
1

COSC 404
Database System Implementation

Course Introduction

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 404 - Dr. Ramon Lawrence

The Essence of the Course
If you walk out of this course with nothing else you should:

Understand database algorithms and techniques in order to:

1) Be a better, "expert" user of database systems.

2) Be able to use and compare different database systems.

3) Adapt the techniques when developing your own software.

This course opens the database system "black box".

Page 3

COSC 404 - Dr. Ramon Lawrence

My Course Goals
My goals in teaching this course:
Summarize and present the information in a simple, concise, and

effective way for learning.

Strive for all students to understand the material and pass the
course.

Be available for questions during class time, office hours, and at
other times as needed.

Provide a background on the fundamental concepts of database
systems including transactions and concurrency.

Create opportunities to learn concepts by experimenting and
programming with different database systems.

Encourage students to continue studying databases including
further projects and graduate level research!

Page 4

COSC 404 - Dr. Ramon Lawrence

Course Objectives
1) To learn how to manipulate data in memory and secondary
storage and use index structures for improved performance

2) To understand the steps of query processing including
parsing, translation, optimization, and execution

3) To understand the principles of transactions, concurrency,
recovery, and distribution as they apply to databases

4) To apply fundamental knowledge of database techniques to
be better users with the ability to use different database
systems and compare their properties

Page 5

COSC 404 - Dr. Ramon Lawrence

Your Course Goals
Your goals in taking this course:
To sufficiently learn the material to pass the course.

To learn algorithms and techniques that constitute the
foundations of database theory and implementation.

To understand how a database system works in order to better
understand how to use them properly.

To realize that database technology is present in many areas
including operating systems, networks, and programming.

To form a background knowledge on databases, and determine
if you want to continue with database related research.

To develop experience in using a variety of database systems.

Page 6

COSC 404 - Dr. Ramon Lawrence

Academic Dishonesty
Cheating in all its forms is strictly prohibited and will be taken
very seriously by the instructor.

A guideline to what constitutes cheating:
Assignments
Working in groups to solve questions and/or comparing answers to

questions once they have been solved.

Discussing HOW to solve a particular question instead of WHAT the
question involves relative to the notes.

Copying code, even small code fragments, from other students.

You may discuss general ideas and syntax, but never share code!

Exams
All exams are closed book, so no course materials should be present.

Academic dishonesty may result in a "F" for the assignment or
course and all instances are recorded in the Dean's office.

2

Page 7

COSC 404 - Dr. Ramon Lawrence

Assignments
There will be weekly written and programming assignments.

Written Assignments (15% of overall grade):
Practice questions similar to midterm/final exams.

Will have some time in class but mostly as homework.

Programming Assignments (20% of overall grade):
Experience applying concepts to a variety of database systems.

Will be mostly done in lab but may take more than 2 hours.

Both written and programming assignments can be done
individually or in pairs.

The assignments are critical to learning the material and
are designed to prepare you for the exams!

Page 8

COSC 404 - Dr. Ramon Lawrence

The In-Class Clicker Questions
To encourage attendance and effort, 5% of your overall grade
is allocated to answering in-class questions using a clicker.
The clicker can be purchased at the bookstore and sold back to

the bookstore like a used textbook.

The clicker is personalized to you with your student number.

At different times during the lectures, questions reviewing
material will be asked. Reponses are given using the clickers.

There will be at least 60 questions throughout the semester.
Each question is worth 1 mark, and you need at least 50 right
answers to get the full 5%.
That is, if you answer 40 questions right, you get 40/50 or 80%.

No make-ups for forgetting clicker or missing class.

Page 9

COSC 404 - Dr. Ramon Lawrence

Database Implementation Project
For graduate students only:

20% of your mark is for a major database development project.

Goal of the project is to experiment with new database systems
or experiment with novel techniques expanding on class
material.

This is not implementing a web site with a relational database
like COSC 304.

Page 10

COSC 404 - Dr. Ramon Lawrence

How to Pass This Course
The most important things to do to pass this course:
Attend class
Read notes before class as preparation.

Do the written assignments
Important practice to learn the material for the exams!

Spend time doing the programming assignments
Programming with databases is a valuable, employable skill.

To get an “A” in this course do all the above plus:
Do additional practice questions.
Practice questions are especially helpful to re-enforce concepts.

Spend additional time programming
Programming assignments may take longer than a lab time. Extra time

invested will payoff significantly in grades and future jobs.

Page 11

COSC 404 - Dr. Ramon Lawrence

Systems and Tools
Connect is used for a discussion board, for posting marks, and
for anonymous feedback.
Please use the discussion board and feedback survey.

All software is available in the laboratory at SCI 234.

Access to database systems will be provided as needed.

These systems will have separate user ids and passwords.

Page 12

COSC 404 - Dr. Ramon Lawrence

COSC 304 vs. COSC 404

COSC 304
Introduction to

Database Systems

COSC 404
Database System
Implementation

Database Design and Programming
• Data models - ER, relational, XML, JSON
• Query languages - SQL, relational algebra
• Design project
• Database skills and techniques as a user
• How to use a DBMS ; how to build a database

Database System Implementation
• Storage and index structures
• Transaction management, concurrency control
• Query processing, recovery and reliability
• How to build a DBMS
• Non-relational systems and architectures
• How to select a DBMS

3

Page 13

COSC 404 - Dr. Ramon Lawrence

Why are you here?
Reasons Why People Take This Course

A) I need an upper-year Computer Science elective, and this
course was all there was…

B) I liked COSC 304 (Intro. Databases) and thought this course
may be okay too.

C) I am curious about what is in the database "black box".

D) I want to be a better developer and database user to improve
my skills for future jobs.

E) I am interested in database research and advanced studies.

Page 14

COSC 404 - Dr. Ramon Lawrence

What to Learn
What Topic are You Most Interested In?

A) Accessing data on hard drives and solid state drives

B) Learning how SQL queries get processed inside a database
system

C) Learning how a database handles multiple users and
recovers from failures

D) Experimenting with different databases like PostgreSQL,
MongoDB, and MySQL

E) None of the above

Page 15

COSC 404 - Dr. Ramon Lawrence

What do you expect?
What Grade are You Expecting to Get?

A) A

B) B

C) C

D) D

E) F

Page 16

COSC 404 - Dr. Ramon Lawrence

My Expectations
My goal is for you to learn the material and walk out of this
course confident in your abilities:
To understand how a DBMS is constructed

To make intelligent decisions on data allocation, indexing, and
physical designs

To describe how a DBMS supports concurrent users,
transactions, and recovers from failure

I have high standards on the amount and difficulty of material
that we cover. I expect a strong, continual effort in keeping up
with readings and doing assignments.

The course will be very straightforward – If you do the work,
you will do well.

Your mark is 60% perspiration and 40% inspiration.

Page 17

COSC 404 - Dr. Ramon Lawrence

Database System Implementation
Motivation

Key requirements of a database system:
1) Data Storage and Persistence:
How is data organized? Where is it located?

2) Query Processing:
How does the user query the data? How efficient is it?

3) Transactions, Consistency, and Reliability:
What happens if the computer crashes while the user is updating data?

4) Concurrency:
Can multiple users access the data at the same time? What happens if

multiple users update the same data item?

5) Security:
How do you verify the user has access to the data?

6) Scalability:
How do you handle Big Data and lots of users? Page 18

COSC 404 - Dr. Ramon Lawrence

Traditional
Database System Architecture

DBMS

Parser +
Compiler

Database API

Users

DB
Files

End-User
Programs

Direct (SQL)
Users

Database
Administrators

Query
Planner

Optimizer Execution
Engine

Buffer
Manager

File
Manager

Transaction
Manager

Recovery
System

Query
Processor

Result
Formatting

Storage
Manager

Operating
System

4

Page 19

COSC 404 - Dr. Ramon Lawrence

Databases Architectures
Not "One Size Fits All"

Relational databases (RDBMS) are still the dominant database
architecture and apply to many data management problems.
Over $20 billion annual market in 2015.

However, recent research and commercial systems have
demonstrated that "one size fits all" is not true. There are better
architectures for classes of data management problems:
Transactional systems: In-memory architectures

Data warehousing: Column stores, parallel query processing

Big Data: Massive scale-out with fault tolerance

"NoSQL": simplified query languages/structures for high
performance, consistency relaxation

Page 20

COSC 404 - Dr. Ramon Lawrence

COSC 304 Review Question
Question: What was the acronym used to describe
transactional processing systems?

A) TP

B) OLAP

C) OLTP

D) DBMS

Page 21

COSC 404 - Dr. Ramon Lawrence

Research Question
Question: What company is the largest database software
vendor by sales volume?

A) Microsoft

B) Oracle

C) IBM

D) Google

Page 22

COSC 404 - Dr. Ramon Lawrence

Database Architectures:
NoSQL vs Relational

"NoSQL" databases are useful for several problems not well-
suited for relational databases with some typical features:
Variable data: semi-structured, evolving, or has no schema

Massive data: terabytes or petabytes of data from new
applications (web analysis, sensors, social graphs)

Parallelism: large data requires architectures to handle massive
parallelism, scalability, and reliability

Simpler queries: may not need full SQL expressiveness

Relaxed consistency: more tolerant of errors, delays, or
inconsistent results ("eventual consistency")

Easier/cheaper: less initial cost to get started

NoSQL is not really about SQL but instead developing data
management architectures designed for scale.
NoSQL – "Not Only SQL"

Page 23

COSC 404 - Dr. Ramon Lawrence

Example NoSQL Systems
MapReduce – useful for large scale, fault-tolerant analysis
 Hadoop, Pig, Hive

Key-value stores – ideal for retrieving specific items from a
large set of data (architecture like a distributed hash table)
high-scalability, availability, and performance but weaker

consistency and simpler query interfaces

Cassandra, Amazon Dynamo, Google BigTable, HBase

Document stores – similar to key-value stores except value is
a document in some form (e.g. JSON)
MongoDB, CouchDB

Graph databases – represent data as graphs
Neo4J

Page 24

COSC 404 - Dr. Ramon Lawrence

Survey Question
Question: Have you used any database system besides
MySQL and Microsoft SQL Server used in COSC 304?

A) Oracle

B) MongoDB

C) PostgreSQL

D) More than two different databases used

E) No other databases used

5

Page 25

COSC 404 - Dr. Ramon Lawrence

Why this Course is Important
DBMS technology has applications to any system that must
store data persistently and has multiple users.
Even if you will not be building your own DBMS, some of your

programs may need to perform similar functions.

The core theories expand on topics covered in operating
systems related to concurrency and transactions.

A DBMS is one of the most sophisticated software systems.
Understanding how it works internally helps you be a better user

of the system.

Understanding of database internals is valuable if you will
perform database administration duties or be responsible for
deciding on a database architecture for an application.

Database technology is a key component of our IT infrastructure
that will continue to require innovation in the future.

1

COSC 404
Database System Implementation

Data Storage and Organization

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 404 - Dr. Ramon Lawrence

Storage and Organization
Overview

The first task in building a database system is determining how
to represent and store the data.

Since a database is an application that is running on an
operating system, the database must use the file system
provided by the operating system to store its information.
However, many database systems implement their own file

security and organization on top of the operating system file
structure.

We will study techniques for storing and representing data.

Page 3

COSC 404 - Dr. Ramon Lawrence

Representing Data on Devices
Physical storage of data is dependent on the computer system
and its associated devices on which the data is stored.

How we represent and manipulate the data is affected by the
physical media and its properties.
sequential versus random access

read and write costs

temporary versus permanent memory

Page 4

COSC 404 - Dr. Ramon Lawrence

Review:
Memory Definitions

Temporary memory retains data only while the power is on.
Also referred to as volatile storage.

e.g. dynamic random-access memory (DRAM) (main memory)

Permanent memory stores data even after the power is off.
Also referred to as non-volatile storage.

e.g. flash memory, hard drive, SSD, DVD, tape drives

Most permanent memory is secondary storage because the
memory is stored in a separate device such as a hard drive.

Cache is faster memory used to store a subset of a larger,
slower memory for performance.
processor cache (Level 1 & 2), disk cache, network cache

Page 5

COSC 404 - Dr. Ramon Lawrence

Research Question
In-Memory Database

Question: Does an in-memory database need a secondary
storage device for persistence?

A) Yes

B) No

Page 6

COSC 404 - Dr. Ramon Lawrence

Review:
Sequential vs. Random Access

RAM, hard drives, and flash memory allow random access.
Random access allows retrieval of any data location in any
order.

Tape drives allow sequential access. Sequential access
requires visiting all previous locations in sequential order to
retrieve a given location.
That is, you cannot skip ahead, but must go through the tape in

order until you reach the desired location.

2

Page 7

COSC 404 - Dr. Ramon Lawrence

Review:
Memory Sizes

Memory size is a measure of memory storage capacity.
Memory size is measured in bytes.
Each byte contains 8 bits - a bit is either a 0 or a 1.

A byte can store one character of text.

Large memory sizes are measured in:
kilobytes (KBs) = 103 = 1,000 bytes

kibibyte (KiB) = 210 = 1,024 bytes

megabytes (MBs) = 106 = 1,000,000 bytes

mebibyte (MiBs) = 220 = 1,048,576 bytes

gigabytes (GBs) = 109 = 1,000,000,000 bytes

gibibytes (GiBs) = 230 = 1,073,741,824 bytes

terabytes (TBs) = 1012 = 1,000,000,000,000 bytes

tebibytes (TiBs) = 240 = 1,099,511,627,776 bytes
Page 8

COSC 404 - Dr. Ramon Lawrence

Transfer Size, Latency, and Bandwidth
Transfer size is the unit of memory that can be individually
accessed, read and written.
DRAM, EEPROM – byte addressable

Hard drive, flash – block addressable (must read/write blocks)

Latency is the time it takes for information to be delivered after
the initial request is made.

Bandwidth is the rate at which information can be delivered.
Raw device bandwidth is the maximum sustained transfer rate

of the device to the interface controller.

Interface bandwidth is the maximum sustained transfer rate of
the interface device onto the system bus.

Page 9

COSC 404 - Dr. Ramon Lawrence

Memory Devices
Dynamic Random Access Memory

Dynamic random access memory (DRAM) is general
purpose, volatile memory currently used in computers.
DRAM uses only one transistor and one capacitor per bit.

DRAM needs periodic refreshing of the capacitor.

DRAM properties:
low cost, high capacity

volatile

byte addressable

latency ~ 10 ns

bandwidth = 5 to 20 GB/s

Page 10

COSC 404 - Dr. Ramon Lawrence

Memory Devices
Processor Cache

Processor cache is faster memory storing recently used data
that reduces the average memory access time.
Cache is organized into lines/blocks of size from 64-512 bytes.

Various levels of cache with different performance.

Cache properties:
higher cost, very low capacity

cache operation is hardware controlled

byte addressable

latency – a few clock cycles

bandwidth – very high, limited by processor bus

Page 11

COSC 404 - Dr. Ramon Lawrence

Memory Devices
Flash Memory

Flash memory is used in many portable devices (cell phones,
music/video players) and also solid-state drives.

NAND Flash Memory properties:
non-volatile

low cost, high capacity

block addressable

asymmetric read/write performance: reads are fast, writes
(which involve an erase) are slow

erase limit of 1,000,000 cycles

bandwidth (per chip): 40 MB/s (read), 20 MB/s (write)

Page 12

COSC 404 - Dr. Ramon Lawrence

Memory Devices
EEPROM

EEPROM (Electrically Erasable Programmable Read-Only
Memory) is non-volatile and stores small amounts of data.
Often available on small microprocessors.

