer counter used for timestamps for items and 

transactions.

2) Read-only transactions retrieve counter at start of transaction 
and use it to determine version to read.  No locking used.

3) Update transactions perform rigorous 2PL.  At commit, 
transaction increments timestamp counter and sets timestamp 
on every item it created. 

Multiversion 2PL allows read transactions to never wait on locks 
and produces schedules that are recoverable and cascadeless.
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Snapshot Isolation
Snapshot isolation is a widely-used protocol that gives each 
transaction its own "snapshot" of the database to execute on.

A snapshot consists of committed data values in the database 
before the transaction starts.

Read-only transactions never wait and are never aborted.

Update transactions keep updates private until commit when 
they are written to the database atomically.  A validation is 
performed before writing the updates are allowed.
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Snapshot Isolation
Validation Test

Two ways to validate:

First committer wins:
Transaction T enters prepared to commit state and checks:
If any concurrent transaction has updated any item T wants to update.

If yes, T is aborted.  If no, T commits and updates written to database.

First update wins:
If transaction T wants to update, it must get write lock on item.

When lock is acquired, check if item has been updated by a 
concurrent transaction.  If so, abort, otherwise proceed.
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Snapshot Isolation
Serializability Issues

Despite its advantages and being widely implemented (Oracle, 
PostgreSQL, SQL Server), snapshot isolation does not ensure 
serializability.

There are cases where particular transaction schedules are not 
serializable.

However, these issues can be often ignored or avoided, 
especially since primary and foreign key constraints are 
validated after snapshot validation and will often detect conflicts.
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Multiversion and Snapshot Isolation 
Question

Question: How many of the following statements are true?
i) Reads always succeed with a multiversion scheme.

ii) Writes always succeed and create a new version each write.

iii) Snapshot isolation guarantees serializability.

iv) In a multiversion scheme, a read for a transaction may occur 
on a data value that is not the most recent.

A) 0

B) 1

C) 2

D) 3

E) 4
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Insert and Delete Operations
In addition to read/write operations, the system must handle 
delete and insert operations.

Deletion with two-phase locking:
May only be performed if the transaction deleting the tuple has 

an exclusive lock on the tuple to be deleted.

Insertion with two-phase locking:
A transaction that inserts a new tuple into the database is given 

an X-mode lock on the tuple.
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The Phantom Phenomenon
Inserts/deletes can lead to the phantom phenomenon:
A transaction that scans a relation (e.g., find all students) and a 

transaction that inserts a tuple in the relation (e.g., inserts a 
new student) may conflict in spite of not accessing any tuple in 
common. 

If only tuple locks are used, non-serializable schedules can 
result: the scan transaction may not see the new tuple, yet may 
be serialized before the insert transaction.

Transactions conflict over a phantom tuple.

The transaction scanning the relation reads information that 
indicates what tuples the relation contains.  A transaction 
inserting a tuple updates the same info. 

This information should be locked.
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The Phantom Phenomenon (2)
Can prevent problem by:
Accepting the issue (read committed isolation)

Locking the entire relation (multi-granularity locking)

Using index-locking or predicate-locking to guarantee that 
conflicts within the relation are detected.

Having a special lock associated with the entire file.  Read 
transactions that scan the whole relation must get a read lock 
on it and update transactions must get a write lock.
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Transaction Definition in SQL
In SQL, a transaction begins implicitly.

A transaction in SQL ends by:
Commit accepts updates of current transaction. 

Rollback aborts current transaction and discards its updates.  
Failures may also cause a transaction to be aborted.

An isolation level reflects how a transaction perceives the 
results of other transactions.  It applies only to your perspective 
of the database, not other transactions/users.  Lowering 
isolation level improves performance but may potentially 
sacrifice consistency.
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Example Transactions
Transaction to deposit $50 into a bank account:

Transaction to calculate totals for all accounts (twice):

Transaction to add a new account:

BEGIN TRANSACTION;
UPDATE Account WHERE num = 'S1' SET balance=balance+50;

COMMIT T1;

BEGIN TRANSACTION;
SELECT SUM(balance) as total1 FROM Account;
SELECT SUM(balance) as total2 FROM Account;

COMMIT T2;

BEGIN TRANSACTION;
INSERT INTO ACCOUNT (num, balance) VALUES ('S5' , 100); 

COMMIT T3;
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Levels of Consistency in SQL-92
The isolation level can be specified by:

SET TRANSACTION ISOLATION LEVEL = X where X is 

Serializable - transactions behave like executed one at a time.

Repeatable read - repeated reads must return same data.  Does 
not necessarily read newly inserted records.

Read committed - only committed values can be read, but 
successive reads may return different values.

Read uncommitted - even uncommitted records may be read.  
Reading an uncommitted value is called a dirty read.
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Scheduling of Transactions
Each transaction in a database is a separate executing program.
A transaction may be its own program or a thread of execution.

The operating system schedules the execution of programs 
outside of the control of the DBMS.
Thus, transactions may be executed in any order (as long as the 

order of operations within a transaction are the same).  This 
interleaving is what produces different schedules.

The DBMS uses its concurrency control protocol to restrict the 
schedules to those that respect the consistency specified by the 
user for the transaction isolation level.
All transactions must write lock any data item updated and the 

relation lock if inserting.

Isolation level only affects read locks.
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Scheduling Question
Question: TRUE or FALSE: The database has complete control 
over the scheduling of transactions.

A) True

B) False
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Isolation Example 
Serializable

A serializable schedule requires that regardless of the 
interleaving of the operations, the final result is the same as 
some serial ordering of the transactions.
Read and write locks are held to commit.  Also have a relation-

level lock.

For three transactions, there are 3! = 6 serial schedules.

For these examples, assume that the total amount of money in 
all accounts is $5000 before the transactions begin.
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Isolation Example 
Serializable (2)

Example schedule for T1, T2, T3:

After execution, total1 = $5050 and total2 = $5050.
The results for all six serial schedules are:
T1, T2, T3 – total1 = $5050 ; total2 = $5050 

T1, T3, T2 – total1 = $5150 ; total2 = $5150 

T2, T1, T3 – total1 = $5000 ; total2 = $5000 

T2, T3, T1 – total1 = $5000 ; total2 = $5000 
T3, T1, T2 – total1 = $5150 ; total2 = $5150 

T3, T2, T1 – total1 = $5100 ; total2 = $5100 

UPDATE Account WHERE num = 'S1' SET balance=balance+50;
COMMIT T1;
SELECT SUM(balance) as total1 FROM Account;
SELECT SUM(balance) as total2 FROM Account;
COMMIT T2;
INSERT INTO ACCOUNT (num, balance) VALUES ('S5' , 100); 
COMMIT T3;
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Isolation Example 
Repeatable read

With repeatable read, a transaction is guaranteed to get the 
same data back on multiple reads but may see phantom 
records inserted in between reads.  
Read and write locks are held to commit.

Example schedule:

After execution, total1 = $5050 and total2 = $5150 as the 
second read sees the newly inserted tuple.

UPDATE Account WHERE num = 'S1' SET balance=balance+50;
COMMIT T1;
SELECT SUM(balance) as total1 FROM Account;
INSERT INTO ACCOUNT (num, balance) VALUES ('S5' , 100); 
COMMIT T3;
SELECT SUM(balance) as total2 FROM Account;
COMMIT T2;
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Isolation Example 
Read Committed

With read committed, each read will get the most recently 
committed values even if different than an earlier read.
Read locks are released after every statement.  Write locks 

released at commit.

Example schedule:

After execution, total1 = $5000 and total2 = $5150 as the 
second read sees the newly inserted tuple and T1’s update.

SELECT SUM(balance) as total1 FROM Account;
UPDATE Account WHERE num = 'S1' SET balance=balance+50;
COMMIT T1;
INSERT INTO ACCOUNT (num, balance) VALUES ('S5' , 100); 
COMMIT T3;
SELECT SUM(balance) as total2 FROM Account;
COMMIT T2;
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Read uncommitted allows a transaction to read dirty data that 
has not been (and may never be) committed.
Transaction acquires no read locks.

Example schedule:

After execution, total1 = $5050 and total2 = $5150 as T2’s sees 
even uncommitted data.  Note that both T1 and T3 abort so T2 
sees incorrect data.  It is very dangerous to use read 
uncommitted if the transaction updates the database!

Isolation Example 
Read Uncommitted

UPDATE Account WHERE num = 'S1' SET balance=balance+50;
SELECT SUM(balance) as total1 FROM Account;
INSERT INTO ACCOUNT (num, balance) VALUES ('S5' , 100);
SELECT SUM(balance) as total2 FROM Account;
COMMIT T2;
ABORT T3;
ABORT T1;
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Summary of Isolation Levels
Isolation Level Problems Lock Usage Speed Comments

Serializable None Read locks held 
to commit ; read 
lock on relation

Slowest Only level that guarantees 
correctness.