EEPROM properties:
non-volatile

high cost, low capacity

byte addressable

erase limit of 1,000,000 cycles

latency: 250 ns

3

Page 13

COSC 404 - Dr. Ramon Lawrence

Memory Devices
Magnetic Tapes

Tape storage is non-volatile and is used primarily for backup
and archiving data.
Tapes are sequential access devices, so they are much slower

than disks.

Since most databases can be stored in hard drives and RAID
systems that support direct access, tape drives are now
relegated to secondary roles as backup devices.
Database systems no longer worry about optimizing queries for

data stored on tapes.

"Tape is Dead. Disk is Tape. Flash is Disk. RAM Locality is
King." – Jim Gray (2006), Microsoft/IBM, Turing Award Winner 1998 - For
seminal contributions to database and transaction processing research and technical leadership
in system implementation.

Page 14

COSC 404 - Dr. Ramon Lawrence

Memory Devices
Solid State Drives

A solid state drive uses flash memory for storage.

Solid state drives have many benefits over hard drives:
Increased performance (especially random reads)

Better power utilization

Higher reliability (no moving parts)

The performance of the solid state drive depends as much on
the drive organization/controller as the underlying flash chips.
Write performance is an issue and there is a large erase cost.

Solid state drives are non-volatile and block addressable like
hard drives. The major difference is random reads are much
faster (no seek time). This has a dramatic affect on the
database algorithms used, and it is an active research topic.

Page 15

COSC 404 - Dr. Ramon Lawrence

Memory Devices
Hard Drives

Data is stored on a hard drive on the
surface of platters. Each platter is
divided into circular tracks, and each
track is divided into sectors. A sector is
the smallest unit of data that can be read
or written. A cylinder i consists of the i-
th track of all the platters (surfaces).

The read-write head is positioned close
to the platter surface where it
reads/writes magnetically encoded data.

To read a sector, the head is moved
over the correct track by the arm
assembly. Since the platter spins
continuously, the head reads the data
when the sector rotates under the head.

Head-disk assemblies allow multiple
disk platters on a single spindle with
multiple heads (one per platter) mounted
on a common arm. Page 16

COSC 404 - Dr. Ramon Lawrence

Disk Controller and Interface
The disk controller interfaces between the computer system
and the disk drive hardware.
Accepts high-level commands to read or write a sector.

Initiates actions such as moving the disk arm to the right track
and actually reading or writing the data.

Uses a data buffer and will re-order requests for increased
performance.

The disk controller has the interface to the computer.
E.g. 3.0 Gbit/s SATA can transfer from disk buffer to computer

at 300 MB/s. Note that 7200 RPM disk has a sustained disk-to-
buffer transfer rate of only about 70 MB/sec.

Page 17

COSC 404 - Dr. Ramon Lawrence

Device Performance Calculations
We will use simple models of devices to help understand the
performance benefits and trade-offs.

These models are simplistic yet provide metrics to help
determine when to use particular devices and their
performance.

Page 18

COSC 404 - Dr. Ramon Lawrence

Memory Performance Calculations
Memory model will consider only transfer rate (determined from
bus and memory speed). We will assume sequential and
random transfer rates are the same.

Limitations:
There is an advantage to sequential access compared to

completely random access, especially with caching. Cache
locality has a major impact as can avoid accessing memory.

Memory alignment (4 byte/8 byte) matters.

Memory and bus is shared by multiple processes.

4

Page 19

COSC 404 - Dr. Ramon Lawrence

Memory Performance Calculations
Example

A system has 8 GB DDR4 memory with 20 GB/sec. bandwidth.

Question 1: How long does it take to transfer 1 contiguous
block of 100 MB memory?

transfer time = 100 MB / 20,000 MB/sec. = 0.005 sec = 5 ms

Question 2: How long does it take to transfer 1000 contiguous
blocks of 100 KB memory?

transfer time = 1000 * (100 KB / 20,000,000 KB/sec.)

= 0.005 sec = 5 ms

Page 20

COSC 404 - Dr. Ramon Lawrence

Disk Performance Measures
Disk capacity is the size of the hard drive.
= #cylinders * #tracks/cylinder * #sectors/track * #bytes/sector

Disk access time is the time required to transfer data.
= seek time + rotational latency + transfer time

Seek time – time to reposition the arm over the correct track.
Average is 1/3rd the worst. (depends on arm position and target track)

Rotational latency – time for first sector to appear under head.
Average latency is 1/2 of worst case. (one half rotation of disk)

 Transfer time – time to transfer data to memory.

Data-transfer rate – the rate at which data can be retrieved
from disk which is directly related to the rotational speed.

Mean time to failure (MTTF) – the average time the disk is
expected to run continuously without any failure.

Page 21

COSC 404 - Dr. Ramon Lawrence

Disk Performance Example
Given a hard drive with 10,000 cylinders, 10 tracks/cylinder, 60
sectors/track, and 500 bytes/sector, calculate its capacity.

Answer:
capacity = 10000 * 10 * 60 * 500 = 3,000,000,000 bytes

= 3,000,000,000 bytes / 1,048,576 bytes/MiB

= 2,861 MiB = 2.8 GiB

= 3,000 MB = 3 GB

Page 22

COSC 404 - Dr. Ramon Lawrence

Disk Performance Example (2)
If the hard drive spins at 7,200 rpm and has an average seek
time of 10 ms, how long does a 2,000 byte transfer take?

Answer:
transfer size = 2,000 bytes / 500 bytes/sector = 4 sectors

revolution time = 1 / (7200 rpm / 60 rpm/sec) = 8.33 ms

latency = 1/2 revolution time on average = 4.17 ms

transfer time = revolution time * #sectorsTransfered / #sectors/track

= 8.33 ms * 4 / 60 = 0.56 ms

total transfer time = seek time + latency + transfer time

= 10 ms + 4.17 ms + 0.56 ms = 14.73 ms

Page 23

COSC 404 - Dr. Ramon Lawrence

Sequential versus Random
Disk Performance Example

A hard drive spins at 7,200 rpm, has an average seek time of
10 ms, and a track-to-track seek time of 2 ms. How long does
a 1 MiB transfer take under the following conditions?
Assume 512 bytes/sector, 64 sectors/track, and 1 track/cyl.

1) The data is stored randomly on the disk.
transfer size = 1,048,576 bytes / 512 bytes/sector = 2048 sectors

revolution time = 1 / (7200 rpm / 60 rpm/sec) = 8.33 ms

latency = 1/2 revolution time on average = 4.17 ms

transfer time = revolution time / #sectors/track

= 8.33 ms / 64 = 0.13 ms per sector

total transfer time = (seek time + latency + transfer time) * #sectors

= (10 ms + 4.17 ms + 0.13 ms)*2048

= 29,286.4 ms = 29.3 seconds Page 24

COSC 404 - Dr. Ramon Lawrence

Sequential versus Random
Disk Performance Example (2)

2) The data is stored sequentially on the disk .
transfer size = 1,048,576 bytes / 512 bytes/sector = 2048 sectors

= 2048 sectors / 64 sectors/track = 32 tracks

latency = 1/2 revolution time on average = 4.17 ms

transfer time = revolution time / #sectors/track

= 8.33 ms / 64 = 0.13 ms per sector

total transfer time = seek time + latency + transfer time * #sectors +

track-to-track seek time * (#tracks-1)

= 10 ms + 4.17 ms + 0.13 ms*2048 + 2 ms * 31

= 342.41 ms = 0.34 seconds

3) What would be the optimal configuration of data if the hard
drive had 4 heads? What is the time in this case?

5

Page 25

COSC 404 - Dr. Ramon Lawrence

Disk Performance Practice Questions
A Seagate Cheetah 15K 3.5" hard drive has 8 heads, 50,000
cylinders, 3,000 sectors/track, and 512 bytes/sector. Its average
seek time is 3.4 ms with a speed of 15,000 rpm, and a reported
data transfer rate of 600 MB/sec on a 6-Gb/S SAS interface.

1) What is the capacity of the drive?

2) What is the latency of the drive?

3) What is the maximum sustained transfer rate?

4) What is the total access time to transfer 400KiB?

Page 26

COSC 404 - Dr. Ramon Lawrence

Disk Performance Practice Questions
Older Drive

The Maxtor DiamondMax 80 has 34,741 cylinders, 4 platters,
each with 2 heads, 576 sectors/track, and 512 bytes/sector. Its
average seek time is 9 ms with a speed of 5,400 rpm, and a
reported maximum interface data transfer rate of 100 MB/sec.

1) What is the capacity of the Maxtor Drive?

2) What is the latency of the drive?

3) What is the actual maximum sustained transfer rate?

4) What is the total access time to transfer 4KB?

Page 27

COSC 404 - Dr. Ramon Lawrence

Hard Drive Model Limitations and Notes
1) Disk sizes are quoted after formatting.
Formatting is done by the OS to divide the disk into blocks.
A sector is a physical unit of the disk while a block is a logical OS unit.

2) Blocks are non-continuous. Interblock gaps store control
information and are used to find the correct block on a track.
Since these gaps do not contain user data, the actual transfer rate is less

than the theoretical transfer rate based on the rotation of the disk.
Manufactures quote bulk transfer rates (BTR) that measure the

performance of reading multiple adjacent blocks when taking gaps into
account. BTR = B/(B+G) * TR (B-block size, G-gap size)

3) Although the bit density on the media is relatively consistent,
the number of sectors per track is not.
More sectors/track for tracks near outer edge of platter.
Faster transfer speed when reading outer tracks.

4) Buffering and read-ahead at controller and re-ordering
requests (elevator algorithm) used to increase performance.

Page 28

COSC 404 - Dr. Ramon Lawrence

SSD Performance Calculations
SSD model will consider:
IOPS – Input/Output Operations per Second (of given data size)

latency

bandwidth or transfer rate

Different performance for read and write operations.

Limitations:
Write bandwidth is not constant. It depends on request ordering

and volume, space left in hard drive, and SSD controller
implementation.

Page 29

COSC 404 - Dr. Ramon Lawrence

SSD Performance Calculations
Examples

Question 1: A SSD has read bandwidth of 500 MB/sec. How
long does it take to read 100 MB of data?

read time = 100 MB / 500 MB/sec. = 0.2 sec

Question 2: The SSD IOPS for 4 KB write requests is 25,000.
What is its effective write bandwidth?

write bandwidth = 25,000 IOPS * 4 KB requests

= 100,000 KB/sec. = 100 MB/sec.

Page 30

COSC 404 - Dr. Ramon Lawrence

Device Performance
Question: What device would be the fastest to read 1 MB of
data?

A) DRAM with bandwidth of 20 MB/sec.

B) SSD with read 400 IOPS for 100 KB data chunks.

C) 7200 rpm hard drive with seek time of 8 ms. Assume all
data is on one track.

6

Page 31

COSC 404 - Dr. Ramon Lawrence

Summary of Memory Devices

Memory

Type

Volatile? Capacity Latency Bandwidth Transfer

Size

Notes

DRAM yes High Small High Byte Best price/speed.

Cache Yes Low Lowest Very high Byte Large reduction in
memory latency.

NAND

Flash
No Very

high Small High Block Asymmetric
read/write costs.

EEPROM No Very low Very
small High Byte High cost per bit.

On small CPUs.
Tape

Drive
No Very

high
Very
high Medium Block Sequential access:

Even lost backup?

Solid
State
Drive

No Very
high High Medium Block Great random I/O.

Issue in write costs.

Hard
drive No Very

high High Medium block
Beats SSDs by

cost/bit but not by
performance/cost.

Page 32

COSC 404 - Dr. Ramon Lawrence

RAID
Redundant Arrays of Independent Disks is a disk
organization technique that utilizes a large number of
inexpensive, mass-market disks to provide increased reliability,
performance, and storage.
Originally, the "I" stood for inexpensive as RAID systems were a

cost-effective alternative to large, expensive disks. However,
now performance and reliability are the two major factors.

Page 33

COSC 404 - Dr. Ramon Lawrence

Improvement of Reliability via
Redundancy

RAID systems improve reliability by introducing redundancy to
the system as they store extra information that can be used to
rebuild information lost due to a disk failure.
Redundancy occurs by duplicating data across multiple disks.

Mirroring or shadowing duplicates an entire disk on another.
Every write is performed on both disks, and if either disk fails,
the other contains all the data.

By introducing more disks to the system the chance that some
disk out of a set of N disks will fail is much higher than the
chance that a specific single disk will fail.
E.g., A system with 100 disks, each with MTTF of 100,000

hours (approx. 11 years), will have a system MTTF of 1000
hours (approx. 41 days).

Page 34

COSC 404 - Dr. Ramon Lawrence

Review: Parity
Parity is used for error checking. A parity bit is an extra bit
added to the data. A single parity bit can detect one bit error.

In odd parity the number of 1 bits in the data plus the parity bit
must be odd. In even parity, the number of 1 bits is even.

Example: What is the parity bit with even parity and the bit
string: 01010010?
Answer: The parity bit must be a 1, so that the # of 1's is even.

Page 35

COSC 404 - Dr. Ramon Lawrence

Parity Question
Question: What is the parity bit with odd parity and the bit
string: 11111110?

A) 0

B) 1

C) 2

Page 36

COSC 404 - Dr. Ramon Lawrence

Improvement in Performance via
Parallelism

The other advantage of RAID systems is increased parallelism.
With multiple disks, two types of parallelism are possible:
1. Load balance multiple small accesses to increase throughput.

2. Parallelize large accesses to reduce response time.

Maximum transfer rates can be increased by allocating
(striping) data across multiple disks then retrieving the data in
parallel from the disks.
Bit-level striping – split the bits of each byte across the disks
In an array of eight disks, write bit i of each byte to disk i.

Each access can read data at eight times the rate of a single disk.

But seek/access time worse than for a single disk.

Block-level striping – with n disks, block i of a file goes to disk
(i mod n) + 1

7

Page 37

COSC 404 - Dr. Ramon Lawrence

RAID Levels
There are different RAID organizations, or RAID levels, that
have differing cost, performance and reliability characteristics:
Level 0: Striping at the block level (non-redundant).

Level 1: Mirrored disks (redundancy)

Level 2: Memory-Style Error-Correcting-Codes with bit striping.

Level 3: Bit-Interleaved Parity - a single parity bit used for error
correction. Subsumes Level 2 (same benefits at a lower cost).

Level 4: Block-Interleaved Parity - uses block-level striping,
and keeps all parity blocks on a single disk (for all other disks).

Level 5: Block-Interleaved Distributed Parity - partitions data
and parity among all N + 1 disks, rather than storing data in N
disks and parity in 1 disk. Subsumes Level 4.

Level 6: P+Q Redundancy scheme - similar to Level 5, but
stores extra info to guard against multiple disk failures. Page 38

COSC 404 - Dr. Ramon Lawrence

RAID Levels Discussion
Level 0 is used for high-performance
where data loss is not critical (parallelism).

Level 1 is for applications that require
redundancy (protection from disk failures)
with minimum cost.
 Level 1 requires at least two disks.

Level 5 is a common because it offers both
reliability and increased performance.
With 3 disks, the parity block for nth block

is stored on disk (n mod 3) + 1. Do not
have single disk bottleneck like Level 4.

Level 6 offers extra redundancy compared
to Level 5 and is used to deal with multiple
drive failures.

Page 39

COSC 404 - Dr. Ramon Lawrence

RAID Question
Question: What RAID level offers the high performance but no
redundancy?

A) RAID 0

B) RAID 1

C) RAID 5

D) RAID 6

Page 40

COSC 404 - Dr. Ramon Lawrence

RAID Practice Question
Question: The capacity of a hard drive is 800 GB. Determine
the capacity of the following RAID configurations:

i) 8 drives in RAID 0 configuration

ii) 8 drives in RAID 1 configuration

iii) 8 drives in RAID 5 configuration

A) i) 6400 GB ii) 3200 GB iii) 5600 GB

B) i) 3200 GB ii) 6400 GB iii) 5600 GB

C) i) 6400 GB ii) 3200 GB iii) 6400 GB

D) i) 3200 GB ii) 3200 GB iii) 6400 GB

Page 41

COSC 404 - Dr. Ramon Lawrence

RAID Summary
Level Performance Protection Capacity (for N disks)

0
Best

(parallel read/write)

Poor

(lose all on 1 failure)
N

1
Good

(write slower as 2x)

Good

(have drive mirror)
N / 2

5
Good

(must write parity
block)

Good

(one drive can fail)
N - 1

6
Good

(must write multiple
parity blocks)

Better

(can have as many
drives fail as

dedicated to parity)

N – X

(where X is # of parity
drives such as 2)

Page 42

COSC 404 - Dr. Ramon Lawrence

File Interfaces
Besides the physical characteristics of the media and device,
how the data is allocated on the media affects performance
(file organization).

The physical device is controlled by the operating system. The
operating system provides one or more interfaces to accessing
the device.

8

Page 43

COSC 404 - Dr. Ramon Lawrence

Block-Level Interface
A block-level interface allows a program to read and write a
chunk of memory called a block (or page) from the device.

The page size is determined by the operating system. A page
may be a multiple of the physical device's block or sector size.

The OS maintains a mapping from logical page numbers
(starting at 0) to physical sectors/blocks on the device.

Page 44

COSC 404 - Dr. Ramon Lawrence

Block-Level Interface Operations
The block level operations at the OS level include:
read(n,p) – read block n on disk into memory page p

write(n,p) – write memory page p to block n on disk

allocate(k,n) – allocate space for k contiguous blocks on device
as close to block n as possible and return first block

free(k,n) – marks k contiguous blocks starting at n as unused

The OS must maintain information on which blocks on the
device are used and which are free.

Page 45

COSC 404 - Dr. Ramon Lawrence

Byte-Level Interface
A byte-level interface allows a program to read and write
individually addressable bytes from the device.

A device will only directly support a byte-level interface if it is
byte-addressable. However, the OS may provide a file-level
byte interface to a device even if it is only block addressable.

Page 46

COSC 404 - Dr. Ramon Lawrence

File-Level Interface
A file-level interface abstracts away the device addressable
characteristics and provides a standard byte-level interface for
files to programs running on the OS.

A file is treated as a sequence of bytes starting from 0. File
level commands allow for randomly navigating in the file and
reading/writing at any location at the byte level.

Since a device may not support such access, the OS is
responsible for mapping the logical byte address space in a file
to physical device sectors/blocks. The OS performs buffering
to hide I/O latency costs.
Although beneficial, this level of abstraction may cause poor

performance for I/O intensive operations.

Page 47

COSC 404 - Dr. Ramon Lawrence

Databases and File Interfaces
A database optimizes performance using device characteristics,
so the file interface provided on the device is critical.

General rules:
The database system needs to know block boundaries if the

device is block addressable. It should not use the OS file
interface mapping bytes to blocks.
Full block I/Os should be used. Transferring groups of blocks is ideal.

If the device has different performance for random versus
sequential I/O and reads/writes, it should exploit this knowledge.

If placement of blocks on the device matters, the database
should control this not the OS.

The database needs to perform its own buffering separate from
the OS. Cannot use the OS virtual memory!

Page 48

COSC 404 - Dr. Ramon Lawrence

Databases and File Interfaces (2)
Two options:
1) Use a RAW block level interface to the device and manage

everything. Very powerful but also a lot of complexity.

2) Use the OS file-level interface for data. Not suitable in
general as OS hides buffering and block boundaries.

Compromise: Allocate data in OS files but treat files as raw
disks. That is, do not read/write bytes but read/write to the file at
the block level.
The OS stills maps from logical blocks to physical blocks on the

device and manages the device.

BUT many performance issues with crossing block boundaries or
reading/writing at the byte-level are avoided.

Many systems make this compromise.

9

Page 49

COSC 404 - Dr. Ramon Lawrence

Representing Data in Databases
Overview

A database is made up of one or more files.
Each file contains one or more blocks.

Each block has a header and contains one or more records.

Each record contains one or more fields.

Each field is a representation of a data item in a record.

Page 50

COSC 404 - Dr. Ramon Lawrence

Representing Data in Memory
Consider an employee database where each employee record
contains the following fields:
name : string

age : integer

salary : double

startDate : Date

picture : BLOB

Each field is data that is represented as a sequence of bytes.

How would we store each field in memory or on disk?

Page 51

COSC 404 - Dr. Ramon Lawrence

Representing Data in Memory
Integers and Doubles

Integers are represented in two's complement format. The
amount of space used depends on the machine architecture.
e.g. byte, short, int, long

Double values are stored using a mantissa and an exponent:
Represent numbers in scientific format: N = m * 2e

m - mantissa, e - exponent, 2 - radix

Note that converting from base 10 to base 2 is not always precise, since
real numbers cannot be represented precisely in a fixed number of bits.

The most common standard is IEEE 754 Format:
32 bit float - 1-bit sign; 8-bit exponent; 23-bit mantissa

64 bit double - 1-bit sign; 11-bit exponent; 52-bit mantissa

Page 52

COSC 404 - Dr. Ramon Lawrence

Representing Data in Memory
Doubles Example

The salary $56,455.01 stored as 4 consecutive bytes is:
Hexadecimal value is: 475C8703 Stored value is: 56455.012

Divided into bytes looks like this:

01000111 01011100 10000111 00000011

F001 F002 F003 F004
Memory
Address

sign bit exponent

0 10001110 10111001000011100000011

mantissa

Page 53

COSC 404 - Dr. Ramon Lawrence

Representing Data in Memory
Strings and Characters

A character is represented by mapping the character symbol
to a particular number.
ASCII - maps characters/symbols to a number from 0 to 255.

UNICODE - maps characters to a two-byte number (0 to
32,767) which allows for the encoding of larger alphabets.

A string is a sequence of characters allocated in consecutive
memory bytes. A pointer indicates the location of the first byte.
Null-terminated string - last byte value of 0 indicates end

Byte-length string - length of string in bytes is specified
(usually in the first few bytes before string starts).

Fixed-length string - always the same size.

Page 54

COSC 404 - Dr. Ramon Lawrence

Representing Data in Memory
Dates

A date value can be represented in multiple ways:
Integer representation - number of days past since a given date
Example: # days since Jan 1, 1900

String representation - represent a date's components (year,
month, day) as individual characters of a string
Example: YYYYMMDD or YYYYDDD

Please do not reinvent Y2K by using YYMMDD!!

A time value can also be represented in similar ways:
Integer representation - number of seconds since a given time
Example: # of seconds since midnight

String representation - hours, minutes, seconds, fractions
Example: HHMMSSFF

10

Page 55

COSC 404 - Dr. Ramon Lawrence

Representing Data in Memory
BLOBs and Large Objects

A BLOB (Binary Large Object) type is represented as a
sequence of consecutive bytes with the size of the object
stored in the first few bytes.

All variable length types and objects will store a size as the first
few bytes of the object.

Fixed length objects do not require a size, but may require a
type identifier.

Page 56

COSC 404 - Dr. Ramon Lawrence

Storing Records in Memory
Now that we can allocate space for each field in memory, we
must determine a way of allocating an entire record.

A record consists of one or more fields grouped together.
Each tuple of a relation in the relational model is a record.

Two main types of records:
Variable-length records - the size of the record varies.

Fixed-length records - all records have the same size.

Page 57

COSC 404 - Dr. Ramon Lawrence

Separating Fields of a Record
The fields of a record can be separated in multiple ways:
1) No separator - store length of each field, so do not need a

separate separator (fixed length field).
Simple but wastes space within a field.

2) Length indicator - store a length indicator at the start of the
record (for the entire record) and a size in front of each field.
Wastes space for each length field and need to know length beforehand.

3) Use offsets – at start of record store offset to each field

4) Use delimiters - separate fields with delimiters such as a
comma (comma-separated files).
Must make sure that delimiter character is not a valid character for field.

5) Use keywords - self-describing field names before field
value (XML and JSON).
Wastes space by using field names.

Page 58

COSC 404 - Dr. Ramon Lawrence

Schemas
A schema is a description of the record layout.

A schema typically contains the following information:
names and number of fields

size and type of each field

field ordering in record

description or meaning of each field

Page 59

COSC 404 - Dr. Ramon Lawrence

Schemas
Fixed versus Variable Formats

If every record has the same fields with the same types, the
schema defines a fixed record format.
Relational schemas generally define a fixed format structure.

It is also possible to have no schema (or a limited schema)
such that not all records have the same fields or organization.
Since each record may have its own format, the record data

itself must be self-describing to indicate its contents.

XML and JSON documents are considered self-describing with
variable schemas (variable record formats).

Page 60

COSC 404 - Dr. Ramon Lawrence

Schemas
Fixed Format Example

Employee record is a fixed relational schema format:
Field Name Type Size in Bytes

name char(10) 10

age integer 4

salary double 8

startDate Date 8 (YYYYMMDD)

Example record:
Joe Smith, 35, $50,000, 1995/05/28

Memory allocation:

J OE SM I TH 0 0 3 5 00 0 5 0 0 0 0 1 9 9 5 0 5 2 8

in ASCII? 00000023 in IEEE 754? in ASCII?

11

Page 61

COSC 404 - Dr. Ramon Lawrence

Schemas
Fixed Format with Variable fields

It is possible to have a fixed format (schema), yet have variable
sized records.
In the Employee example, the picture field is a BLOB which will

vary in size depending on the type and quality of the image.

It is not efficient to allocate a set memory size for large objects,
so the fixed record stores a pointer to the object and the size of
the object which have fixed sizes.

The object itself is stored in a separate file or location from the
rest of the records.

Page 62

COSC 404 - Dr. Ramon Lawrence

Variable Formats
XML and JSON

XML:

JSON:

<employees>
<employee>

<name>Joe Smith</name> <age>35</age>
<salary>50000</salary> <hired>1995/05/28</hired>

</employee>
<employee>

<name>CEO</name><age>55</age><hired>1994/06/23</hired>
</employee>
</employees>

{ "employees": [{ "name":"Joe Smith", "age":35,
"salary":50000, "hired":"1995/05/28"},
{ "name":"CEO", "age":55,
"hired":"1994/06/23"}] }

Page 63

COSC 404 - Dr. Ramon Lawrence

Variable Format Discussion
Variable record formats are useful when:
The data does not have a regular structure in most cases.

The data values are sparse in the records.

There are repeating fields in the records.

The data evolves quickly so schema evolution is challenging.

Disadvantages of variable formats:
Waste space by repeating schema information for every record.

Allocating variable-sized records efficiently is challenging.

Query processing is more difficult and less efficient when the
structure of the data varies.

Page 64

COSC 404 - Dr. Ramon Lawrence

Format and Size Question
Question: JSON and XML are best described as:

A) fixed format, fixed size

B) fixed format, variable size

C) variable format, fixed size

D) variable format, variable size

Page 65

COSC 404 - Dr. Ramon Lawrence

Relational Format and Size Question
Question: A relational table uses a VARCHAR field for a
person's name. It can be best described as:

A) fixed format, fixed size

B) fixed format, variable size

C) variable format, fixed size

D) variable format, variable size

Page 66

COSC 404 - Dr. Ramon Lawrence

Fixed vs. Variable Formats Discussion
There are also many variations that have properties of both
fixed and variable format records:
Can have a record type code at the beginning of each record to

denote what fixed schema it belongs to.
Allows the advantage of fixed schemas with the ability to define and

store multiple record types per file.

Define custom record headers within the data that is only used
once.
Do not need separate schema information, and do not repeat the

schema information for every record.

It is also possible to have a record with a fixed portion and a
variable portion. The fixed portion is always present, while the
variable portion lists only the fields that the record contains.

12

Page 67

COSC 404 - Dr. Ramon Lawrence

Fixed versus Variable Formats
Discussion (2)

We have seen fixed length/fixed format records, and variable
length/variable format records.

1) Do fixed format and variable length records make sense?

2) Do variable format and fixed length records make sense?

|320587 | Joe Smith | SC | 95 | 3 |
|184923 | Kathy Li | EN | 92 | 3 |
| 249793 | Albert Chan | SC | 94 | 3 | Padding

Padding
Padding

Surprisingly, Yes. Allocate a fixed size record then put as
many fields with different sizes as you want and pad the rest.

Yes, you can have a fixed format schema where certain types
have differing sizes. BLOBs are one example.

Page 68

COSC 404 - Dr. Ramon Lawrence

Research Question
CHAR versus VARCHAR

Question: We can represent a person's name in MySQL using
either CHAR(50) or VARCHAR(50). Assume that the person's
name is 'Joe'. How much space is actually used?

A) CHAR = 3 ; VARCHAR = 3

B) CHAR = 50 ; VARCHAR = 3

C) CHAR = 50 ; VARCHAR = 4

D) CHAR = 50 ; VARCHAR = 50

Page 69

COSC 404 - Dr. Ramon Lawrence

Storing Records in Blocks
Now that we know how to represent entire records, we must
determine how to store sets of records in blocks.

There are several issues related to storing records in blocks:
1) Separation - how do we separate adjacent records?

2) Spanning - can a record cross a block boundary?

3) Clustering - can a block store multiple record types?

4) Splitting - are records allocated in multiple blocks?

5) Ordering - are the records sorted in any way?

6) Addressing - how do we reference a given record?

Page 70

COSC 404 - Dr. Ramon Lawrence

Storing Records in Blocks
Separation

If multiple records are allocated per block, we need to know
when one record ends and another begins.

Record separation is easy if the records are a fixed size
because we can calculate the end of the record from its start.

Variable length records can be separated by:
1) Using a special separator marker in the block.

2) Storing the size of the record at the start of each record.

3) Store the length or offset of each record in the block header.

Page 71

COSC 404 - Dr. Ramon Lawrence

A block header contains the number of records, the location
and size of each record, and a pointer to block free space.

Records can be moved around within a block to keep them
contiguous with no empty space between them and the header
is updated accordingly.

Variable Length Records
Separation and Addressing

Page 72

COSC 404 - Dr. Ramon Lawrence

Storing Records in Blocks
Spanning

If records do not exactly fit in a block, we have two choices:
1) Waste the space at the end of each block.

2) Start a record at the end of a block and continue on the next.

Choice #1 is the unspanned option.
Simple because do not have to allocate records across blocks.

Choice #2 is the spanned option.
Each piece must have a pointer to its other part.
Spanning is required if the record size is larger than the block size.

R1 R2 R3 R4 R5

Block 1 Block 2

R1 R2
R3
(a)

R3
(b) R6R5R4 R7

(a)

Block 1 Block 2

13

Page 73

COSC 404 - Dr. Ramon Lawrence

Storing Records in Blocks
Spanning Example

If the block size is 4096 bytes, the record size is 2050 bytes,
and we have 1,000,000 records:
How many blocks are needed for spanned/unspanned records?