Repeatable read Phantom 
tuples

Read locks held 
to commit

Medium Useful for modify 
transactions.

Read committed Phantom 
tuples, values 
may change

Read locks 
released after 
each statement

Fast Useful for transactions 
where operations are 
separable but updates are 
all or none.

Read uncommitted Phantoms, 
values may 
change, dirty 
reads

No read locks Fastest Useful for read-only 
transactions that tolerate 
inaccurate results
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Isolation Levels Question
Question: How many of the following statements are true?
i) Serializability guarantees that there are no phantom tuples.

ii) Read committed may be affected by phantom tuples.

iii) In read committed, two reads at separate times may retrieve 
different values.

iv) Read uncommitted is the fastest isolation level.

A) 0

B) 1

C) 2

D) 3

E) 4
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Transaction Practice Question
Given these transactions and table Bid(itemID, price)
that initially contains the two tuples: (i1,10) and (i2,20):

Assume that T1 executes with isolation level serializable and 
both transactions successfully commit.
1) If T2 executes with isolation level serializable, what are all 

the possible pairs of values for p1 and p2 returned by T2?

2) If T2 executes with isolation level read committed, what are 
all the possible pairs of values for p1 and p2 for T2?

T1: BEGIN TRANSACTION;
S1: UPDATE Bid SET price = price + 5;
S2: INSERT INTO Bid VALUES (i3,30);
COMMIT;

T2: BEGIN TRANSACTION;
S1: SELECT SUM(price) AS p1 FROM Bid;
S2: SELECT MAX(price) AS p2 FROM Bid;
COMMIT;
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Concurrency Control in PostgreSQL
PostgreSQL uses snapshot isolation for DML and 2PL for DDL.
Snapshot isolation implementation is referred to as multi-version 

concurrency control (MVCC).  
Uses first updater wins policy.  Uses x-locks on written rows.

Each transaction has id (logical counter).  Each tuple has transaction id 
that created it.  Keeps track of snapshot info for each transaction.

Tradeoff: Reads never wait but more space used that must be handled.

Uses deadlock detection with timeouts (default 1 sec.).

Isolation levels supported:
read committed (default), serializable
For read committed, timestamp is at statement level.  For serializable, 

timestamp is transaction's first timestamp.

A transaction will wait for a lock on a row currently being updated.  If 
update committed by another transaction, waiting transaction issues error 
"could not serialize access due to concurrent update".  Only possible for 
update/deletes.
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Concurrency Control in MySQL
MySQL with the InnoDB storage engine uses snapshot 
isolation (multi-version concurrency control) for reads and 2PL 
for updates.

Supports all 4 isolation levels with different locks acquired for 
different levels. Default is repeatable read.
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Concurrency Control in 
Microsoft SQL Server

Microsoft SQL Server uses 2PL and optimistic concurrency 
control.

Supports all four isolation levels plus two snapshot isolation 
levels.

Uses multiple granularity locking and automatically determines 
correct sizes (table, extent, page, rows).

Older snapshots are stored in temporary database.

Deadlock detection performed every 5 seconds by default.
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Concurrency Control in Oracle
Oracle uses multiversion read consistency (snapshots).
No locks for a read operation, so a read never blocks for a write.

Uses row-level locking and transaction will wait if tries to change 
row updated by uncommitted transactions.

System change number (SCN) used for ordering operations.

Stores row lock on data block where row is stored.

Locks held throughout transaction, released at commit/abort
Different types of locks; DDL, DML, mutex, latches

Does deadlock detection using wait-for graphs

Oracle Flashback Technology allows recovering a table to a 
point in time.  Can be used to recover deleted rows or dropped 
tables without doing full restore from backup.

Implements: read committed and serializable isolation levels
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Concurrency Control in 
MongoDB

MongoDB is a NoSQL document database.  Performs atomic 
updates at document-level with no support for transactions.

MongoDB does not support any of the traditional isolation 
levels directly.

Uses reader-writer locks to ensure a data item can be read by 
many but only written by one at a time.
Waiting writers have precedence over readers.

Until Mongo 3.0, locking was at the database level.  Mongo 3.0 
and above perform multiple granularity locking (database, 
collection, document).



14

Page 79

COSC 404 - Dr. Ramon Lawrence

Concurrency Control
Summary

Concurrency control protocols are used to ensure concurrent 
transactions maintain their isolation.
Two-phase locking (2PL) and multigranularity locking 

schemes are commonly used.

Deadlocks must be handled by either deadlock prevention or 
deadlock detection and recovery.
Prevention: wound-wait and wait-die schemes

Detection: wait-for graphs and transaction rollback

Multiversion schemes and snapshots create new versions on 
every update and determine the correct version for reads.  
Allows higher concurrency but uses more space. Very common.

SQL isolation levels are read uncommitted, read committed, 
repeatable read, and serializable.
Differ on handling of dirty reads and phantom tuples. Page 80
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Major Objectives
The "One Things":
Explain how two-phase locking (2PL) works and detect valid 2PL 

schedules.

Perform deadlock detection and recovery using wait-for graphs.

Explain and use the timestamp based protocol.

Perform multiple granularity locking using lock modes, rules, and 
compatibility matrix.

Understand difference between snapshot based approaches 
(MVCC) and using 2PL.
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Objectives
Define concurrency control, locking protocol, deadlock, 

starvation, exclusive and shared locks (compatibility matrix).

Define and use conservative, strict, and rigorous 2PL.

Explain the use of  lock conversions (upgrades/downgrades).

Insert locks into a schedule using automatic algorithm.

List some methods for deadlock prevention. 

List three factors with deadlock recovery.

Define and motivate a validation based protocol.

Explain the motivation for multiversion 2PL and timestamping.

Explain the general approach for snapshot protocols.

Explain how the phantom phenomenon occurs.

List consistency levels in SQL-92 and determine which 
schedules are valid under each consistency level.
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Recovery
Motivation

A database system like any computer system is subject to 
various types of failures.

The database system must ensure the ACID properties 
(specifically durability and atomicity) despite failures.

We will categorize the various types of failures, and provide 
approaches for recovering from failures.

The process of restoring the database to a consistent state 
after a failure is called recovery, and is performed by the 
recovery system.
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Why is Recoverability Needed?
Recoverability is needed because the database system can fail 
for many reasons during transaction processing:
Computer Failure - computer crash due to hardware, software, 

or network problems.

Disk Failure - disk fails to correctly read/write blocks

Physical Problems/Catastrophes - external problems 
resulting in data loss or system destruction (e.g. earthquake)

Transaction failures (but not database system failures):
Transaction Error - error in transaction (e.g. divide by 0)

Exception Conditions - transaction detects exception 
condition (e.g. data not present, insufficient bank funds)

Concurrency Control Enforcement - transaction can be 
forced to abort to resolve deadlock or for serializability.
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Failure Classification
The various types of failures can be classified in three 
categories:
Transaction Failures:
 Logical errors: Transaction cannot complete due to some internal error 

condition (bad input, data not found).

 System errors: The database system must terminate an active 
transaction due to an error condition (e.g. deadlock).

Software Failures:
 System crash: A failure causes the system to crash, but non-volatile 

storage contents are not corrupted. 

 Examples: software design errors, bugs, buffer/stack overflows

Hardware Failures:
 Disk failure: A head crash destroys all or part of disk storage.

 Examples: overutilization/overloading (used beyond its design), wearout 
failure, poor manufacturing

Page 5

COSC 404 - Dr. Ramon Lawrence

Terminology
A system is reliable if it functions as per specifications and 
produces a correct output for a given input.

A system failure occurs if it does not function according to 
specifications and fails to deliver the service desired.

An error occurs if the system assumes an undesirable state.

A fault is detected when either an error is propagated from one 
component to another or the failure of a component is detected.
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Reliability Mechanisms
Fault Avoidance
Attempt to eliminate all forms of hardware and software errors.

Fault Tolerance
Provide component redundancies that cater to faults occurring 

within the system and its components.

Tradeoff:
Fault tolerance requires more components.

More components means more faults.

Therefore, more components are need to handle the increasing 
faults.



2

Page 7

COSC 404 - Dr. Ramon Lawrence

Storage Structure (review)
Volatile storage does not survive system crashes.
main memory, cache memory

Nonvolatile storage survives system crashes.
Hard drive, solid-state drive 

Stable storage is a theoretical form of storage that survives all 
failures.
Approximated by maintaining multiple copies on distinct 

nonvolatile media.

Practically achieving stable storage requires duplication of 
information such as maintaining multiple copies of each block 
on separate disks (RAID), or sending copies to remote sites to 
protect against disasters such as fire or flooding.
e.g. Multiple availability zones with Amazon hosting Page 8
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Data Access
Physical blocks are those blocks residing on the disk. Buffer 
blocks are the blocks residing temporarily in main memory.

Block movements between disk and main memory are initiated 
through the following two operations:
input(B) transfers the physical block B to main memory.

output(B) transfers the buffer block B to the disk.

Each transaction Ti has its private work area in which local 
copies of all data items accessed and updated by it are kept. 
Assume that Ti's local copy of a data item X is called xi.
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Data Access (2)
A transaction transfers data items between system buffer 
blocks and its private work-area using operations:
read(X, xi) assigns the value of item X to the local variable xi.

write(X, xi) assigns the value of local variable xi to data item X
in the buffer block.

Both these commands may require an input(BX), if the block BX
in which X resides is not already in memory.

Transactions perform read(X) while accessing X for the first 
time; all subsequent accesses are to the local copy. After last 
access, transaction executes write(X).

output(BX) need not immediately follow write(X). System can 
perform the output operation when it deems fit.
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Example of Data Access
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Buffer Management
The blocks in a database buffer are managed by a 
replacement policy (such as LRU).

Other considerations:
steal vs. no-steal – no-steal prevents a buffer that is written by 

an uncommitted transaction to be saved to disk (removed from 
the buffer).  Steal policy allows writing uncommitted updates.
 Implemented using a pin bit on each buffer block.

force vs. no-force – A force approach writes updates for 
committed transactions to disk immediately.  No-force allows a 
committed update to remain in the buffer for some time.

Databases typically implement steal/no-force as it provides the 
most flexibility and best performance. Page 12
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Log-Based Recovery
In log-based recovery, a log is kept on stable storage, and 
consists of a sequence of log records.

The log will record the sequence of database operations, and 
can be used to replay the database actions after a failure.  The 
recovery manager uses the log to restore data items to their 
consistent state.

Recovery is related to concurrency control.  We will assume 
that strict 2PL is performed that guarantees an item updated by 
a transaction T cannot be updated by another transaction until 
transaction T commits or aborts.
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Log-Based Recovery
Log Records

There are several types of log records: 
Start Records: When transaction Ti starts, it registers by 

writing a <Ti start> log record.

Commit Records: When Ti finishes its last statement and 
successfully commits, the record <Ti commit> is written.

Abort Records: When Ti aborts for whatever reason, the 
record <Ti abort> is written.

Update Records: Before Ti executes write(X), a log record 
<Ti, X,  V1,  V2> is written, where V1 is the value of X before the 
write, and V2 is the value to be written to X.
 That is, Ti has performed a write on data item X.  X had value V1 before 

the write, and will have value V2 after the write. 

Log records are written to stable storage.
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Log Record Buffering
Log records are buffered in main memory, instead of being 
output directly to stable storage.  Log records are output to 
stable storage when a block of log records in the buffer is full, 
or a log force operation is executed.
Several log records can thus be output using a single output 

operation, reducing the I/O cost.

These rules must be followed if log records are buffered:
Log records are output in the order in which they are created. 

Transaction Ti enters the commit state after the log record <Ti
commit> has been output to stable storage.

Before a block of data in main memory is output to the 
database, all log records pertaining to data in that block must 
have been output to stable storage. (This rule is called the 
write-ahead logging or WAL rule.)
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Undo/Redo Logging
Undo/redo logging performs recovery by:
undo updates for transactions that are not committed 

redo updates for transactions that were committed before 
failure

Redo/undo logging (WAL) rule:
Before modifying any database element X on disk because of 

changes made by some transaction T, it is necessary that 
update record <T, X, V1, V2> appear on disk.
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Write-Ahead Logging
Question: Write-ahead logging means:

A) If a data item is updated, it must be written to storage before 
the log record.

B) If a data item is read, it must read a written, committed value.

C) An updated data item must only be written to storage after 
the log record for the update is written to storage.

D) None of the above
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Recovery with Undo/Redo Logging
The recovery system must:
Redo all the committed transactions in the order earliest-first.

Undo all uncompleted transactions in the order latest-first.

When the system recovers, it does the following:
1) Initialize undo-list and redo-list to empty.

2) First pass: Scan the log backwards from end to build list of 
transactions to undo and redo.

3) Second pass: Scan the log forwards from the beginning and 
redo updates of committed transactions. 

4) Third pass: Scan the log backwards from end and undo 
updates of uncommitted transactions.

5) For each undo transaction T, write a <T abort> log record.  
Flush the log and resume normal operation.
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Undo/Redo Recovery Example

The log as it appears at three instances of time:

Recovery actions in each case above are:
(a) undo (T0): B is restored to 2000 and A to 1000.

(b) redo (T0) and undo (T1): A set to 950 and B set to 2050 then 
C is restored to 700.

(c) redo (T0) and redo (T1): A and B are set to 950 and 2050 
respectively. Then C is set to 600.

<T0 start>
<T0, A, 1000, 950>
<T0, B, 2000, 2050>

<T0 start>
<T0, A, 1000, 950>
<T0, B, 2000, 2050>
<T0 commit>
<T1 start>
<T1, C, 700, 600>

<T0 start>
<T0, A, 1000, 950>
<T0, B, 2000, 2050>
<T0 commit>
<T1 start>
<T1, C, 700, 600> 
<T1 commit>

(a)

(b)
(c)
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Undo/Redo Logging
Question: How many of the following statements are true?
i) The first pass scans log forward to build undo and redo lists.

ii) The second pass scans log forward performing redo.

iii) The third pass scans log forward performing undo.

iv) An update that is "redone" may or may not change the actual 
value in storage.

A) 0

B) 1

C) 2

D) 3

E) 4
Page 20
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Checkpoints
Recovery using the entire log would be expensive as the log 
grows in size over time.  

To reduce the size of the log in order to make recovery faster, 
checkpoints are used to speed up recovery.
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Checkpointing (blocking)
Checkpointing approach that blocks new transactions:
1) Stop accepting new transactions.

2) Wait until all currently running transactions either commit or 
abort.

3) Output all log records currently residing in main memory onto 
stable storage. (flush log)  Output all updated buffers.

4) Write a log record <checkpoint> and flush log again.

5) Resume accepting transactions.

This guarantees all transactions before the checkpoint have 
their results reflected in the database.  Recovery only needs to 
focus on log after the checkpoint.
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Online (fuzzy) Checkpointing
The biggest problem with the previous technique is the system 
must stop processing transactions during the checkpoint.

Online checkpointing allows transactions to continue to run 
and be submitted during the procedure:
1) Write a log record <checkpoint start (T1 ... TN)> where T1...TN

are the currently executing transactions. (flush log)

2) Write to disk all dirty buffers that have been modified before 
the checkpoint start.  The buffers written include buffers 
changed by uncommitted transactions.
 Note that the checkpoint procedure does not write dirty buffers that get 

modified between the checkpoint start and the checkpoint end records.

3) After all dirty buffers (recorded at checkpoint start) have 
been flushed, write a log record <checkpoint end> and flush the 
log.

Page 23

COSC 404 - Dr. Ramon Lawrence

Online Checkpointing
Question: How many of the following statements are true?
i) Transactions may still run during an online checkpoint.

ii) All updates in the buffer (committed or not) when the 
checkpoint starts are written to storage by end of checkpoint.

iii) Updates in the buffer done after checkpoint start are written to 
storage.

iv) The checkpoint start record contains all transactions, running 
and committed, before the checkpoint.

A) 0

B) 1

C) 2

D) 3

E) 4
Page 24
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Recovery using Undo/Redo and 
Checkpointing

Steps for recovery using undo/redo and checkpointing:
1) First pass backwards scan stops at the first start checkpoint 

log record found with a matching end checkpoint.
 This scan will enumerate all transactions since last checkpoint and all 

active transactions when checkpoint began.

 Divide these transactions into undo and redo lists.

2) Second pass forward scan starts at start checkpoint record 
and ends when all transactions are redone.

3) Third pass backwards scan starts at end of log and stops 
when all transactions in the undo list have been undone.
 We know a transaction has no more operations when we encounter its 

transaction start log record.
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Undo/Redo Checkpoints Example

What transactions are undone, redone, or committed?
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Undo/Redo Recovery Example
The recovery algorithm on the following log:

Checkpoint: T1, T2 were active (undo-list) 

T3 in redo-list. 
Redo T3 write on D value now 10. 

Undo T2 write on C value now 10.
Undo T2 write on C value now 0.

Undo T1 write on B value now 0.

Redo T3 write on A value now 20. 

Undo T2 complete.

Undo T1 complete. (Undo complete.)

First Backwards Pass. (build lists from end)

Backwards Pass - Undo (start at end)
Forwards Pass - Redo (start at checkpoint)

<T0 start>
<T0, A, 0, 10>
<T0 commit>
<T1 start>
<T1, B, 0, 10>
<T2 start>                   
<T2, C, 0, 10>
<T2, C, 10, 20>
<checkpoint start  (T1, T2)>
<checkpoint end>
<T3 start>
<T3, A, 10, 20>
<T3, D, 0, 10>

<T3 commit>
Write abort transaction to log.<T1 abort>
Write abort transaction to log.<T2 abort>
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Undo/Redo Recovery with Checkpoints
Question: How many of the following statements are true?
i) The first pass stops at the last checkpoint end record.

ii) The second pass starts at the last checkpoint start record with 
a matching checkpoint end record.

iii) The third pass stops when the start record for all transactions 
to be undone have been seen.

iv) The second pass stops at the end of the log.

v) The first pass starts at the end of the log.