What is the block (space) utilization in both cases?

Answer:
Unspanned
put one record per block implies 1,000,000 blocks

each block is only 2050/4096 * 100% = 50% full (utilization = 50%)

Spanned
all blocks are completely full except the last one

of blocks required = 1,000,000 * 2050 / 4096 = 500,049 blocks

utilization is almost 100%

Page 74

COSC 404 - Dr. Ramon Lawrence

Storing Records in Blocks
Clustering

Clustering is allocating records of different types together on
the same block (or same file) because they are frequently
accessed together.

Example:
Consider creating a block where a department record is

allocated together with all employees in the department:

DPT1 EMP1 EMP2 DEPT2 EMP3 EMP4

Block 1

Page 75

COSC 404 - Dr. Ramon Lawrence

Storing Records in Blocks
Clustering (2)

If the database commonly processes queries such as:

then the clustering is beneficial because the information about
the employee and department are adjacent in the same block.

However, for queries such as:

clustering is harmful because the system must read in more
blocks, as each block read contains information that is not
needed to answer the query.

select * from employee, department
where employee.deptId = department.Id

select * from employee

select * from department

Page 76

COSC 404 - Dr. Ramon Lawrence

Storing Records in Blocks
Split Records

A split record is a record where portions of the record are
allocated on multiple blocks for reasons other than spanning.

Record splitting may be used with or without spanning.

Typically, hybrid records are allocated as split records:
The fixed portion of the record is allocated on one block (with

other fixed record portions).

The variable portion of the record is allocated on another
block (with other variable record portions).

Splitting a record is done for efficiency and simplifying
allocation. The fixed portion of a record is easier to allocate
and optimize for access than the variable portion.

Page 77

COSC 404 - Dr. Ramon Lawrence

R1 (a)

R2 (a)

Storing Records in Blocks
Split Records with Spanning Example

Fixed
Block 1

R2 (b)

R3 (a)

Fixed
Block 2

R1 (b)

R2 (c)

Variable
Block 1

Page 78

COSC 404 - Dr. Ramon Lawrence

Storing Records in Blocks
Ordering Records

Ordering (or sequencing) records is when the records in a
file (block) are sorted based on the value of one or more fields.

Sorting records allows some query operations to be performed
faster including searching for keys and performing joins.

Records can either be:
1) physically ordered - the records are allocated in blocks in

sorted order.

2) logically ordered - the records are not physical sorted, but
each record contains a pointer to the next record in the sorted
order.

14

Page 79

COSC 404 - Dr. Ramon Lawrence

Storing Records in Blocks
Ordering Records Example

Physical ordering Logical Ordering

R1
Block 1

Block 2

R1

R3

Block 1

R4

R2

Block 2

R2

R3

R4

What are the tradeoffs between the two approaches?
What are the tradeoffs of any ordering versus unordered?

Page 80

COSC 404 - Dr. Ramon Lawrence

Storing Records in Blocks
Addressing Records

Addressing records is a method for defining a unique value or
address to reference a particular record.

Records can either be:
1) physically addressed - a record has a physical address

based on the device where it is stored.
A physical disk address may use a sector # or a physical address range

exposed by the device.

2) logically addressed - a record that is logically addressed
has a key value or some other identifier that can be used to
lookup its physical address in a table.
Logical addresses are indirect addresses because they provide a

mechanism for looking up the actual physical addresses. They do not
provide a method for locating the record directly on the device.

E.g. OS provides logical block to physical sector mapping for files.

Page 81

COSC 404 - Dr. Ramon Lawrence

Storing Records in Blocks
Addressing Records Tradeoff

There is a tradeoff between physical and logical addressing:
Physical addresses have better performance because the

record can be accessed directly (no lookup cost).

Logical addresses provide more flexibility because records
can be moved on the physical device and only the mapping
table needs to be updated.
The actual records or fields that use the logical address do not have to

be changed.

Easier to move, update, and change records with logical addresses.

Page 82

COSC 404 - Dr. Ramon Lawrence

Pointer Swizzling
When transferring blocks between the disk and memory, we
must be careful when handling pointers in the blocks.

For example:

Pointer swizzling is the process for converting disk pointers to
memory pointers and vice versa when blocks move between
memory and disk.

Memory

Block 1 R1

R3

Block 2

R2

R1

R3

Block 1

R2

Block 2

Disk

Page 83

COSC 404 - Dr. Ramon Lawrence

Operations on Files
Once data has been stored to a file consisting of blocks of
records, the database system will perform operations such as
update and delete to the stored records.

How records are allocated and addressed affects the
performance for update and delete operations.

Page 84

COSC 404 - Dr. Ramon Lawrence

Operations on Files
Record Deletion

When a record is deleted from a block, we have several
options:
1) Reclaim deleted space
Move another record to the location or compress file.

2) Mark deleted space as available for future use

Tradeoffs:
Reclaiming space guarantees smaller files, but may be

expensive especially if the file is ordered.

Marking space as deleted wastes space and introduces
complexities in maintaining a record of the free space available.

15

Page 85

COSC 404 - Dr. Ramon Lawrence

Operations on Files
Issues with Record Deletion

We must also be careful on how to handle references to a
record that has been deleted.
If we re-use the space by storing another record in the same

location, how do we know that the correct record is returned or
indicate the record has been deleted?

Solutions:
1) Track down and update all references to the record.

2) Leave a "tombstone" marker at the original address
indicating record deletion and not overwrite that space.
Tombstone is in the block for physical addressing, in the lookup table for

logical addressing.

3) Allocate a unique record id to every record and every pointer
or reference to a record must indicate the record id desired.
Compare record id of pointer to record id of record at address to verify

correct record is returned. Page 86

COSC 404 - Dr. Ramon Lawrence

Research Question
PostgreSQL VACUUM

Question: What does the VACUUM command do in
PostgreSQL?

A) Cleans up your dirty house for you

B) Deletes records from a given table

C) Reclaims space used by records marked as deleted

D) Removes tables no longer used

Page 87

COSC 404 - Dr. Ramon Lawrence

Operations on Files
Record Insertion

Inserting a record into a file is simple if the file is not ordered.
The record is appended to the end of the file.

If the file is physically ordered, then all records must be shifted
down to perform insert.
Extremely costly operation!

Inserting into a logically ordered file is simpler because the
record can be inserted anywhere there is free space and linked
appropriately.
However, a logically ordered file should be periodically re-

organized to ensure that records with similar key values are in
nearby blocks.

Page 88

COSC 404 - Dr. Ramon Lawrence

Memory and Buffer Management
Memory management involves utilizing buffers, cache, and
various levels of memory in the memory hierarchy to achieve
the best performance.
A database system seeks to minimize the number of block

transfers between the disk and memory.

A buffer is a portion of main memory available to store copies
of disk blocks.

A buffer manager is a subsystem responsible for allocating
buffer space in main memory.

Page 89

COSC 404 - Dr. Ramon Lawrence

Buffer Manager Operations
All read and write operations in the database go through the
buffer manager. It performs the following operations:
read block B – if block B is currently in buffer, return pointer to

it, otherwise allocate space in buffer and read block from disk.

write block B – update block B in buffer with new data.

pin block B – request that B cannot be flushed from buffer

unpin block B – remove pin on block B

output block B – save block B to disk (can either be requested
or done by buffer manager to save space)

Key challenge: How to decide which block to remove from the
buffer if space needs to be found for a new block?

Page 90

COSC 404 - Dr. Ramon Lawrence

Buffer Management
Replacement Strategy

A buffer replacement strategy determine which block should
be removed from the buffer when space is required.
Note: When a block is removed from the buffer, it must be

written to disk if it was modified. and replaced with a new block.

Some common strategies:
Random replacement

Least recently used (LRU)

Most recently used (MRU)

16

Page 91

COSC 404 - Dr. Ramon Lawrence

Buffer Replacement Strategies and
Database Performance

Operating systems typically use least recently used for buffer
replacement with the idea that the past pattern of block
references is a good predictor of future references.

However, database queries have well-defined access patterns
(such as sequential scans), and a database system can use
the information to better predict future references.
LRU can be a bad strategy for certain access patterns involving

repeated scans of data!

Buffer manager can use statistical information regarding the
probability that a request will reference a particular relation.
E.g., The schema is frequently accessed, so it makes sense to

keep schema blocks in the buffer.
Page 92

COSC 404 - Dr. Ramon Lawrence

Research Question
MySQL Buffer Management

Question: What buffer replacement policy does MySQL
InnoDB use?

A) LRU

B) MRU

C) 2Q

Page 93

COSC 404 - Dr. Ramon Lawrence

Column Storage
The previous discussion on storage formats assumed records
were allocated on blocks. For large data warehouses, it is
more efficient to allocate data at the column level.

Each file represents all the data for a column. A file entry
contains the column value and a record id. Records are rebuilt
by combining columns using the record id.

The column format reduces the amount of data retrieved from
disk (as most queries do not need all columns) and allows for
better compression.

Page 94

COSC 404 - Dr. Ramon Lawrence

Research Question
PostgreSQL Column Layout

Question: Does PostgreSQL support column layout?

A) Yes

B) No

Page 95

COSC 404 - Dr. Ramon Lawrence

Issues in Disk Organizations
There are many ways to organize information on a disk.
There is no one correct way.

The "best" disk organization will be determined by a variety of
factors such as: flexibility, complexity, space utilization, and
performance.

Performance measures to evaluate a given strategy include:
space utilization

expected times to search for a record given a key, search for
the next record, insert/append/delete/update records,
reorganize the file, read the entire file.

Key terms:
Storage structure is a particular organization of data.

Access mechanism is an algorithm for manipulating the data
in a storage structure. Page 96

COSC 404 - Dr. Ramon Lawrence

Summary
hard drives, RAID (formulas)
sequential/random accessStorage and

Organization Fields

Records

Blocks

Files

Memory

Database

Hardware

representing types in memory

variable/fixed format/length
schemas

separation, spanning, splitting,
clustering, ordering, addressing

insert, delete operations on
various organizations

buffer management
pointer swizzling

disk organization choices

17

Page 97

COSC 404 - Dr. Ramon Lawrence

Major Objectives
The "One Things":
Perform device calculations such as computing transfer times.

Explain the differences between fixed and variable schemas.

List and briefly explain the six record placement issues in
blocks.

Major Theme:
There is no single correct organization of data on disk. The

"best" disk organization will be determined by a variety of
factors such as: flexibility, complexity, space utilization, and
performance.

Page 98

COSC 404 - Dr. Ramon Lawrence

Objectives
Compare/contrast volatile versus non-volatile memory.

Compare/contrast random access versus sequential access.

Perform conversion from bytes to KB to MB to GB.

Define terms from hard drives: arm assembly, arm, read-write
head, platter, spindle, track, cylinder, sector, disk controller

Calculate disk performance measures - capacity, access time
(seek,latency,transfer time), data transfer rate, mean time to
failure.

Explain difference between sectors (physical) & blocks (logical).

Perform hard drive and device calculations.

List the benefits of RAID and common RAID levels.

Explain issues in representing floating point numbers.

Page 99

COSC 404 - Dr. Ramon Lawrence

Objectives (2)
List different ways for representing strings in memory.

List different ways for representing date/times in memory.

Explain the difference between fixed and variable length records.

Compare/contrast the ways of separating fields in a record.

Define and explain the role of schemas.

Compare/contrast variable and fixed formats.

List and briefly explain the six record placement issues in blocks.

Explain the tradeoffs for physical/logical ordering and
addressing.

List the methods for handling record insertion/deletion in a file.

List some buffer replacement strategies.

Explain the need for pointer swizzling.

Define storage structure and access mechanism.

1

COSC 404
Database System Implementation

Indexing

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 404 - Dr. Ramon Lawrence

Indexing
Overview

An index is a data structure that allows for fast lookup of
records in a file.

An index may also allow records to be retrieved in sorted order.

Indexing is important for file systems and databases as many
queries require only a small set of the data in a file.

Page 3

COSC 404 - Dr. Ramon Lawrence

Index Terminology
The data file is the file that actually contains the records.

The index file is the file that stores the index information.

The search key is the set of attributes stored by the index to
find the records in the data file.
Note that the search key does not have to be unique - more

than one record may have the same search key value.

An index entry is one index record that contains a search key
value and a pointer to the location of the record with that value.

Page 4

COSC 404 - Dr. Ramon Lawrence

Evaluating Index Methods
Index methods can be evaluated for functionality, efficiency,
and performance.

The functionality of an index can be measured by the types of
queries it supports. Two query types are common:
exact match on search key

query on a range of search key values

The performance of an index can be measured by the time
required to execute queries and update the index.
Access time, update, insert, delete time

The efficiency of an index is measured by the amount of
space required to maintain the index structure.

Page 5

COSC 404 - Dr. Ramon Lawrence

Types of Indexes
There are several different types of indexes:
Indexes on ordered versus unordered files
An ordered file is sorted on the search key. Unordered file is not.

Dense versus sparse indexes
A dense index has an index entry for every record in the data file.

A sparse index has index entries for only some of the data file records
(often indexes by blocks).

Primary (clustering) indexes versus secondary indexes
A primary index sorts the data file by its search key. The search key

DOES NOT have to be the same as the primary key.

A secondary index does not determine the organization of the data file.

Single-level versus multi-level indexes
A single-level index has only one index level.

A multi-level index has several levels of indexes on the same file.
Page 6

COSC 404 - Dr. Ramon Lawrence

dense index

(Secondary) Index on Unordered File

unordered data file

Dense, single-level index on an unordered file.

2

Page 7

COSC 404 - Dr. Ramon Lawrence

dense index

Primary Index on Ordered File

ordered data file

Dense, primary, single-level index on an ordered file.

Page 8

COSC 404 - Dr. Ramon Lawrence

Index on Unordered/Ordered Files
An index on an unordered file makes immediate sense as it
allows us to access the file in sorted order without maintaining
the records in sorted order.
Insertion/deletion are more efficient for unordered files.
Append record at end of file or move record from end for delete.

Must only update index after data file is updated.

Searching for a search key can be done using binary search on
the index.

What advantage is there for a primary index on an ordered file?
Less efficient to maintain an ordered file PLUS we must now

also maintain an ordered index!

Answer: The index will be smaller than the data file as it does not
store entire records. Thus, it may be able to fit entirely in memory.

Page 9

COSC 404 - Dr. Ramon Lawrence

Index Performance Example
We will calculate the increased performance of a dense index
on an unordered/ordered file with the following parameters:
Each disk block stores 4000 bytes.

Each index entry occupies 20 bytes.
10 bytes for search key, 10 bytes for record pointer

Assume 200 index records fit in a disk block.

Each record has size 1000 bytes.
Assume 4 data records fit in a disk block.

The data file contains 100,000 records.

How long does it take to retrieve a record based on its key?

How much faster is this compared to having no index?

Page 10

COSC 404 - Dr. Ramon Lawrence

Index Performance Example (2)
Answer:

#indexBlocks = 100,000 records / 200 entries/block = 500 blocks

#diskBlocks = 100,000 records / 4 records/block = 25,000 blocks

Search index using a binary search = log2N = log2(500) = 8.97 blocks

of blocks retrieved = 9 index blocks + 1 data block = 10 blocks

Time to find record using linear search (unordered file) = N/2

= 25,000 blocks/2 = 12,500 blocks retrieved on average

Time to find record using binary search (ordered file) = log2N

= log2(25000) = 14.60 blocks = 15 blocks

Page 11

COSC 404 - Dr. Ramon Lawrence

Index Performance
Question: What statement is true for a non-empty, indexed
table when searching for a single record?

A) Using an index is always faster than scanning the file if the
data is on a hard drive

B) Using an index is always faster than scanning the file if the
data is on a SSD

C) Binary searching an index is more suited to a HDD than a
SSD.

D) None of the above.
Page 12

COSC 404 - Dr. Ramon Lawrence

Sparse Index on Ordered Files
A sparse index only contains a subset of the search keys that
are in the data file.

A better index for an ordered file is a sparse index since we can
take advantage of the fact that the data file is already sorted.
The index will be smaller as not all keys are stored.
Fewer index entries than records in the file.

Binary search over index can be faster as fewer index blocks to read
than unordered file approach.

For an ordered file, we will store one search key per block of
the data file.

3

Page 13

COSC 404 - Dr. Ramon Lawrence

Sparse Index on an Ordered File

ordered data file

Is there another way to
create a sparse index

for this file?

sparse index

Page 14

COSC 404 - Dr. Ramon Lawrence

Sparse Index versus Dense Index
A sparse index is much more space efficient than a dense
index because it only stores one search key per block.
If a block can store 10 data records, then a sparse index will be

10 times smaller than a dense index!

This allows more (or all) of the index to be stored in main
memory and reduces disk accesses if the index is on disk.

A dense index has an advantage over a sparse index because
it can answer queries like: does search key K exist? without
accessing the data file (by using only the index).
Finding a record using a dense index is easier as the index

entry points directly to the record. For a sparse index, the block
that may contain the data value must be loaded into memory
and then searched for the correct key.

Page 15

COSC 404 - Dr. Ramon Lawrence

Index Performance Question
Calculate the performance of a sparse index on an ordered file
with the following parameters:
Each disk block stores 2000 data bytes.

Each index entry occupies 8 bytes.

Each record has size 100 bytes.

The data file contains 1,000,000 records.

How long does it take to retrieve a record based on its key?

How much faster is this compared to having no index?

How much faster is this compared to a dense index?

Page 16

COSC 404 - Dr. Ramon Lawrence

Multi-level Index
A multi-level index has more than one index level for the
same data file.
Each level of the multi-level index is smaller, so that it can be

processed more efficiently.

The first level of a multi-level index may be either sparse or
dense, but all higher levels must be sparse. Why?

Having multiple levels of index increases the level of
indirection, but is often quicker because the upper levels of the
index may be stored entirely in memory.
However, index maintenance time increases with each level.

Page 17

COSC 404 - Dr. Ramon Lawrence

dense index

Multi-level Index on an Ordered File

ordered data file

sparse index

Page 18

COSC 404 - Dr. Ramon Lawrence

Multi-level Index Performance Question
Calculate the performance of a multi-level index on an ordered
file with the following parameters:
Each disk block stores 2000 data bytes.

Each index entry occupies 8 bytes.

Each record has size 100 bytes.

The data file contains 10,000,000 records.

There are 3 levels of multi-level index.
First level is a sparse index - one entry per block.

How long does it take to retrieve a record based on its key?

Compare this to a single level sparse index.

4

Page 19

COSC 404 - Dr. Ramon Lawrence

Indexes with Duplicate Search Keys
What happens if the search key for our index is not unique?
The data file contains many records with the same search key.

This is possible because we may index a field that is not a
primary key of the relation.

Both sparse and dense indexes still apply:
1) Dense index with entry for every record

2) Sparse index containing one entry per block

Note: Search strategy changes if have many records with same
search key.

Page 20

COSC 404 - Dr. Ramon Lawrence

10
10

20
10

30
20

30
30

45
40

10
10

20
10

30
20

30
30

45
40

Handling Duplicate Keys
Dense Index - One Entry per Record

ordered data file

10
10
10
20

10
10
10
20

20
30
30
30

20
30
30
30

dense index

20
30
30
30

40
45

Page 21

COSC 404 - Dr. Ramon Lawrence

Handling Duplicate Keys
Sparse Index - One Entry per Block

10
10

20
10

30
20

30
30

45
40

ordered data file

10
10
20
30

sparse index

40

Be careful if
looking

for 20 or 30!

Page 22

COSC 404 - Dr. Ramon Lawrence

Secondary Indexes
A secondary index is an index whose search key does not
determine the ordering of the data file.

A data file can have only one primary index but many
secondary indexes.

Secondary index entries often refer to the primary index instead
of the data records directly.
Advantage - simpler maintenance of secondary index.
Secondary index changes only when primary index changes not when

the data file changes.

Disadvantage - less efficient due to indirection.
Multiple levels of indirection as must use secondary index, then go to

primary index, then access record in data file.

Page 23

COSC 404 - Dr. Ramon Lawrence

Secondary Index Example

secondary
index

primary index
(dense) ordered data file

Page 24

COSC 404 - Dr. Ramon Lawrence

Secondary Indexes
Handling Duplicate Search Keys

A secondary index may have duplicate search keys.

Techniques for handling duplicates:

1) Create an index entry for each record (dense)
Wastes space as key value repeated for each record

2) Use buckets (blocks) to store records with same key
The index entry points to the first record in the bucket.

All other matching records are retrieved from the bucket.

5

Page 25

COSC 404 - Dr. Ramon Lawrence

10
20

40
20

40
10

40
10

40
30

10
10
10
20

20
30
40
40

40
40
...

Problem:
Excess overhead!

• disk space
• search time

Handling Duplicates
Secondary Index - One Entry per Record

data fileindex

Page 26

COSC 404 - Dr. Ramon Lawrence

10
20

40
20

40
10

40
10

40
30

10
20
30
40

Handling Duplicates
Secondary Index - Buckets (as blocks)

data fileindex

Page 27

COSC 404 - Dr. Ramon Lawrence

Secondary Indexes
Discussion

It is not possible to have a sparse secondary index. There must
be an entry in the secondary index for EACH KEY VALUE.

However, it is possible to have a multi-level secondary index with
upper levels sparse and the lowest level dense.

Secondary indexes are especially useful for indexing foreign key
attributes.

The bucket method for handling duplicates is preferred as the
index size is smaller.

Page 28

COSC 404 - Dr. Ramon Lawrence

50
30

70
20

40
80

10
100

60
90

10
20
30
40

50
60
70
...

10
50
90
...

Multi-level Secondary Index

ordered data file
secondary index
Level 1 (dense)

secondary
index

Level 2
(sparse)

Page 29

COSC 404 - Dr. Ramon Lawrence

Secondary Indexes
Buckets in Query Processing

Consider the query:

If there were secondary indexes on both Major and Year, then
we could retrieve the buckets for Major="CS" and Year="3"
and compare the records that are in both.
We then retrieve only the records that are in both buckets.

Question: How would answering the query change if:
a) There were no secondary indexes?

b) There was only one secondary index?

select * from student
where Major = "CS" and Year = "3"

Page 30

COSC 404 - Dr. Ramon Lawrence

Secondary Index Example
We will calculate the increased performance of a secondary
index on a data file with the following parameters:
Each disk block stores 4000 bytes.

Each index entry occupies 20 bytes.
10 bytes for search key, 10 bytes for record pointer

Assume 200 index records fit in a disk block.

Assume one index entry per record.

Each record has size 1000 bytes.
Assume 4 data records fit in a disk block.

The data file contains 1,000,000 records.

How long does it take to retrieve a record based on its key?

How much faster is this compared to having no index?

6

Page 31

COSC 404 - Dr. Ramon Lawrence

Secondary Index Example (2)
Answer:

#indexBlocks = 1,000,000 records / 200 entries/block = 5,000 blocks

#diskBlocks = 1,000,000 records / 4 records/block = 250,000 blocks

Search index using a binary search

= log2N = log2(5000) = 12.28 blocks

of blocks retrieved

= 13 blocks + 1 primary index block + 1 data block = 15 blocks

Time to find record using linear scan (unordered file) = N/2

= 250,000 /2 = 125,000 blocks retrieved on average

Note that need to do full table scan (250,000 blocks) ALWAYS if

want to find all records with a given key value (not just one).

Lesson: Secondary indexes allow significant speed-up because the
alternative is a linear search of the data file! Page 32

COSC 404 - Dr. Ramon Lawrence

Secondary Index
Question: A secondary index is constructed that refers to the
primary index to locate its records. What is the minimum
number of blocks that must be processed to retrieve a record
using the secondary index?

A) 0

B) 1

C) 2

D) 3

E) 4

Page 33

COSC 404 - Dr. Ramon Lawrence

Index Maintenance
As the data file changes, the index must be updated as well.

The two operations are insert and delete.

Maintenance of an index is similar to maintenance of an
ordered file. The only difference is the index file is smaller.

Techniques for managing the data file include:
1) Using overflow blocks

2) Re-organizing blocks by shifting records

3) Adding or deleting new blocks in the file

These same techniques may be applied to both sparse and
dense indexes.

Page 34

COSC 404 - Dr. Ramon Lawrence

Index Maintenance
Summary

In the process of handling inserts and deletes in the data file,
any of the previous 3 techniques may be used on the data file.

The effect of these techniques on the index file are as follows:
Create/delete overflow block for data file
No effect on both sparse/dense index (overflow block not indexed).

Create/delete new sequential block for data file
Dense index unaffected, sparse index needs new index entry for block.

Insert/Delete/Move record
Dense index must either insert/delete/update entry.

Sparse index may only have to update entry if the smallest key value in
the block is changed by the operation.

Page 35

COSC 404 - Dr. Ramon Lawrence

20
10

40
30

60
50

80
70

10
30
50
70

90
110
130
150

Index Maintenance
Record Deletion with a Sparse Index

ordered data file
sparse index

Delete record with key
40 from data file.

Page 36

COSC 404 - Dr. Ramon Lawrence

10
30
50
70

90
110
130
150

Index Maintenance
Record Deletion with a Sparse Index (2)

ordered data file
sparse index

20
10

40
30

60
50

80
70

Record deleted.
No change to index.

7

Page 37

COSC 404 - Dr. Ramon Lawrence

20
10

40
30

60
50

80
70

10
30
50
70

90
110
130
150

Index Maintenance
Record Deletion with a Sparse Index (3)

ordered data file
sparse index

Delete record with key
30 from data file.

Page 38

COSC 404 - Dr. Ramon Lawrence

3040
10

50
70

90
110
130
150

Index Maintenance
Record Deletion with a Sparse Index (4)

ordered data file
sparse index

20
10

40
30

60
50

80
70

Shift record up in data block.
Update index entry to 40.

Record 30 deleted.

40

Page 39

COSC 404 - Dr. Ramon Lawrence

10
40
50
70

90
110
130
150

Index Maintenance
Record Deletion with a Sparse Index (5)

ordered data file
sparse index

Delete record with key 40.

20
10

40
40

60
50

80
70

Page 40

COSC 404 - Dr. Ramon Lawrence

70

10
40
50 40

90
110
130
150

Index Maintenance
Record Deletion with a Sparse Index (6)

ordered data file
sparse index

Delete record. Delete block.

20
10

60
50

80
70

Page 41

COSC 404 - Dr. Ramon Lawrence

70

10
40
50 40

90
110
130
150

Index Maintenance
Record Deletion with a Sparse Index (7)

ordered data file
sparse index

20
10

60
50

80
70

Delete index entry.
Shift index entries in block up.

50
70

Page 42

COSC 404 - Dr. Ramon Lawrence

20
10

40
30

60
50

80
70

10
20
30
40

50
60
70
80

Index Maintenance
Record Deletion with a Dense Index

ordered data filedense index

Delete record with key 30.

8

Page 43

COSC 404 - Dr. Ramon Lawrence

40
30

20
10

60
50

80
70

10
20
30
40

50
60
70
80

Index Maintenance
Record Deletion with a Dense Index (2)

ordered data filedense index

Delete record. Shift 40 up.

40

Page 44

COSC 404 - Dr. Ramon Lawrence

10
20
30
40

50
60
70
80

40

40
30

20
10

60
50

80
70

Index Maintenance
Record Deletion with a Dense Index (3)

ordered data filedense index

Delete index entry.
Shift index entry for 40 up.

40

Page 45

COSC 404 - Dr. Ramon Lawrence

10
30
50
70

90
110
130
150

Index Maintenance
Record Insertion with a Sparse Index

ordered data file
sparse index

20
10

40
30

60
50

80
70

Insert record with key 40.

Page 46

COSC 404 - Dr. Ramon Lawrence

10
30
50
70

90
110
130
150

Index Maintenance
Record Insertion with a Sparse Index (2)

ordered data file
sparse index

20
10

40
30

60
50

80
70

Record inserted in free
space in second block.
No updates to index.

Page 47

COSC 404 - Dr. Ramon Lawrence

10
30
50
70

90
110
130
150

Index Maintenance
Record Insertion with a Sparse Index (3)

ordered data file
sparse index

20
10

40
30

60
50

80
70

Insert record with key 15.
Use immediate re-organization.

Page 48

COSC 404 - Dr. Ramon Lawrence

10
20
50
70

90
110
130
150

Index Maintenance
Record Insertion with a Sparse Index (4)

ordered data file
sparse index

15
10

30
20

60
50

80
70

Shift records down to make room for 15.
Update index pointer for block 2.

9

Page 49

COSC 404 - Dr. Ramon Lawrence

10
30
50
70

90
110
130
150

Index Maintenance
Record Insertion with a Sparse Index (5)

ordered data file
sparse index

20
10

40
30

60
50

80
70

Insert record with key 25.
Use overflow blocks.

Page 50

COSC 404 - Dr. Ramon Lawrence

10
30
50
70

90
110
130
150

Index Maintenance
Record Insertion with a Sparse Index (6)

ordered data file
sparse index

20
10

40
30

60
50

80
70

25

Create overflow block.
Re-organize later...

Page 51

COSC 404 - Dr. Ramon Lawrence

Handling Data Evolution
Since it is common for both the data file and index file to evolve
as the database is used, often blocks storing data records and
index records are not filled completely.

By leaving a block 75% full when it is first created, then data
evolution can occur without having to create overflow blocks or
move records around.

The tradeoff is that with completely filled blocks the file
occupies less space and is faster to process.

Page 52

COSC 404 - Dr. Ramon Lawrence

Conclusion
Indexes are lookup mechanisms to speed access to particular
records in the data file.
An index consists of an ordered sequence of index entries

containing a search key and a pointer.
An index may be either dense (have one entry per record) or sparse

(have one entry per block).

Primary indexes have the index search key as the same key that is used
to physically order the file. Secondary indexes do not have an affect on
the data file ordering.

An index is an ordered data file when inserting/deleting entries.
When the data file is updated the index may be updated.

Page 53

COSC 404 - Dr. Ramon Lawrence

Major Objectives
The "One Things":
Explain the types of indexes: ordered/unordered, sparse/dense,

primary/secondary, single/multi-level

Perform calculations on how fast it takes to retrieve one record
or answer a query given a certain data file and index type.

Major Theme:
Indexing results in a dramatic increase in the performance of

many database queries by minimizing the number of blocks
accessed. However, indexes must be maintained, so they
should not be used indiscriminately.

Page 54

COSC 404 - Dr. Ramon Lawrence

Objectives
Define: index file, search key, index entry

List the index evaluation metrics/criteria.