A) 0

B) 1

C) 2

D) 3

E) 4 Page 28
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ARIES Recovery Algorithm
Recovery algorithm described is a simplification of the ARIES
recovery algorithm that is widely used in databases.

Three steps:
1) Analysis – determine dirty pages in buffer, active 

transactions, and starting point for REDO step

2) REDO – reapplies updates of committed transactions

3) UNDO – scan log backwards undoing updates for non-
committed transactions

Implementation details:
Every log record has a log sequence number (LSN).

Also stores Transaction Table and Dirty Page Table.

Handles failure during recovery by logging undo operations so 
do not have to be repeated (uses compensation log records).
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Nonvolatile Storage Failures
Solution: Periodically dump the entire contents of the 
database to stable storage.

No transaction may be active during the dump procedure. A 
procedure similar to checkpointing must take place:
Output all log records currently residing in main memory onto 

stable storage.

Output all buffer blocks onto the disk.

Copy the contents of the database to stable storage.

Output a record <dump> to log on stable storage.

To recover from disk failure, restore database from most recent 
dump. Then log is consulted and all transactions that 
committed since the dump are redone. 
Can be extended to allow transactions to be active during 

dump; known as fuzzy or online dump. Page 30
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Advanced Recovery Techniques
Support high-concurrency locking techniques, such as those 
used for B+-tree concurrency control.

Operations like B+-tree insertions and deletions release locks 
early. They cannot be undone by restoring old values (physical 
undo), since once a lock is released, other transactions may 
have updated the B+-tree.

Instead, insertions/deletions are undone by executing a 
deletion/insertion operation (known as logical undo).  
For such operations, undo log records should contain the undo 

operation to be executed; called logical undo logging, in 
contrast to physical undo logging.

Redo information is logged physically (that is, new value for 
each write) even for such operations.
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Undo/Redo Logging Questions

Explain undo/redo logging recovery for the following log as it 
appears at three instances of time:

(a)

<T1 start>
<T1, A, 4, 5>
<T2 start>
<T1 commit>
<T2, B, 9, 10>
System Failure

(c)

<T1 start>
<T1, A, 4, 5>
<T2 start>
<T1 commit>
<T2, B, 9, 10>
<checkpoint start (T2)>
<T2, C, 14, 15>
<T3 start>
<T3, D, 19, 20>
<checkpoint end>
<T2 commit>
System Failure

(b)

<T1 start>
<T1, A, 4, 5>
<T2 start>
<T1 commit>
<T2, B, 9, 10>
<checkpoint start (T2)>
<T2, C, 14, 15>
<T3 start>
<T3, D, 19, 20>
System Failure
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Summary
A database system must be able to recover in the presence of 
hardware and software failures.  The database system must 
ensure a consistent database after failure and preserve the 
ACID properties.

Log-based recovery records all updates in a log and undo/redo 
operations are used to restore the database to a consistent state 
(write-ahead logging is used).

Checkpointing reduces the cost of log-based recovery.

Database backups are needed to handle catastrophic failures.

Advanced (logical) recovery is necessary for B+-tree indexes.
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Major Objectives
The "One Things":
Perform Undo/Redo logging with checkpoints.

Major Theme: 
The recovery system rebuilds the database into a consistent 

state after failure using the log records saved to stable store 
while the database was operational.  Various methods including 
checkpoints are used to speed-up recovery after failures.
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Objectives
Define: recovery and recovery system

List the types of failures and motivation for recovery.

Define: reliable, failure, error, fault, stable storage

Compare/contrast fault avoidance versus fault tolerance.

Read and write log records in a log.

Define: write-ahead logging rule (WAL), log force operation

Motivate the importance of checkpoints and online 
checkpointing.

Compare/contrast physical versus logical logging.
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Scaling Database Systems
Scaling a database system involves handling:
larger data sets and queries that involve more data 

larger number of users/transactions/queries

handling failures and concurrency issues when supporting more 
users and servers

Scaling is achieved by adding more servers (i.e. cluster) and 
replicating/distributing/partitioning data across those servers that 
handle the data and query load.

There are a variety of architectures and approaches.
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Performance Measures for
Parallel and Distributed Systems

Throughput - the number of tasks that can be completed in a 
given time interval.

Response time - the amount of time it takes to complete a 
single task from the time it is submitted.

Speedup - how much faster a fixed-sized problem can be 
executed on hardware that is N-times faster. 
speedup = time on basic system / time on N-times faster system

Speedup is linear if equation equals N.

Scaleup - is the ability of a system N times larger to perform a 
job N times larger, in the same time as the original system.
scaleup = time to execute small problem on small system

time to execute large problem on large system

Scale up is linear if equation equals 1.
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Factors Limiting Speedup and Scaleup
Speedup and scaleup are often sublinear due to:
Startup costs: Cost of starting up multiple processes may 

dominate computation time if the degree of parallelism is high.

Interference:  Processes accessing shared resources (e.g. 
system bus, disks, or locks) compete with each other and spend 
time waiting on other processes, rather than performing work.

Skew: Increasing the degree of parallelism increases the 
variance in service times of parallel executing tasks.  Overall 
execution time determined by slowest of executing tasks.
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Parallel Performance Measures
Question: How many of the following statements are true?
i) Response time is how long it takes to complete a given task 

from the time it is submitted.

ii) Throughput is the rate at which tasks can be completed.

iii) Interference is one factor that can limit scaleup.

iv) When a company wants to grow its database, scaleup is an 
important factor.

A) 0

B) 1

C) 2

D) 3

E) 4 Page 6
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Parallel Database Systems
A parallel database system consist of multiple processors and 
disks connected by a fast interconnection network.

Parallel database systems are used for:
storing large volumes of data

processing time-consuming decision-support queries

providing high throughput for transaction processing

Parallel execution occurs within a system in the form of 
exploiting parallelism available in CPUs and graphics cards.
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Distributed Database System
A distributed database system (DDBS) is a database system 
distributed across several network nodes that appears to the 
user as a single system.

A DDBS processes complex queries by coordinating among the 
individual nodes.  Processing may be done at a site other than 
the location of query submission.  This requires cooperation on 
transaction management, concurrency control, and query 
optimization.

Parallel and distributed databases have many features in 
common and the line between them is not always clear.  One 
main difference is that a distributed system is designed to be 
physically/geographically distributed where a parallel DBMS 
may be in a single server/data center. Page 8
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Parallel and Distributed Databases
Advantages and Disadvantages

Advantages:
PERFORMANCE, availability, reliability

Local autonomy

Reflects organization structure

Economics (smaller systems)

Less network traffic compared to centralized

Disadvantages:
Complexity

Lack of control

Cost

Security

More complex database design
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Parallel/Distributed Architectures
Shared memory - processors share a common memory.
Memory shared using a bus allowing fast communication 

between processors.  Good for small parallel systems.

Architecture is not scalable since the bus is a bottleneck.  

Shared disk - processors share a common disk.
Processors shared data on disk but have private memories.

Bottleneck at disk system instead of bus.  Slower data sharing.

Shared nothing - processors share no memory or disks.
A node consists of a processor, memory, and one or more disks.  

Nodes communicate over the network. 

Can be scaled up to thousands of processors. 

Hierarchical - hybrid combination of the above architectures.
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Parallel/Distributed Architectures
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Parallel/Distributed Architectures
Question: How many of the following statements are true?
i) Shared memory is used when servers are in different locations.

ii) Shared nothing is the architecture that is the least popular.

iii) MongoDB assumes/uses a shared disk architecture.

iv) The shared disk architecture is the hardest to implement.

A) 0

B) 1

C) 2

D) 3

E) 4
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Types of Database Parallelism
A database can exploit a parallel hardware system by:
Partitioning/Sharding - dividing the data across hardware to 

allow for parallel I/O and query processing.

Interquery Parallelism - executing multiple queries concurrently 
using the parallel hardware resources.

Intraquery Parallelism - executing operators of a query plan in 
parallel or parallelizing individual operators.
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Distributed Data Storage
Replication and Partitioning

A key decision in a parallel/distributed database is how to 
allocate the data across nodes.

This allocation involves both replication and partitioning: 
Replication - system maintains multiple copies of data stored at 

different sites for faster retrieval and fault tolerance.

Partitioning - relation is partitioned into several 
fragments/partitions stored in distinct sites.

Replication and partitioning - relation is partitioned into several 
partitions and system maintains several identical replicas of each 
partition.
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Data Replication Discussion
Replication is good for reads and bad for writes! 

Advantages of Replication:
Availability - failure of a site containing a relation does not result 

in unavailability if replicas exist.

Parallelism - queries on a relation may be processed by several 
nodes in parallel.

Reduced data transfer - relation is available locally at each site 
containing a replica of it.

Disadvantages of Replication:
Increased update cost - each replica must be updated.

Increased complexity of concurrency control - concurrent 
updates to distinct replicas may lead to inconsistent data.

Increased space requirements - more storage is needed.
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Maintaining Consistency with 
Replication – CAP Theorem

The CAP Theorem (Brewer 2000) proves that a distributed 
system can have only two of these three properties: consistency, 
availability, and partition-tolerance.

In a large system, partitions cannot be prevented, so must 
sacrifice either availability or consistency.

Many new NoSQL databases select availability over consistency 
which means that the replicas are not always consistent in time, 
which is called weak or eventual consistency.
Strong consistency – all replicas same value at end of update

Weak consistency – may take some time for all replicas to 
become consistent
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BASE Properties – Not ACID
In eventually consistent systems, the ACID properties do not 
hold.  We may consider these systems to have BASE properties:

Basically Available 
If server is accessible, can do reads and updates (even if have 

network partition). Availability at the cost of consistency.

Soft state
Each replica may have different values (due to partitioning or 

time delay in update propagation).

Eventually consistent
Replicas are not consistent at instance of update but will be 

come become consistent eventually as updates are propagated 
and conflicts resolved.

Merging inconsistent updates is still a challenge.
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Master/Slave Configuration for Handling 
Replication and Ensuring Consistency

In a master/slave configuration, one master server is 
responsible for updates to each partition and sends the updates 
to the slaves that contain copies of the partition.
Primary copy ownership – one site owns data, perform 

updates on that site, and updates are sent out to subscribers 
who update their replicas.  These updates may be sent out by 
shipping the log to the slave sites.

The master node is read/write.  The slave nodes are read only.  
This requires a way to specify a read-only transaction (e.g. set at 
connection or statement level before executing query) so that it 
can be processed by a slave node.
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Master/Master Configuration for 
Handling Replication and Consistency

In a master/master configuration, more than one server is 
able to perform updates on a given partition.  This requires co-
ordination by the masters.

Techniques:
Any update must be "approved" by all (or a majority) of the 

master servers.  This approval may be done before commit 
(online) using a distributed algorithm (e.g. two phase commit).

Updates may be allowed on multiple servers simultaneously, but 
there must be some system or user-configured resolution 
mechanism to handle conflicts.
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Data Partitioning
Partitioning is the process of dividing a relation r into partitions 
r1, r2, …, rn that can be combined to reconstruct r.
Horizontal partitioning (sharding) - each tuple of r is assigned 

to one or more partitions (shards). 
Partition can be defined using selection from r.

Reconstruct r from partitions by performing union.

Vertical partitioning - the schema for relation r is split into 
several smaller schemas.
Partitions are defined using projection on r.

Reconstruct r by joining partitions. 

All schemas must contain a common candidate key (or superkey) to 
ensure lossless join property.

A special attribute, such as a tuple id attribute may be added to each 
schema to serve as a candidate key.

Vertical and horizontal partitioning can be mixed.
Page 20
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Horizontal Data Partitioning 
and Sharding

Horizontal partitioning/sharding – tuples are divided among 
many servers such that each tuple resides on one server.
Partitioning techniques (assuming n servers):
Round-robin: Send the ith tuple in the relation to server i mod n. 

Hash partitioning:  Use a hash function h(x) on partitioning attributes x
that maps each tuple to one of the n servers.

Range partitioning: Chose a partitioning attribute V and divide the 
domain of V using a partitioning vector [vo, v1, ..., vn-2].  For each tuple with 
value v, if v  vi then tuple goes on server i. If v  vn-2 go to server n-1.

Question:  How does each partitioning technique perform for 
these different types of queries?
1) Scanning the entire relation

2) Lookup queries (on the partition attribute)

3) Range queries (on the partition attribute)

4) Lookup or range queries not on the partition attribute
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branch-name account-number balance

Hillside
Hillside
Hillside

A-305
A-226
A-155

500
336
62

account1

branch-name account-number balance

Valleyview
Valleyview
Valleyview
Valleyview

A-177
A-402
A-408
A-639

205
10000

1123
750

account2

Horizontal Partitioning Example

Partitioned Account  relation on branch-name attribute. Page 22
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account number balance tuple-id

500
336
205
10000
62
1123
750

1
2
3
4
5
6
7

A-305
A-226
A-177
A-402
A-155
A-408
A-639

deposit2

Vertical Partitioning Example

Partitioned Deposit relation.

deposit1
Hillside
Hillside
Valleyview
Valleyview
Hillside
Valleyview
Valleyview

Lowman
Camp
Camp
Kahn
Kahn
Kahn
Green

branch-name customer-name tuple-id

1
2
3
4
5
6
7

Page 23

COSC 404 - Dr. Ramon Lawrence

Advantages of Partitioning
Horizontal:
allows parallel processing on a relation

allows a relation to be split so that tuples are located where they 
are most frequently accessed

Vertical:
allows for further decomposition from what can be achieved with 

normalization

tuple id attribute allows efficient joining of vertical fragments

allows parallel processing on a relation

allows tuples to be split so that each part of the tuple is stored 
where it is most frequently accessed
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Skew
Skew is when the distribution of data is not uniform.   Skew 
reduces the performance of algorithms such as partitioning that 
intend for the data to be uniformly distributed across hardware. 

Types of skew:
Attribute-value skew
Some values appear in the partitioning attributes of many tuples.  All the 

tuples with the same value for the partitioning attribute end up in the same 
partition. 
 E.g. Ages of students are skewed between 18-25.

Can occur with range-partitioning and hash-partitioning.

Partition skew
With range-partitioning, badly chosen partition vector may assign too 

many tuples to some partitions and too few to others.

Less likely with hash-partitioning if a good hash-function is chosen.
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Partitioning
Question: How many of the following statements are true?
i) Sharding is another name for horizontal partitioning.

ii) Vertical partitioning divides a relation by its attributes.

iii) Skew is beneficial when performing partitioning.

iv) Replication and partitioning can be used together.

A) 0

B) 1

C) 2

D) 3

E) 4
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Interquery Parallelism
Interquery parallelism is when queries execute in parallel with 
one another.
Increases throughput but does not improve response time.

Easiest form of parallelism to support particularly in a shared 
memory database. 

More complicated to implement on shared disk or shared 
nothing architectures when dealing with updates:
Locking and logging must be coordinated by passing messages 

between processors if system guarantees consistency.
Cache coherency has to be maintained as reads and writes of data in 

buffer must find latest version of data.

Sharding can often help as data within a shard (partition) is only 
located on one server.  (Replication will be an issue though).
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Intraquery Parallelism
Intraquery parallelism is the execution of a single query in 
parallel.
Reduces response time (especially for long-running queries).

Two forms of intraquery parallelism:
Intraoperation Parallelism – parallelize the execution of each 

individual operation in the query.

Interoperation Parallelism – execute the different operations in 
a query expression in parallel.

Intraoperation parallelism scales better because the number of 
tuples processed by each operator is typically more than the 
number of query operators.
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Parallel Processing of 
Relational Operations

Our discussion assumes a shared-nothing architecture of n
processors, P0, ..., Pn-1 and n disks D0, ..., Dn-1,  where disk Di is 
associated with processor Pi.

For all algorithms, we will assume that we have already 
partitioned relation R across the n processors uniformly using 
either range or hash partitioning.

Implementing parallel selection and projection:
Each processor performs local selection (projection) on its 

partition. Result is sent to client. 

This also works for duplicate elimination and aggregation.
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Parallel Sorting
Parallel External Sort-Merge
Assume the relation is partitioned among disks D0, ..., Dn-1.

Each processor Pi locally sorts the data on disk Di.

The sorted runs on each processor are then merged to get the 
final sorted output.

Optimizations:
The merge is trivial if the relation was range partitioned on the 

sort attribute.

Note that range partitioning can be used after the local sort to 
parallelize the merge as well (less of a benefit).
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Parallel Join
Parallel join algorithms partition the relations across the 
processors such that two tuples will join if and only if they are in 
the same partition at a single processor.
Range or hash partitioning can be used on the join attributes.

Each processor computes its local join and the final result is the 
union of the results of all local joins.
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Interoperation Parallelism
There are two types of interoperation parallelism:
Pipelined parallelism - output tuples of one operation are 

consumed as input by another operation. (Iterators)
Avoids writing intermediate results to disk.

With parallel systems, operations can be performed at different 
processors.  Output of one processor is input for another processor.

Useful for sequences of joins but limited parallelism scaling.

Independent parallelism - operations in a query that do not 
depend on each other can be performed in parallel.
Different branches of operator tree.