Explain the difference between the difference types of indexes:
ordered/unordered, dense/sparse, primary/secondary,
single/multi level and be able to perform calculations.

List the techniques for indexing with duplicate search keys.

Discuss some of the issues in index maintenance.

Compare/contrast single versus multi-level indexes.

Explain the benefit of secondary indexes on query performance
and be able to perform calculations.

1

COSC 404
Database System Implementation

B-trees

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 404 - Dr. Ramon Lawrence

B-Trees and Indexing
Overview

We have seen how multi-level indexes can improve search
performance.

One of the challenges in creating multi-level indexes is
maintaining the index in the presence of inserts and deletes.

We will learn B+-trees which are the most common form of
index used in database systems today.

Page 3

COSC 404 - Dr. Ramon Lawrence

B-trees
Introduction
A B-tree is a search tree where each node has >= n data values

and <= 2n, where we chose n for our particular tree.
Each key in a node is stored in a sorted array.
key[0] is the first key, key[1] is the second key,…,key[2n-1] is the 2nth key

key[0] < key[1] < key[2] < … < key[2n-1]

There is also an array of pointers to children nodes:
child[0], child[1], child[2], …, child[2n]

Recursive definition: Each subtree pointed to by child[i] is also a B-tree.

For any key[i]:
1) key[i] > all entries in subtree pointed to by child[i]

2) key[i] <= all entries in subtree pointed to by child[i+1]

A node may not contain all key values.
of children = # of keys +1

A B-tree is balanced as every leaf has the same depth. Page 4

COSC 404 - Dr. Ramon Lawrence

B-trees
Order Debate

There is an interesting debate on how to define an order of a
B-tree. The original definition was the one given:
The order n is the minimum # of keys in a node. The

maximum number is 2n.

However, may want to have a B-tree where the maximum # of
keys in a node is odd.
This is not possible by the above definition.

Consequently, can define order as the maximum # of keys in a
node (instead of the minimum).
Further, some use maximum # of pointers instead of keys.

Bottom line: B-trees with an odd maximum # of keys will be
avoided in the class.
The minimum # of nodes for an odd maximum n will be n/2 .

Page 5

COSC 404 - Dr. Ramon Lawrence

B-trees Example
Programming View

16 21 ... 24

15 25 ... 90

81 85 ... 89

1 10 ... 14 91 95 ... 99

26 40 ... 60

Page 6

COSC 404 - Dr. Ramon Lawrence

B-Trees Performance
Question: A B-tree has a maximum of 10 keys per node.
What is the maximum number of children for a given node?

A) 0

B) 1

C) 10

D) 11

E) 20

2

Page 7

COSC 404 - Dr. Ramon Lawrence

2-3 Trees
Introduction

A 2-3 tree is a B-tree where each node has either 1 or 2 data
values and 2 or 3 children pointers.
It is a special case of a B-tree.

Fact:
A 2-3 tree of height h always has at least as many nodes as a

full binary tree of height h.
That is, a 2-3 tree will always have at least 2h-1 nodes.

Page 8

COSC 404 - Dr. Ramon Lawrence

2-3 Search Tree
Example

50 90

70 93 9820

60

80

10

30 40

91 92

95 96

99

Conceptual View

Page 9

COSC 404 - Dr. Ramon Lawrence

2-3 Tree Example
Programming View

50 90

7020

10

30 40

60

80

9991 92

95 96

93 98

Page 10

COSC 404 - Dr. Ramon Lawrence

Searching a 2-3 Tree
Searching a 2-3 tree is similar to searching a binary search tree.

Algorithm:
Start at the root which begins as the curNode.

If curNode contains the search key we are done, and have found
the search key we were looking for.

A 2-node contains one key:
If search key < key[0], go left (child[0]) otherwise go right (child[1])

A 3-node contains two key values:
If search key < key[0], go left with first child pointer (child[0])

else if search key < key[1] go down middle child pointer (child[1])

else (search key >= key[1]) go right with last child pointer (child[2])

If we encounter a NULL pointer, then we are done and the
search failed.

Page 11

COSC 404 - Dr. Ramon Lawrence

Searching a 2-3 Tree
Example #1

70 90

80 1006010 20

37 50

39

4038

30 35

36

33 34

Find 34

37 50

30 35

33 34

Page 12

COSC 404 - Dr. Ramon Lawrence

Searching a 2-3 Tree
Example #2

70 90

80 1006010 20

37 50

39

4038

30 35

36

33 34

Find 82

70 90

80

37 50

3

Page 13

COSC 404 - Dr. Ramon Lawrence

Insertion into a 2-3 Tree
Algorithm:
Find the leaf node where the new key belongs.

This insertion node will contain either a single key or two keys.

If the node contains 1 key, insert the new key in the node (in
the correct sorted order).

If the node contains 2 keys:
Insert the node in the correct sorted order.

The node now contains 3 keys (overflow).

Take the middle key and promote it to its parent node. (split node)

If the parent node now has more than 3 keys, repeat the procedure by
promoting the middle node to its parent node.

This promotion procedure continues until:
Some ancestor has only one node, so overflow does not occur.

All ancestors are “full” in which case the current root node is split into two
nodes and the tree “grows” by one level. Page 14

COSC 404 - Dr. Ramon Lawrence

Insertion into a 2-3 Tree
Splitting Algorithm

Splitting Algorithm:
Given a node with overflow (more than 2 keys in this case), we

split the node into two nodes each having a single key.

The middle value (in this case key[1]) is passed up to the
parent of the node.
This, of course, requires parent pointers in the 2-3 tree.

This process continues until we find a node with sufficient room
to accommodate the node that is being percolated up.

If we reach the root and find it has 2 keys, then we split it and
create a new root consisting of the “middle” node.

The splitting process can be done in logarithmic time since we
split at most one node per level of the tree and the depth of the
tree is logarithmic in the number of nodes in the tree.
Thus, 2-3 trees provide an efficient height balanced tree.

Page 15

COSC 404 - Dr. Ramon Lawrence

Insert 39

70 90

50

30

80 100604010 20

Insertion Examples

Page 16

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

50

30

80 1006010 20 39 40

Done!

Page 17

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

50

30

80 1006010 20 39 40

Insert 38

Page 18

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

50

30

80 1006010 20 38 39 40

Insert 38

4

Page 19

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

50

30

80 1006010 20 38 39 40

Push up, split apart

Page 20

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

50

80 1006010 20

30 39

38 40

Done!

Page 21

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

50

80 1006010 20

30 39

38 40

Insert 37

Page 22

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

50

80 1006010 20

30 39

40

Done!

37 38

Page 23

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

50

80 1006010 20

30 39

4037 38

Insert 36

Page 24

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

50

80 1006010 20

30 39

40

Insert 36

36 37 38

5

Page 25

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

50

80 1006010 20

30 39

4036 37 38

Push up, split apart

Page 26

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

50

80 1006010 20 40

30 37 39

Need to go further up the tree to resolve overcrowding

36 38

Page 27

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

50

80 1006010 20 40

30 37 39

36 38

Push up, split apart

Page 28

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

80 1006010 20 36

37 50

3930

4038

Done!

Page 29

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

80 1006010 20 36

37 50

3930

4038

Insert 35

Page 30

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

80 1006010 20

37 50

3930

4038

Insert 35

35 36

6

Page 31

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

80 1006010 20

37 50

3930

4038

Insert 34

35 36

Page 32

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

80 1006010 20

37 50

3930

4038

Insert 34

34 35 36

Page 33

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

80 1006010 20

37 50

3930

403834 35 36

Push up, split apart

Page 34

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

80 1006010 20

37 50

39

4038

Done!

30 35

36

34

Page 35

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

80 1006010 20

37 50

39

4038

30 35

36

34

Insert 33

Page 36

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

80 1006010 20

37 50

39

4038

30 35

36

33 34

Done!

7

Page 37

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

80 1006010 20

37 50

39

4038

30 35

36

33 34

Insert 32

Page 38

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

80 1006010 20

37 50

39

4038

30 35

36

Insert 32

32 33 34

Page 39

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

80 1006010 20

37 50

39

4038

30 35

36

32 33 34

Push up, split apart

Page 40

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

80 1006010 20

37 50

39

403836

30 33 35

32 34

Push up, split apart

Page 41

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

70 90

80 10060

33 37 50

39

4038

Push up, split apart

3530

10 20 32

34 36

Page 42

COSC 404 - Dr. Ramon Lawrence

Insertion Examples

33

3530

A new level is born!

37

50

39 70 90

10 20 32

34 36

38 40

60 80 100

8

Page 43

COSC 404 - Dr. Ramon Lawrence

Insertion Special Cases
There are 3 cases of splitting for insertion:
1) Splitting a leaf node
Promote middle key to parent and create two new nodes containing half

the keys.

Do not have child pointers to worry about.

2) Splitting an interior node
Promote middle key to parent and create two new nodes containing half

the keys.

Make sure child pointers are copied over as well as keys.

3) Splitting the root node
Similar to splitting an interior node, but now the tree will grow by one

level and will have a new root node (must update root pointer).

Case 2 is ONLY possible if a leaf node has been previously
split. Case 3 is only possible if all ancestors of the leaf node
had to be split.

Page 44

COSC 404 - Dr. Ramon Lawrence

Special Case: Splitting a Leaf Node

Leaf node overflow

P

S M L

Page 45

COSC 404 - Dr. Ramon Lawrence

Special Case: Splitting a Leaf Node (2)

Splitting a leaf node

P

LS

M

Page 46

COSC 404 - Dr. Ramon Lawrence

Special Case: Splitting an Interior Node

Splitting an internal node

S M L

A DCB

P

Interior node overflow

Page 47

COSC 404 - Dr. Ramon Lawrence

Special Case:
Splitting an Interior Node (2)

Splitting an internal node

A DCB

P’s Parent

S L

M
P1 P2

Page 48

COSC 404 - Dr. Ramon Lawrence

Special Case: Splitting the Root Node

Splitting the root node

S M L

A DCB

Root

Height h

9

Page 49

COSC 404 - Dr. Ramon Lawrence

Special Case: Splitting the Root Node (2)

Height h+1

A DCB

New Root

S L

M

Page 50

COSC 404 - Dr. Ramon Lawrence

B-tree Insertion Practice Question
For a B-tree of order 1 (max. keys=2), insert the following
keys in order:
10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150

Page 51

COSC 404 - Dr. Ramon Lawrence

Deletion From a 2-3 Tree
Algorithm:
To delete a key K, first locate the node N containing K.
If K is not found, then deletion algorithm terminates.

If N is an interior node, find K’s in-order successor and swap it
with K. As a result, deletion always begins at a leaf node L.

If leaf node L contains a value in addition to K, delete K from L,
and we’re done. (no underflow)
For B-trees, underflow occurs if # of nodes < minimum.

If underflow occurs (node has less than required # of keys), we
merge it with its neighboring nodes.
Check siblings of leaf. If sibling has two values, redistribute them.

Otherwise, merge L with an adjacent sibling and bring down a value from
L’s parent.

If L’s parent has underflow, recursively apply merge procedure.

If underflow occurs to the root, the tree may shrink a level. Page 52

COSC 404 - Dr. Ramon Lawrence

AB

C

L
A

B

L
C

Deletion
Re-distributing values in Leaf Nodes

If deleting K from L causes L to be empty:
Check siblings of now empty leaf.

If sibling has two values, redistribute the values.

Page 53

COSC 404 - Dr. Ramon Lawrence

Merging leaf nodes:
If no sibling node has extra keys to spare, merge L with an

adjacent sibling and bring down a value from L’s parent.

The merging of L may cause the parent to be left without a
value and only one child. If so, recursively apply deletion
procedure to the parent.

A

B

L
AB

L

Deletion
Merging Leaf Nodes

Page 54

COSC 404 - Dr. Ramon Lawrence

C

A B

w x y z

B

A C

x zyw

Deletion
Re-distributing values in Interior Nodes

Re-distributing values in interior nodes:
If the node has a sibling with two values, redistribute the values.

10

Page 55

COSC 404 - Dr. Ramon Lawrence

B

A

x y z

A B

zyx

Deletion
Merging Interior Nodes

Merging interior nodes:
If the node has no sibling with two values, merge the node with

a sibling, and let the sibling adopt the node’s child.

Page 56

COSC 404 - Dr. Ramon Lawrence

A B

zyx

A B

zyx

Deletion
Merging on the Root Node

If the merging continues so that the root of the tree is without a
value (and has only one child), delete the root. Height will now
be h-1.

Page 57

COSC 404 - Dr. Ramon Lawrence

Deletion Examples

30

40

Original tree

50

60 80 100

70 90

10 20

Page 58

COSC 404 - Dr. Ramon Lawrence

Deletion Examples

Delete 70

30

40

50

60 80 100

70 90

10 20

Page 59

COSC 404 - Dr. Ramon Lawrence

Deletion Examples

30

40

Swap with in-order successor

50

60 70 100

80 90

10 20

Page 60

COSC 404 - Dr. Ramon Lawrence

Deletion Examples

30

40

Merge and pull down

50

60 100

80 90

10 20

11

Page 61

COSC 404 - Dr. Ramon Lawrence

Deletion Examples

30

40

Done!

50

10010 20 60 80

90

Page 62

COSC 404 - Dr. Ramon Lawrence

Deletion Examples

30

40

Delete 100

50

10010 20 60 80

90

Page 63

COSC 404 - Dr. Ramon Lawrence

Deletion Examples

30

40

Redistribute

50

10 20 60 80

90

Page 64

COSC 404 - Dr. Ramon Lawrence

Deletion Examples

30

40

Done!

50

10 20

80

9060

Page 65

COSC 404 - Dr. Ramon Lawrence

Deletion Examples

30

40

Delete 80

50

10 20

80

9060

Page 66

COSC 404 - Dr. Ramon Lawrence

Deletion Examples

30

40

50

10 20

90

8060

Swap with in-order successor

12

Page 67

COSC 404 - Dr. Ramon Lawrence

Deletion Examples

30

40

50

10 20

90

60

Merge and pull down

Page 68

COSC 404 - Dr. Ramon Lawrence

Deletion Examples

30

40

50

10 20

Merge and pull down

60 90

Page 69

COSC 404 - Dr. Ramon Lawrence

Deletion Examples

4010 20

Merge and pull down

60 90

30 50

Page 70

COSC 404 - Dr. Ramon Lawrence

Deletion Examples

Done

4010 20 60 90

30 50

Page 71

COSC 404 - Dr. Ramon Lawrence

B-tree Deletion Practice Question
Using the previous tree constructed by inserting into a B-tree of
order 1 (max. keys=2) the keys:
10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150

Delete these keys (in order):
40

70

80

Page 72

COSC 404 - Dr. Ramon Lawrence

B-trees as External Data Structures
Now that we understand how a B-tree works as a data
structure, we will investigate how it can be used for an index.

A regular B-tree can be used as an index by:
Each node in the B-tree stores not only keys, but also a record

pointer for each key to the actual data being stored.
Could also potentially store the record in the B-tree node itself.

To find the data you want, search the B-tree using the key, and
then use the pointer to retrieve the data.
No additional disk access is required if the record is stored in the node.

Given this description, it is natural to wonder how we might
calculate the best B-tree order.
Depends on disk block and record size.

We want a node to occupy an entire block.

13

Page 73

COSC 404 - Dr. Ramon Lawrence

Calculating the Size of a B-tree Node
Given a block of 4096 bytes, calculate the order of a B-tree if
the key size is 4 bytes, the pointer to the data record is 8 bytes,
and the child pointers are 8 bytes.