E.g. Join of four relations can be computed as join of two temporary joins 
of relations r1 and r2 and relations r3 and r4.
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Distributed Query Optimization
Distributed query optimization is even more complex than 
with a centralized system.

Issues:
Query cost estimation – must consider processing capabilities of 

each node as well as location of data and transfer cost

Query decomposition – how to divide query across nodes

Data localization – goal is to move query to data

Global optimization – optimize query overall

Local optimization – optimize part of query on particular node

Distributed operations – parallelizing and distributing work of 
joins/sorts over multiple nodes
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Semijoin
The semijoin of r1 with r2, is denoted by  r1 r2.

Semijoin is computed by: 

r1 (r1 r2) 

r1 r2 selects tuples of r1 that are present in the join of r1 and r2.

The semijoin operation is used to reduce the number of tuples in 
a relation before transferring it to another site.
The basic idea is that one site sends all the values of the join key 

to the other site which then knows which tuples will participate in 
the join (and will only send those tuples back).
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Semijoin Example
Let Emp(ssn, name, deptName) be at site S1 and Dept (name,
mgrssn) be at S2.  Compute Emp     ssn=mgrssn Dept.

Algorithm:
Compute temp1  mgrssn (Dept) at S2.  Send temp1 to S1.

At S1 compute temp2  Emp temp1 and send back to S2.

Compute Dept temp2 at S1. This is the result of Emp Dept.

In this operation sequence, temp2 = Emp Dept.

Performance question:
T(Emp)=100,000 and T(Dept)=500.  Size of ssn and mgrssn = 9 

bytes. The size of name and deptName is 50 bytes.

Compute the network cost of this algorithm.  
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Parallel Operators
Question: How many of the following statements are true?
i) A parallel sort can perform sorting on each node and then send 

the sorted sublists to a single node to be merged.

ii) A semijoin gets its efficiency by only sending tuples that 
participate in the join.

iii) The #1 rule for optimization is move the data to the query.

iv) Intraquery parallelism is the execution of a single query in 
parallel.

A) 0

B) 1

C) 2

D) 3

E) 4
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Distributed Transaction Model
Features of a distributed transaction model:
Transactions may access data at several sites.
A local transaction accesses data in the single site at which the 

transaction was initiated.

A global transaction either accesses data in a site different from the one 
at which the transaction was initiated or accesses data in several sites.

Each site has a local transaction manager responsible for:
Maintaining a log for recovery purposes.

Participating in coordinating the concurrent execution of the transactions 
executing at that site.

Each site has a transaction coordinator responsible for:
Starting the execution of transactions that originate at the site.

Distributing subtransactions at appropriate sites for execution.

Coordinating the termination of each transaction that originates at the site, 
which may result in the transaction being committed or aborted at all sites.
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Distributed Concurrency Control
Concurrency control protocols must be modified to handle 
distributed databases.
Locking protocols may have to determine how to share lock 

information.

Propagating updates may be eager (immediate) or lazy 
(delayed).

Deadlock detection using wait-for graphs must handle detecting 
deadlocks across multiple servers.
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Commit Protocols
Commit protocols are used to ensure atomicity across all sites:
A transaction which executes at multiple sites must either be 

committed at all the sites or aborted at all the sites.

It is not acceptable to have a transaction committed at one site 
and aborted at another.

The two-phase commit (2PC) protocol is widely used.

The three-phase commit (3PC) allows for faster recovery than 
2PC as no site must wait.  However, the protocol is more 
complicated/costly and does not handle network partitioning.
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Two-Phase Commit Protocol (2PC)
The two-phase commit (2PC) protocol is widely used to ensure 
atomicity across all sites.

The two-phase commit protocol assumes a fail-stop model.  
Failed sites simply stop working and do not cause any other 

harm, such as sending incorrect messages to other sites.

Execution of the protocol is initiated by the coordinator after the 
last step of the transaction has been reached.

The protocol involves all the local sites at which the transaction 
executed.
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Phase 1: Obtaining a Decision
After all processing of a transaction is complete, the coordinator 
asks all participants to prepare to commit transaction T:
"Prepare" Request: Coordinator sends (prepare T) messages 

to all sites at which T executed.
Coordinator adds the record <prepare T> to the log and forces log to 

stable storage.  Will wait for response with a timeout. 

Upon receiving "Prepare" message, transaction manager at site 
determines if it can commit the transaction.
"Abort" Response: send (abort T) message to coordinator
Write <abort T> to the log and send (abort T) message to coordinator

"Ready" Response: send (ready T) message to coordinator if 
the transaction can be committed.
Write <ready T> to the log

force all records for T to stable storage

send (ready T) message to coordinator
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Phase 2: Recording the Decision
T can be committed if coordinator received a (ready T) message 
from all the participating sites, otherwise T is aborted.

Coordinator adds a decision record <commit T> or <abort T> to 
the log and forces record onto stable storage. 

Coordinator sends a message to each participant informing it of 
the decision (commit or abort).

Participants take appropriate action locally.
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Two-Phase Commit (2PC) Protocol
Question: How many of the following statements are true?
i) The protocol uses two phases of message passing.

ii) The first phase sends a prepare to commit message to each 
site involved in the transaction.

iii) A site can respond to the prepare to commit message by 
sending either "ready" or "abort".

iv) If all sites respond with "ready" the coordinator, sends out a 
"commit" message to all participating sites.

A) 0

B) 1

C) 2

D) 3

E) 4
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Handling Failures during 2PC
There are various possible failures during 2PC such as site
failure, coordinator failure, and network partitioning.

Handling Site Failure:
When site Si recovers after failure, it examines its log to 

determine the fate of transactions active at the time of failure.

If log contains <commit T> record, site executes redo(T).

If log contains <abort T> record, site executes undo(T).

If log contains <ready T> record, site must consult coordinator to 
determine the fate of T:
If T committed, redo (T) otherwise if T aborted, undo (T).

If the log contains no control records concerning T means that 
site failed before responding to the <prepare T> message.
Since the failure of the site precludes the sending of such a response to 

the coordinator, site must abort T and executes undo (T).
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Handling Failures during 2PC (2)
Handling Coordinator Failure:
If coordinator fails while the commit protocol for T is executing 

then participating sites must decide on T’s fate.
If an active site contains a <commit T> record in its log, then T must be 

committed.

If an active site contains an <abort T> record in its log, then T must be 
aborted.

If some active site does not contain a <ready T> record in its log, then the 
failed coordinator cannot have decided to commit T. Therefore abort T.

If none of the above cases holds, then all active sites must have a <ready
T> record in their logs, but no additional control records (such as <abort 
T> of <commit T>). In this case active sites must wait for coordinator to 
recover, to find decision.

Blocking problem: Active sites may have to wait for failed 
coordinator to recover.
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Handling Failures during 2PC (3)
Handling Network Partitioning:
If the coordinator and all its participants remain in one partition, 

the failure has no effect on the commit protocol.

If the coordinator and its participants belong to several partitions:
Sites that are not in the partition containing the coordinator think the 

coordinator has failed, and execute the protocol to deal with failure of the 
coordinator.
 No harm results, but sites may still have to wait for decision from coordinator.

The coordinator and the sites are in the same partition as the 
coordinator think that the sites in the other partition have failed, 
and follow the usual commit protocol.
Again, no harm results
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Recovery and Concurrency Control
Recovery system must handle in-doubt transactions.
Transactions that have a <ready T>, but neither a 

<commit T> nor an <abort T> log record.

The recovering site must determine the commit-abort status of 
such transactions by contacting other sites.
This can be slow and potentially block recovery.

Thus, recovery algorithms note lock info in the log:
Instead of <ready T>, write out <ready T, L> where L = list of 

write locks held by T when the log is written.
For every in-doubt transaction T, all the locks noted in the 

<ready T, L> log record are reacquired.
After re-acquiring locks, processing can resume. 
The commit/abort of in-doubt transactions is performed 

concurrently with execution of new transactions.
Note that new transactions may still have to wait on locks.
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Handling Failures with 2PC
Question: How many of the following statements are true?
i) If a site fails in 2PC, the transaction is always aborted.

ii) If a coordinator fails in 2PC, the transaction is always aborted.

iii) If a site fails and in recovery sees a "commit" entry in its log 
for a transaction, it performs "redo" as transaction is committed.

iv) If a site is in a different network partition than the transaction 
coordinator, it always must wait for communication to coordinator 
to be fixed.

A) 0

B) 1

C) 2

D) 3

E) 4
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2PC Question
Assume that a transaction T executes at 3 sites (S1,S2,S3) and 
was started at S2.  The transaction completed its execution and 
the controller at S2 sent out prepare to commit message to all 
sites. 

What happens if?
1) Site S3 replies with (abort T) message?

2) All sites reply with (ready T) messages but the coordinator S2 
fails before it can make a decision?

3) All sites reply with (ready T) messages, the coordinator locally 
commits T and sends out commit messages but S1 fails before it 
gets the commit message.
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Two-Phase Commit (2PC) Exercise
In groups of at least 3, act out the possible failure modes and 
how they are handled:
1) Failure of a site

2) Failure of coordinator
One site has <commit> in log

One site has <abort> in log

All sites have <ready> in log but no <commit> or <abort>

3) Network partitioned
All participants in same partition

Coordinator and one participant in a partition and another participant in the 
other partition
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What is Integration/Virtualization?
Database integration and virtualization is combining the data 
in more than one database to have a consistent, global view.
Typically, databases were developed independently and 

organization needs to combine data for reporting/analysis.

Alternative to data warehousing which would involving moving 
data into a new system.

Database integration/virtualization systems must handle different 
operating systems, database systems, database schema 
designs, and query languages.

Other integration challenges:
data model differences, naming conflicts, different database 

capabilities, no control over systems (autonomous)
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Integration/Virtualization using 
Mediators/Wrappers

Unlike integration using a data warehouse, integration 
architectures that use wrappers and mediators provide online 
access to operational systems.

Wrappers are software that converts global level queries into 
queries that the local database can handle.  A mediator is 
global-level software that receives global queries and divides 
them into subqueries for execution by wrappers.

Unlike data warehouses, these systems are not suitable for very 
large decision-support queries because the data must be 
dynamically extracted from operational systems.  They are 
useful for integrating operational systems without creating a 
single, unified database.

Query-Driven Dynamic Approach

Invoice
Database

Cust(id,name,addr,city,state,cty)
Order(oid,cid,odate)
OrdProd(oid,pid,amt,pr)
Prod(id,name,pr,desc)

Order
Database

Shipment
Database

Cust(id,name,addr,city,state,cty)
Invoice(invId,custId,shipId,iDate)
InvProd(invId,prodId,amt,pr)
Prod(id,name,pr,desc)

Cust(id,name,addr,city,state,cty)
Shipment(shipid,oid,cid,shipdate)
ShipProd(shipid,prodid,amt)
Prod(id,name,pr,desc, inv)

Wrapper Wrapper Wrapper

mediator

Features:
- view dynamically built
- data is extracted at 
query-time

- still typically read-only
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Database Integration/Virtualization vs. 
Distributed Database Systems

Integrated database systems are similar to distributed database 
systems as they consist of a set of databases distributed over 
the network.

The major difference is that all databases in an integrated 
database system are autonomous.
They have their own unique schema, database administrator, 

transaction protocols, structures, and unique function.

This autonomy introduces complexities in determining an 
integrated view of the data, processing local and global 
transactions and concurrency control, and handling database 
system and model heterogeneity.

Key point: Nodes in a distributed database system work together 
while those in a multidatabase (virtualized) system do not.
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Integration/Virtualization Challenges
Database integration is an active area of research.  Common 
problems include:
1) Schema matching and merging - How can we create a 

single, global schema for users to query?  Can this be done 
automatically?

2) Global Query Optimization - How do we optimize the 
execution of queries over independent data sources?

3) Global Transactions and Updates - Is it possible to 
efficiently support transactions over autonomous databases?
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Using a Global View
Once a global view has been constructed, it can be used to 
query the entire system:
A user writes a query on the global view.

The mediator converts the query into queries on the local 
sources (views).

The queries are executed on the local sources and the answers 
integrated at the mediator before presentation to the user.
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Schema Matching and 
Model Management

One challenging research problem is how do you automatically 
construct the global view?

Bernstein et al. have proposed model management and schema 
matching algorithms for this problem.

The schema matching problem takes as input two schemas and 
uses the names and types to determine matches between them.
A very challenging problem involving semantics, linguistics, and 

ontologies.
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Transaction Management
Transaction management is somewhat similar to distributed 
databases with the existence of local and global transactions.

However, global transactions and local transactions are 
managed differently:
Local transactions are executed by each local DBMS, outside of 

the global system control. (autonomy)

Global transactions are executed under global system control 
and appear as regular local transactions at each local database 
system.
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Transaction Management (2)
Respecting local autonomy requires that each LDBS cannot 
communicate directly to synchronize global transaction 
execution and the MDBS has no control over local transaction 
execution.

Thus, the global level mediation software must guarantee global
serializability since each LDBS only guarantees local 
serializability.
Local concurrency control scheme needed to ensure that 

DBMS’s schedule is serializable and must be able to guard 
against local deadlocks.

A schedule is globally serializable if there exists an ordering of 
committing global transactions such that all subtransactions of 
the global transactions are committed in the same order at all 
sites.
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Approaches to MultiDatabase 
Transaction Management

Transaction management in a multidatabase has proceeded in 3 
general directions:
Weakening autonomy of local databases

Enforcing serializability by using local conflicts

Relaxing serializability constraints by defining alternative notions 
of correctness

Still a great potential to make a contribution in this area!
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Global Serializability using Tickets
Architecture:
Each site Si has a special data item called a ticket.

Transaction Tj that runs at site Si writes the ticket at site Si.

Before a global transaction is allowed to commit, verify that there 
are no cycles based on tickets (optimistic protocol).

Pessimistic protocol allows global transaction manager to decide 
serial ordering of global transactions by controlling order in which 
tickets are accessed.

Ensures global transactions are serialized at each site, 
regardless of local concurrency control method, so long as the 
method guarantees local serializability.

Problems include hot spot at ticket and frequent aborts under 
heavy transaction loads (optimistic version).
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Global Serialization Graph
A global serialization graph (GSG) is used to determine if a 
global transaction can be committed using the tickets.  
The nodes of a GSG are “recently” committed transactions.

An edge Gi -> Gj exists if at least one of the subtransactions of Gi
preceded (had a smaller ticket that) one of Gj at any site.

Initially the GSG contains no cycles.

Add a node for the global transaction G to be committed and the 
appropriate edges.

If a cycle exists abort G otherwise commit G.
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My Research
My integration research built a JDBC 
driver called UnityJDBC that can query 
multiple databases at the same time.
 The system is based on the 

virtualization, mediator architecture.

Contains a query parser, optimizer, and 
execution engine.

Allows for cross-database joins 
(executed client-side).

Previous students have worked on 
schema matching, high-level query 
languages, and optimization 
techniques.

Still opportunities for further work.

Driver is used as basis for MongoDB 
JDBC driver that allows querying 
MongoDB with SQL.
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Parallel and distributed databases allow scalability by using 
more hardware for data storage and query processing.
Goal is for increased performance, reliability, and availability.

Data may be distributed, partitioned, and replicated.

Queries are distributed across nodes.

Specialized parallel algorithms and 2PC for transactions.

Database integration/virtualization combines data from 
multiple databases into a single virtual system.
The global view may be materialized as in data warehouses or 

virtual as in mediator/wrapper systems.

Integrated databases must handle issues in concurrency control 
and recovery, global view generation and maintenance, and 
query execution and optimization.

Summary
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Major Objectives
The "One Things":
Explain the two phase commit (2PC) protocol and how sites 

recover after failure.

Major Theme: 
Distributed/parallel databases allow for increased performance 

but complicate concurrency control and recovery.

Objectives:
Define replication and partitioning (horizontal and vertical).

List advantages/disadvantages of partitioning.

Explain how semijoins are used in distributed query processing.

Use the 4 metrics for parallel systems.

List some factors limiting speedup and scaleup.

Define and give an example of skew.
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Objectives (2)
Objectives:
Be able to explain some challenges in constructing an integrated 

database system.

Compare/contrast integrated databases and DDBS.

Discuss and draw the mediator architecture. 

Give an example of naming and structural conflicts.

Define the schema matching problem.

Define globally serializable.

Explain the ticket protocol.
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Databases Architectures
Not "One Size Fits All"

Relational databases are still the dominant database 
architecture and apply to many data management problems.
Over $20 billion annual market in 2014.

However, recent research and commercial systems have 
demonstrated that "one size fits all" is not true.  There are better 
architectures for classes of data management problems:
Transactional systems: In-memory architectures

Data warehousing: Column stores, parallel query processing

Big Data: Massive scale-out with fault tolerance

"NoSQL": simplified query languages/structures for high 
performance, consistency relaxation
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Variety of Database Architectures
A database system provides independence from data storage 
and processing challenges.  There are many different 
architectures/systems which are good for different use cases.
Single (centralized) server database – easy to deploy/use

Parallel database – for large query loads and data sizes

Distributed database – for large-scale deployments (shared-
nothing) with physical/geographical distribution

Virtual (multi-)database – for integrating existing, autonomous 
databases

Data warehouses – for decision support queries

NoSQL databases – MongoDB, Cassandra, etc. supporting 
different data models

There are also lots of ways for implementing these architectures 
with associated algorithms. Page 4
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Single (Centralized) Server Database
Single server centralized database systems such as 
MySQL, PostgreSQL, Oracle, and SQL Server have fairly 
standardized features and properties.