Answer:
Assuming no header information is kept in blocks:

node size = keySize*numKeys + dataPtrSize*numKeys

+ childPtrSize*(numKeys+1)

Let k=numKeys.

size of one node = 4*k + 8*k + 8*(k+1) <= 4096

k = 204 keys

Maximum order is 102.

Page 74

COSC 404 - Dr. Ramon Lawrence

B-tree Question
Question: Given a block of 4096 bytes, calculate the maximum
number of keys in a node if the key size is 4 bytes, internal B-
tree pointers are 8 bytes, and we store the record itself in the
B-tree node instead of a pointer. The record size is 100 bytes.

A) 18

B) 36

C) 340

D) 680

Page 75

COSC 404 - Dr. Ramon Lawrence

Advantages of B-trees
The advantages of a B-tree are:
1) B-trees automatically create or destroy index levels as the

data file changes.

2) B-trees automatically manage record allocation to blocks, so
no overflow blocks are needed.

3) A B-tree is always balanced, so the search time is the same
for any search key and is logarithmic.

For these reasons, B-trees and B+-trees are the index scheme
of choice for commercial databases.

Page 76

COSC 404 - Dr. Ramon Lawrence

B+-trees
A B+-tree is a multi-level index structure like a B-tree except
that all data is stored at the leaf nodes of the resulting tree
instead of within the tree itself.
Each leaf node contains a pointer to the next leaf node which

makes it easy to chain together and maintain the data records
in “sequential” order for sequential processing.

Thus, a B+-tree has two distinct node types:
1) interior nodes - store pointers to other interior nodes or leaf

nodes.

2) leaf nodes - store keys and pointers to the data records (or
the data records themselves).

Page 77

COSC 404 - Dr. Ramon Lawrence

B+-tree Example

Record Pointers

50

10 30 70 90

4 8 90 9910 22 30 45 50 69 70 89

Page 78

COSC 404 - Dr. Ramon Lawrence

Operations on B+-trees
The general algorithms for inserting and deleting from a B+-
tree are similar to B-trees except for one important difference:

All key values stay in leaves.

When we must merge nodes for deletion or add nodes during
splitting, the key values removed/promoted to the parent nodes
from leaves are copies.
All non-leaf levels do not store actual data, they are simply a

hierarchy of multi-level index to the data.

14

Page 79

COSC 404 - Dr. Ramon Lawrence

B+-tree Insert Example

50

10 30 70 90

4 8 90 9910 22 30 45 50 69 70 89

Insert 75

Page 80

COSC 404 - Dr. Ramon Lawrence

B+-tree Insert Example (2)

50

10 30 70 90

4 8 90 9910 22 30 45 50 69

75 goes in 2nd last block.
Split block to handle overflow.
Promote 75. Note that 75 stays in a leaf!

75 8970

Page 81

COSC 404 - Dr. Ramon Lawrence

B+-tree Insert Example (3)

50

10 30

4 8 90 9910 22 30 45 50 69

Split parent block to handle overflow.
Promote 75. Note that 75 does not stay!

75 89

7570 90

70

Page 82

COSC 404 - Dr. Ramon Lawrence

B+-tree Insert Example (4)

50 75

10 30

4 8 90 9910 22 30 45 50 69

Insertion done!

75 89

70 90

70

Page 83

COSC 404 - Dr. Ramon Lawrence

B+-tree Delete Example

50 75

10 30

4 8 90 9910 22 30 45 50 69

Delete 75.

75 89

70 90

70

Page 84

COSC 404 - Dr. Ramon Lawrence

B+-tree Delete Example (2)

50 75

10 30

4 8 90 9910 22 30 45 50 69

Remove from leaf node.
No other updates.

70 90

8970

15

Page 85

COSC 404 - Dr. Ramon Lawrence

B+-Tree Delete Example 2

50 75

10 30

4 8 90 9910 22 30 45 50 69

70

Delete 89.

70 90

89

Page 86

COSC 404 - Dr. Ramon Lawrence

B+-Tree Delete Example 2 (2)

50 75

10 30

4 8 10 22 30 45 50 69

70

Redistribute keys 90 and 99.

70 99

90

99

Page 87

COSC 404 - Dr. Ramon Lawrence

B+-Tree Delete Example 3

50 75

10 30

4 8 10 22 30 45 50 69

70

Delete 90.

70 99

90

99

Page 88

COSC 404 - Dr. Ramon Lawrence

B+-Tree Delete Example 3 (2)

50 75

10 30

4 8 10 22 30 45 50 69

70

Empty leaf node. Merge with sibling.

70 99

99

Page 89

COSC 404 - Dr. Ramon Lawrence

B+-Tree Delete Example 3 (2)

50 75

10 30

4 8 10 22 30 45 50 69

Empty interior node. Merge with sibling.

70

Merge

70

99

Page 90

COSC 404 - Dr. Ramon Lawrence

B+-Tree Delete Example 3 (3)

10 30

4 8 10 22 30 45 50 69

Bring down 75 from parent node. Done.

70 75

50

70 99

16

Page 91

COSC 404 - Dr. Ramon Lawrence

B+-tree Practice Question
For a B+-tree of order 2 (max. keys=4), insert the following
keys in order:
10, 20, 30, 40, 50, 60, 70, 80, 90

Assuming keys increasing by 10, what is the first key added
that causes the B+-tree to grow to height 3?
a) 110 b) 120 c) 130 d) 140 e) 150

Show the tree after deleting the following keys:
a) 70

b) 90

c) 10

Assume you start with the tree after inserting 90 above.

Page 92

COSC 404 - Dr. Ramon Lawrence

B+-tree Challenge Exercise
For a B+-tree with maximum keys=3, insert the following keys
in order:
10, 20, 30, 40, 50, 60, 70, 80, 90,100

Show the tree after deleting the following keys:
a) 70

b) 90

c) 10

Try the deletes when the minimum # of keys is 1 and when the
minimum # of keys is 2.

Page 93

COSC 404 - Dr. Ramon Lawrence

Observations about B+-trees
Since the inter-node connections are done by pointers, there is
no assumption that in the B+-tree, the “logically” close blocks
are “physically” close.

The B+-tree contains a relatively small number of levels
(logarithmic in the size of the main file), thus searches and
modifications can be conducted efficiently.

Example:
If a B+-tree node can store 300 key-pointer pairs at maximum,

and on average is 69% full, then 208 (207+1) pointers/block.

Level 3 B+-tree can index 2083 records = 8,998,912 records!

Page 94

COSC 404 - Dr. Ramon Lawrence

B+-trees Discussion
By isolating the data records in the leaves, we also introduce
additional implementation complexity because the leaf and
interior nodes have different structures.
Interior nodes contain only pointers to additional index nodes or

leaf nodes while leaf nodes contain pointers to data records.

This additional complexity is outweighed by the advantages of
B+-trees which include:
Better sequential access ability.

Greater overall storage capacity for a given block size since the
interior nodes can hold more pointers each of which requires
less space.

Uniform data access times.

Page 95

COSC 404 - Dr. Ramon Lawrence

B-trees
Summary

A B-tree is a search tree where each node has >= n data
values and <= 2n, where we chose n for our particular tree.
A 2-3 tree is a special case of a B-tree.

Common operations: search, insert, delete
Insertion may cause node overflow that is handled by promotion.

Deletion may cause node underflow that is handled by mergers.

Handling special cases for insertion and deletion make the
code for implementing B-trees complex.

Note difference between B+-tree and B-tree for insert/delete!

B+-trees are a good index structure because they can be
searched/updated in logarithmic time, manage record pointer
allocation on blocks, and support sequential access.

Page 96

COSC 404 - Dr. Ramon Lawrence

Major Objectives
The "One Things":
Insert and delete from a B-tree and a B+-tree.

Calculate the maximum order of a B-tree.

Major Theme:
B-trees are the standard index method due to their time/space

efficiency and logarithmic time for insertions/deletions.

Other objectives:
Calculate query access times using B-trees indexes.

Compare/contrast B-trees and B+-trees.

1

COSC 404
Database System Implementation

R-trees

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 404 - Dr. Ramon Lawrence

R-Trees Introduction
R-trees (or region tree) is a generalized B-tree suitable for
processing spatial queries. Unlike B-trees where the keys have
only one dimension, R-trees can handle multidimensional data.

The basic R-tree was proposed by Guttman in 1984 and
extensions and modifications have been later developed.
R+-tree (Sellis et al. 1987)

R*-tree (Beckmann et al. 1990)

We begin by looking at the properties of spatial data and spatial
query processing.

Page 3

COSC 404 - Dr. Ramon Lawrence

Types of Spatial Data
Spatial data includes multidimensional points, lines, rectangles,
and other geometric objects.

A spatial data object occupies a region of space, called its
spatial extent, which is defined by its location and boundary.

Point Data - points in multidimensional space

Region Data - objects occupy a region (spatial extent) with a
location and a boundary.

Page 4

COSC 404 - Dr. Ramon Lawrence

Types of Spatial Queries
Spatial Range Queries - query has associated region and asks
to find matches within that region
e.g. Find all cities within 50 miles of Kelowna.

Answer to query may include overlapping or contained regions.

Nearest Neighbor Queries - find closest region to a region.
e.g. Find the 5 closest cities to Kelowna.

Results are ordered by proximity (distance from given region).

Spatial Join Queries - join two types of regions
e.g. Find all cities near a lake.

Expensive to compute as join condition involves regions and
proximity.

Page 5

COSC 404 - Dr. Ramon Lawrence

Spatial Data Applications
Geographic Information Systems (GIS) use spatial data for
modeling cities, roads, buildings, and terrain.

Computer-aided design and manufacturing (CAD/CAM)
process spatial objects when designing systems.
Spatial constraints: "There must be at least 6 inches between

the light switch and turn signal."

Multimedia databases storing images, text, and video require
spatial data management to answer queries like "Return the
images similar to this one." Involves use of feature vectors.
Similarity query converted into nearest neighbor query.

Page 6

COSC 404 - Dr. Ramon Lawrence

Spatial Queries
Question: What type of spatial query is: "Find the city with the
largest population closest to Chicago?"

A) Spatial Range Query

B) Nearest Neighbor Query

C) Spatial Join Query

D) Not a spatial query

2

Page 7

COSC 404 - Dr. Ramon Lawrence

Spatial Indexing
A multidimensional or spatial index utilizes some kind of spatial
relationship to organize data entries. Each key value in the
index is a point (or region) in k-dimensional space, where k is
the number of fields in the search key.

Although multidimensions (multiple key fields) can be handled
in a B+-tree, this is accomplished by imposing a total ordering
on the data as B+-trees are single-dimensional indexes.

For instance, B+-tree index on <x,y> would sort the points by x
then by y.
I.e. <2,70>, <3,10>, <3,20>, <4,60>

Page 8

COSC 404 - Dr. Ramon Lawrence

B+-tree versus R-tree

80
70
60
50
40
30
20
10
0
0 1 2 3 4

B+-tree

80
70
60
50
40
30
20
10
0
0 1 2 3 4

R-tree

3,10 3,20

3,20 4,702,80 3,10

R1

R2

R1 R2

3,10 3,20 2,70 4,60

R1=(3,10)-(3,20)
R2=(2,60)-(4,80)

Page 9

COSC 404 - Dr. Ramon Lawrence

B+-tree versus R-tree Querying
Consider these three queries on x and y:
1) Return all points with x < 3.
Works well on B+-tree and R-tree. Most efficient on B+-tree.

2) Return all points with y < 50.
Cannot be efficiently processed with B+-tree as data sorted on x first.

Can be efficiently processed on R+-tree.

3) Return all points with x < 3 and y < 50.
B+-tree is only useful for selection on x. Not very good if many points

satisfy this criteria.

Efficient for R-tree as only search regions that may contain points that
satisfy both criteria.

Page 10

COSC 404 - Dr. Ramon Lawrence

R-Tree Structure
R-tree is adaptation of B+-tree to handle spatial data.

The search key for an R tree is a collection of intervals with one
interval per dimension. Search keys are referred to as
bounding boxes or minimum bounding rectangles (MBRs).
Example:

Each entry in a node consists of a pair <n-dimensional box, id>
where the id identifies the object and the box is its MBR.

Data entries are stored in leaf nodes and non-leaf nodes contain
entries consisting of <n-dimensional box, node pointer>.

The box at a non-leaf node is the smallest box that contains all
the boxes associated with the child nodes.

Page 11

COSC 404 - Dr. Ramon Lawrence

R-Tree Notes
The bounding box for two children of a given node can overlap.
Thus, more than one leaf node could potentially store a given

data region.

A data point (region) is only stored in one leaf node.

Page 12

COSC 404 - Dr. Ramon Lawrence

R-Tree Searching
Start at the root.
If current node is non-leaf, for each entry <E, ptr> if box E

overlaps Q, search subtree identified by ptr.

If current node is leaf, for each entry <E, id>, if E overlaps Q, id
identifies an object that might overlap Q.

Note that you may have to search several subtrees at each
node. In comparison, a B-tree equality search goes to just one
leaf.

3

Page 13

COSC 404 - Dr. Ramon Lawrence

R-Tree Searching Improvements
Although it is more convenient to store boxes to represent
regions because they can be represented compactly, it is
possible to get more precise bounding regions by using convex
polygons.

Although testing overlap is more complicated and slower, this is
done in main-memory so it can be done quite efficiently. This
often leads to an improvement.

Page 14

COSC 404 - Dr. Ramon Lawrence

R-Tree Insertion Algorithm
Start at root and go down to "best-fit" leaf L.
Go to child whose box needs least enlargement to cover B;

resolve ties by going to smallest area child.

If best-fit leaf L has space, insert entry and stop.

Otherwise, split L into L1 and L2.
Adjust entry for L in its parent so that the box now covers (only)

L1.

Add an entry (in the parent node of L) for L2. (This could cause
the parent node to recursively split.)

Page 15

COSC 404 - Dr. Ramon Lawrence

R-Tree Insertion Algorithm
Splitting a Node

The existing entries in node L plus the newly inserted entry
must be distributed between L1 and L2.

Goal is to reduce likelihood of both L1 and L2 being searched
on subsequent queries.

Idea: Redistribute so as to minimize area of L1 plus area of L2.

An exhaustive search of possibilities is too slow so quadratic
and linear heuristics are used.

Page 16

COSC 404 - Dr. Ramon Lawrence

Insertion Example

R-tree degree=3

R1 R2

A B C D

R1 R2

A B C D E

New R-tree

E

Extended region R2 to hold E.

Spatial Data

A

BC

D

R1

R2

Insert E

A

BC

R1 DR2

Page 17

COSC 404 - Dr. Ramon Lawrence

Insertion Example 2

R1 R2

A B C D E

Original R-treeInsert X

X

New R-tree

R1 R3 R2

D E A C B X

A

BC

D
E

R1

R2

Updated Regions

A

BC

D
EX
R2

R3

R1

Split R1 into R1 and R3.
Page 18

COSC 404 - Dr. Ramon Lawrence

R+-Tree
R+-tree avoids overlap by inserting an object into multiple
leaves if necessary.

Reduces search cost as now take a single path to leaf.

4

Page 19

COSC 404 - Dr. Ramon Lawrence

R*-Tree
R*-tree uses the concept of forced reinserts to reduce overlap
in tree nodes.

When a node overflows, instead of splitting:
Remove some (say 30%) of the entries and reinsert them into

the tree.