Ideal for: General-purpose databases (low cost/complexity)

Implementation details we studied:
Data storage system, buffer manager

Indexing algorithms and using indexes in practice

Query processing/optimization of SQL

Transactions, concurrency control, recovery

Many systems also support distribution/replication/partitioning.

Often, no parallelism within a query but can execute many 
queries simultaneously.

Using JDBC API including PreparedStatements
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Traditional
Database System Architecture

DBMS

Parser +
Compiler

Database API

Users

DB
Files

End-User
Programs

Direct (SQL)
Users

Database
Administrators

Query
Planner

Optimizer Execution
Engine

Buffer
Manager

File
Manager

Transaction
Manager

Recovery
System

Query
Processor

Result
Formatting

Storage
Manager

Operating
System Page 6
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Parallel Database Systems
A parallel database system consists of multiple processors 
and storage connected by a fast interconnection network.

Ideal for: processing time-consuming decision-support queries 
or providing high throughput for transaction processing within a 
single server/data center

Implementation details:
replication and partitioning used for availability/performance

parallel algorithms for relational operators

modified algorithms for concurrency control and transactions

query optimization must consider data location
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Parallel Database Systems
Greenplum

Greenplum is a shared-nothing, massively parallel (MPP) 
system where each node runs PostgreSQL.

Implementation:
Cost-based optimizer factors in cost of moving data across 

nodes.

Join and sort algorithms implemented in parallel across nodes 
and can move data between them.

Utilizes log shipping and segment-level replication for fail-over.

Supports SQL and Map-Reduce.

Developed by Pivotal software (formerly part of EMC).
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Distributed Database System
A distributed database system is a database system 
distributed across several network nodes that appears to the 
user as a single system.

Ideal for: high availability/reliability where large data set can be 
partitioned and queried across servers (often geographically)

Implementation details: 
Shared-nothing, massively parallel (MPP) architectures

Concurrency control must determine how to handle replication 
and partitioning (eager versus lazy consistency)

Scaling requires dividing workload across servers and 
intelligent data placement and query processing
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Master/Slave Replication
Master/slave replication is supported by all major relational 
database systems (MySQL, PostgreSQL, Oracle, etc.).

Implementation details:
1) How are updates sent to slaves?  Log shipping or real-time.

2) Slave nodes can except read requests but need to indicate 
when a transaction is read-only.

3) Slave nodes can take over from master if it fails.

Page 10

COSC 404 - Dr. Ramon Lawrence

Master/Master Replication
Master/master (multi-master) replication allows the data to 
be modified at more than one server. This requires coordination 
by the masters.

Techniques:
Any update must be "approved" by all (or a majority) of the 

master servers.  This approval may be done before commit 
(online) using a distributed algorithm (e.g. two phase commit).

Updates may be allowed on multiple servers simultaneously, 
but there must be some system or user-configured resolution 
mechanism to handle conflicts.
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Oracle
Oracle supports multiple servers with distributed features:
database links between databases for querying other databases 

as if the data was local to Oracle (virtualization)

supports remote/distributed transactions that involve one or more 
nodes (via database links and 2PC)

does not perform auto-fragmentation/location transparency but 
does support user configurable horizontal partitioning

Oracle supports both master/slave and multi-master replication 
using either synchronous or asynchronous propagation of 
changes between masters.
Different techniques for conflict resolution that user can control.

Parallel execution of single SQL statement (joins, scans, sorts)
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Oracle Real Application Clusters
Oracle Real Application Clusters (RAC) is a shared-storage 
architecture with multiple server nodes.

Provides support for clustering and high availability with multiple 
servers having concurrent access to the database and any 
server can process a transaction.
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SQL Server
Microsoft SQL Server supports different use cases within its 
product including warehousing and in-memory databases.
In-memory tables and query processing for transactional

Data warehousing extensions and algorithms for analytics

Replication using master-slave and multi-master via log shipping, 
publish/subscribe, and merge conflict resolution

Linked servers (ODBC) for heterogeneous query processing and 
virtualization

Ability to scale from single server to multiple servers with high 
availability

Most "reasonably-priced" of the commercial systems

Very active database research laboratory
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Database Architectures:
NoSQL vs Relational

"NoSQL" databases are useful for several problems not well-
suited for relational databases with some typical features:
Variable data: semi-structured, evolving, or has no schema

Massive data: terabytes or petabytes of data from new 
applications (web analysis, sensors, social graphs)

Parallelism: large data requires architectures to handle massive 
parallelism, scalability, and reliability

Simpler queries: may not need full SQL expressiveness

Relaxed consistency: more tolerant of errors, delays, or 
inconsistent results ("eventual consistency")

Easier/cheaper: less initial cost to get started

NoSQL is not really about SQL but instead developing data 
management architectures designed for scale.
NoSQL – "Not Only SQL"
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Data Warehouse Architectures
A data warehouse is a historical database that summarizes, 
integrates, and organizes data from one or more operational 
databases in a format that is more efficient for analytical queries.

Ideal for: Large-scale analytic and decision-support queries

Implementation details:
Special storage formats (compressed, column stores)

Special index structures (bitmap indexes)

Optimized for reads over writes

Large query rather than large number of queries/updates so 
parallelism within a query is critical

May be relational or multidimensional (cubes).
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In-Memory Databases
An in-memory database stores its working set of data in 
memory for improved response time.

Ideal for: high-volume, low-latency transactional systems

Implementation details:
May be single or multiple server

Data must be in memory.  Persistent store used only in failure.  
Specialized memory queries (often have user pre-declare 
queries/transactions) – VoltDB, SQL Server, SAP HANA

Concurrency control and recovery system optimized for high 
throughput and unlikely failures
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Batch Systems
Map-Reduce

Batch systems like Map-Reduce designed for processing 
large-scale queries where the data may not be well-structured 
or pre-processed into a database engine.

Implementation Details:
Data often has limited structure (flat files, log files, CSV).
Massive amounts of data that may not be worth loading into a database.

Queries may take a LONG time so query processor must be 
resistant to failures with the ability to restart parts of the query 
that failed.

Many database vendors have ability to integrate with Hadoop 
File System and perform Map-Reduce queries.
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Cloud Databases
Cloud databases are databases hosted by a service provider 
that allow for easy setup, administration and scaling.
Database as a service – databases hosted by provider, provide 

monitoring, backup, fail-over, high-availability, and ability to 
scale.

Examples: Google BigTable, Amazon RDS, DynamoDB, 
Redshift

Ideal for: Quick start without a server, minimal administration, 
scaling without expertise
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Multi-Tenancy
Multi-tenancy is the ability to handle multiple customers 
(tenants) on the same database infrastructure.  Approaches:
Separate server – each tenant has there own physical 

hardware, OS, DBMS

Shared server, separate DBMS – shared hardware but have 
multiple different DBMS running on hardware (maybe VMs)

Shared database server, separate databases – shared 
DBMS but different databases

Shared database, separate schema – same database but 
multiple schemas (user collection of objects)

Shared database, shared schema – customer data is 
differentiated by tenant id in all tables designed
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Multi-Tenancy Issues
Multi-tenancy issues to consider:
Hardware and software costs

Efficient use of hardware resources

Isolation and security

Query performance

Ease of backup
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Bottom Line
Bottom line: No one size fits all.

Select a database system based on your application and use 
case.

Understanding how database systems work and their 
architectures will help you make informed decisions on 
database systems to use and how to deploy them properly.
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Survey Question:
Lecture Value

Question: On a scale of 1 to 5 with 5 being the highest, how 
valuable/useful was the lecture time?

A) 1

B) 2
C) 3

D) 4
E) 5
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Survey Question:
Lab Value

Question: On a scale of 1 to 5 with 5 being the highest, how 
valuable/useful was the lab time and assignments?

A) 1

B) 2
C) 3

D) 4
E) 5
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Survey Question:
Workload

Question: On a scale of 1 to 5 with 1 being very low and 5 
being very high, how was the overall workload compared to 
other courses and your expectations?

A) 1

B) 2

C) 3

D) 4
E) 5
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Survey Question:
Clicker Value

Question: On a scale of 1 to 5 with 5 being the highest, how 
valuable/useful were the clicker questions used in-class?

A) 1

B) 2
C) 3

D) 4
E) 5
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Summary of Course
Our course goals were to understand database systems to:

1) Be a better, "expert" user of database systems.

2) Be able to use and compare different database systems.

3) Adapt the techniques when developing your own software.

We opened the database system "black box".
Inside was storage, indexing, query processing/optimization, 

transactions, concurrency, recovery, distribution, lots of stuff!

You gained lots of industrial experience using a variety of 
databases and became a better, more experienced developer.
MySQL, PostgreSQL, Microsoft SQL Server, MongoDB, JUnit, 

VoltDB, Java, JDBC, javacc, JSON, Map-Reduce, SQL

Thank you for a great course!

Good luck on the exam!