Could result in all reinserted entries fitting on some existing
pages, avoiding a split.

R*-trees also use a different heuristic, minimizing box
parameters, rather than box areas during insertion.

Page 20

COSC 404 - Dr. Ramon Lawrence

GiST
The Generalized Search Tree (GiST) abstracts the "tree"
nature of a class of index including B+-trees and R-tree
variants.
Striking similarities in insert/delete/search and even

concurrency control algorithms make it possible to provide
"templates" for these algorithms that can be customized to
obtain the many different tree index structures.

B+ trees are so important (and simple enough to allow further
specialization) that they are implemented specifically in all
DBMSs.

GiST provides an alternative for implementing other index
types.

Implemented in PostgreSQL. Make your own index!

Page 21

COSC 404 - Dr. Ramon Lawrence

R-Tree Variants
Question: Select a true statement.

A) Searching in a R-tree always follows a single path.

B) R-tree variants may have different ways for splitting nodes
during insertion.

C) A R+-tree search always follows a single path to a leaf
node.

D) None of the above

Page 22

COSC 404 - Dr. Ramon Lawrence

R-Trees Summary
An R-tree is useful for indexing and searching spatial data.

Variants of R-trees are used in commercial databases.

Page 23

COSC 404 - Dr. Ramon Lawrence

Major Objectives
The "One Thing":
Be able to explain the difference between an R-tree and a B+-

tree.

Other objectives:
List some types of spatial data.

List some types of spatial queries.

List some applications of spatial data and queries.

Understand the idea of insertion in a R-tree.

1

COSC 404
Database System Implementation

Hash Indexes

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 404 - Dr. Ramon Lawrence

Hash Indexes
Overview

B-trees reduce the number of block accesses to 3 or 4 even for
extremely large data sets. The goal of hash indexes is to make
all operations require only 1 block access.

Hashing is a technique for mapping key values to locations.

Hashing requires the definition of a hash function f(x), that
takes the key value x and computes y=f(x) which is the location
of where the key should be stored.

A collision occurs when we attempt to store two different keys
in the same location.
f(x1) = y and f(x2) = y for two keys x1 != x2

Page 3

COSC 404 - Dr. Ramon Lawrence

Handling Collisions
A perfect hash function is a function that:
For any two key values x1 and x2, f(x1) != f(x2) for all x1 and x2,

where x1 != x2.

That is, no two keys map to the same location.

It is not always possible to find a perfect hash function for a set
of keys depending on the situation.
Recent research on perfect hash functions is useful for databases.

We must determine how to handle collisions where two different
keys map to the same location.

One simple way of handling collisions is to make the hash table
really large to minimize the probability of collisions.
This is not practical in general. However, we do want to make

our hash table moderately larger than the # of keys. Page 4

COSC 404 - Dr. Ramon Lawrence

Open Addressing
Open addressing with linear probing is a method for
handling hash collisions.

Open addressing:
Computes y=f(x) and attempts to put key in location y.

If location y is occupied, scan the array to find the next open
location. Treat the array as circular.

Page 5

COSC 404 - Dr. Ramon Lawrence

Open addressing on a 11 element array with f(x) = x % 11:

Insert 917 at location 4.

[3] [4][0] [9][8][6] [7][5] [10][2][1]

917

Open Addressing Example

Page 6

COSC 404 - Dr. Ramon Lawrence

Open addressing on a 11 element array with f(x) = x % 11:

Insert 254 at location 1.

[3] [4][0] [9][8][6] [7][5] [10][2][1]

917254

Open Addressing Example (2)

2

Page 7

COSC 404 - Dr. Ramon Lawrence

Open addressing on a 11 element array with f(x) = x % 11:

Insert 589 at location 6.

[3] [4][0] [9][8][6] [7][5] [10][2][1]

917 589254

Open Addressing Example (3)

Page 8

COSC 404 - Dr. Ramon Lawrence

Open addressing on a 11 element array with f(x) = x % 11:

Insert 457 at location 6.
Collision with 589.

Next open location is 7, so insert there.

[3] [4][0] [9][8][6] [7][5] [10][2][1]

917 589 254 457

Open Addressing Example (4)

Page 9

COSC 404 - Dr. Ramon Lawrence

Open addressing on a 11 element array with f(x) = x % 11:

Insert 136 at location 4.
Collision with 917.

Next open location is 5, so insert there.

[3] [4][0] [9][8][6] [7][5] [10][2][1]

917 589 254 457 136

Open Addressing Example (5)

Page 10

COSC 404 - Dr. Ramon Lawrence

Open addressing on a 11 element array with f(x) = x % 11:

Insert 654 at location 5.
Collision with 136.

Note that a collision occurs with a key that did not even
originally hash to location 5.

Keep going down array until find location to insert which is 8.

[3] [4][0] [9][8][6] [7][5] [10][2][1]

917 589 254 457 136 654

Open Addressing Example (6)

Page 11

COSC 404 - Dr. Ramon Lawrence

Open addressing on a 11 element array with f(x) = x % 11:

Insert 306 at location 9.

[3] [4][0] [9][8][6] [7][5] [10][2][1]

917 589 254 457 136 654 306

Open Addressing Example (7)

Page 12

COSC 404 - Dr. Ramon Lawrence

Open Addressing Example Summary
Insert
 917 1 probe(s)

 589 1

 254 1

 457 2

 136 2

 654 4

 306 1

Average number of probes = 12 / 7 = 1.7

3

Page 13

COSC 404 - Dr. Ramon Lawrence

Open Addressing
Insert and Delete

Insert using linear probing creates the potential that a key may
be inserted many locations away from its original hash location.

What happens if an element is then deleted in between its
proper insert location and the location where it was put?
How does this affect insert and delete?

Example: Delete 589 (f(589)=6), then search for 654 (f(654)=5).

Problem! Search would normally terminate at empty location 6!

[3] [4][0] [9][8][6] [7][5] [10][2][1]

917 ?? 254 457 136 654 306

Solution: Have special constants to mark when a location
is empty and never used OR empty and was used. Page 14

COSC 404 - Dr. Ramon Lawrence

Open Address Hashing
Question: What location is 19 inserted at?

A) 8

B) 9

C) 6

D) 0

[3] [4][0] [9][8][6] [7][5] [10][2][1]

512 18 8 (del.) 21

Page 15

COSC 404 - Dr. Ramon Lawrence

Separate Chaining
Separate chaining resolves collisions by having each array
location point to a linked list of elements.
Algorithms for operations such as insert, delete, and search are

obvious and straightforward.

As with open addressing, separate chaining has the potential to
degenerate into a linear algorithm if the hash function does not
distribute the keys evenly in the array.

...

--

--

--

Page 16

COSC 404 - Dr. Ramon Lawrence

Hash Limitations and Analysis
Hashing gives very good performance when the hash function
is good and the number of conflicts is low.
If the # of conflicts is high, then the performance of hashing

rapidly degrades. The worse case is O(n).

Collisions can be reduced by minimizing the:
load factor = # of occupied locations/size of hash table.

However, on average, inserts, searches, and deletes are O(1)!

The limitations of hashing are:
Ordered traversals are difficult without an additional structure

and a sort. (hashing randomizes locations of records)

Partial key searches are difficult as the hash function must use
the entire key.

Page 17

COSC 404 - Dr. Ramon Lawrence

Hash Limitations and Analysis (2)
The hash field space is the set of all possible hash field values
for records.
i.e. It is the set of all possible key values that we may use.

The hash address space is the set of all record slots (or
storage locations).
i.e. Size of array in memory or physical locations in a file.

Tradeoff:
The larger the address space relative to the hash field space,

the easier it is to avoid collisions, BUT
the larger the address space relative to the number of records

stored, the worse the storage utilization.

Page 18

COSC 404 - Dr. Ramon Lawrence

Hashing Questions
How to handle real data?

Determine your own hash function for each of the following set
of keys. Assume the hash table size is 100,000.

1) The keys are part numbers in the range 9,000,000 to
9,099,999.

2) The keys are people's names.
E.g. "Joe Smith", "Tiffany Connor", etc.

4

Page 19

COSC 404 - Dr. Ramon Lawrence

…

Block address on disk

0
1
2
3

N-1

H(K)

K

Hash file has relative bucket numbers 0 through N-1.
Map logical bucket numbers to physical disk block addresses.
Disk blocks are buckets that hold several data records each.

External Hashing
Overview

External hashing algorithms allocate records with keys to blocks on disk
rather than locations in a memory array.

Page 20

COSC 404 - Dr. Ramon Lawrence

External Hashing Example

External Hash Table
- 5 buckets
- 2 records per bucket
- use overflow blocks
- f(x) = x % 5

0

1

2

3

4

Page 21

COSC 404 - Dr. Ramon Lawrence

0

1

2

3

4

External Hashing Example
Insertion

Insert:
1,5,3,6,4,24

5

1
6

3

4
24

Page 22

COSC 404 - Dr. Ramon Lawrence

0

1

2

3

4

External Hashing Example
Insertion with Overflow

Insert: 11
5

1
6

3

4
24

11

Page 23

COSC 404 - Dr. Ramon Lawrence

0

1

2

3

4

5

1
6

3

4
24

External Hashing Example
Deletion

Delete: 4

11

24 Keep bucket in sorted
order. Shift up.

Page 24

COSC 404 - Dr. Ramon Lawrence

0

1

2

3

4

External Hashing Example
Deletion with Overflow

Delete: 6
5

1
6

3

24

11

Move 11 to main bucket.

Delete overflow block.

11

5

Page 25

COSC 404 - Dr. Ramon Lawrence

Deficiencies of Static Hashing
In static hashing, the hash function maps keys to a fixed set of
bucket addresses. However, databases grow with time.
If initial number of buckets is too small, performance will

degrade due to too many overflows.

If file size is made larger to accommodate future needs, a
significant amount of space will be wasted initially.

If database shrinks, again space will be wasted.

One option is periodic re-organization of the file with a new
hash function, but it is very expensive.

Bottom line: Must determine optimal utilization of hash table.
Try to keep utilization between 50% and 80%. Hard when data changes.

These problems can be avoided by using techniques that allow
the number of buckets to be modified dynamically.

Page 26

COSC 404 - Dr. Ramon Lawrence

Linear Hashing
Linear hashing allows a hash file to expand and shrink
dynamically.

A linear hash table starts with 2d buckets where d is the # of bits
used from the hash value to determine bucket membership.
Take the last d bits of H where d is the current # of bits used.

The growth of the hash table can either be triggered:
1) Every time there is a bucket overflow.

2) When the load factor of the hash table reaches a given point.

We will use the load factor method.
Since bucket overflows may not always trigger hash table

growth, overflow blocks are used.

Page 27

COSC 404 - Dr. Ramon Lawrence

Linear Hashing
Load Factor

The load factor lf of the hash table is the number of records
stored divided by the number of possible storage locations.
The initial number of blocks n is a power of 2.
As the table grows, it may not always be a power of 2.

The number of storage locations s = #blocks X #records/block.

The initial number of records in the table r is 0 and is increased
as records are added.

Load factor = r / s = r / n * #records/block

We will expand the hash table when the load factor > 85%.

Page 28

COSC 404 - Dr. Ramon Lawrence

Linear Hashing Load Factor
Question: A linear hash table has 5 blocks each with space for
4 records. There are currently 2 records in the hash table.
What is its load factor?

A) 10%

B) 40%

C) 50%

D) 0%

Page 29

COSC 404 - Dr. Ramon Lawrence

Linear Hashing Example
Example:

Assume each hashed key is a sequence of four binary digits.

Store values 0000, 1010, 1111.

d = 1
n = 2
r = 3

0000
1010 0

11111

Page 30

COSC 404 - Dr. Ramon Lawrence

Linear Hashing
Insertions

Insertion algorithm:
Insert a record with key K by first computing its hash value H.

Take the last d bits of H where d is the current # of bits used.

Find the bucket m where K would belong using the d bits.

If m < n, then bucket exists. Go to that bucket.
If the bucket has space, then insert K. Otherwise, use an overflow block.

If m >= n, then put K in bucket m - 2d-1.

After each insert, check to see if the load factor lf < threshold.

If lf >= threshold perform a split:
Add new bucket n. (Adding bucket n may increase the directory size d.)

Divide the records between the new bucket n=1b2…bd and bucket 0b2..bd.

Note that the bucket split may not be the bucket where the record
was added! Update n and d to reflect the new bucket.

6

Page 31

COSC 404 - Dr. Ramon Lawrence

d = 1
n = 2
r = 3

Linear Hashing
Insertion Example

0000
1010 0

11111

Insert 0101.

0101

4/4 = 100% full.
Above threshold triggers split.

Page 32

COSC 404 - Dr. Ramon Lawrence

Linear Hashing
Insertion Example (2)

000000

0101
1111

01

Added new bucket 10. (2 in binary - old n!)
Divide records of bucket 00 and 10.

101010

d = 2
n = 3
r = 4

Page 33

COSC 404 - Dr. Ramon Lawrence

Linear Hashing
Insertion Example (3)

000000

0101
1111

01

Insert 0001.

101010

d = 2
n = 3
r = 5

Use overflow block.
(May sort records later.)

0001

Page 34

COSC 404 - Dr. Ramon Lawrence

Linear Hashing
Insertion Example (4)

000000

0101
1111

01

Insert 0111.

101010

0001
0111

6/6 = 100% full.
Above threshold triggers split.

d = 2
n = 3
r = 6

Page 35

COSC 404 - Dr. Ramon Lawrence

Linear Hashing
Insertion Example (5)

Create bucket 11.
Split records between 01 and 11.

d = 2
n = 4
r = 6

000000

0001
0101

01

101010

0111
1111

11

Page 36

COSC 404 - Dr. Ramon Lawrence

Linear Hashing Question
1) Show the resulting hash directory when hashing the keys: 0,
15, 8, 4, 7, 12, 10, 11 using linear hashing.
Assume a bucket can hold two records (keys).

Assume 4 bits of hash key.

Add a new bucket when utilization is >= 85%.

Clicker: What bucket is 11 in?

A) 000

B) 001

C) 1011

D) 011

7

Page 37

COSC 404 - Dr. Ramon Lawrence

B+-trees versus Linear Hashing
B+-trees versus linear hashing: which one is better?

Factors:
Cost of periodic re-organization

Relative frequency of insertions and deletions

Is it desirable to optimize average access time at the expense
of worst-case access time?

Expected type of queries:
Hashing is generally better at retrieving records having a

specified value for the key.

If range queries are common, B+-trees are preferred.

Real-world result: PostgreSQL implements both B+-trees and
linear hashing. Currently, linear hashing is not recommended
for use.

Page 38

COSC 404 - Dr. Ramon Lawrence

Hash Indexes
Summary

Hashing is a technique for mapping key values to locations.
With a good hash function and collision resolution, insert, delete

and search operations are O(1).

Ordered scans and partial key searches however are inefficient.

Collision resolution mechanisms include:
open addressing with linear probing - linear scan for open location.

separate chaining - create linked list to hold values and handle collisions
at an array location.

Dynamic hashing is required for databases to handle updates.

Linear hashing performs dynamic hashing and grows the hash
table one bucket at a time.

Page 39

COSC 404 - Dr. Ramon Lawrence

Major Objectives
The "One Things":
Perform open address hashing with linear probing.

Perform linear hashing.

Major Theme:
Hash indexes improve average access time but are not suitable

for ordered or range searches.

Other objectives:
Define: hashing, collision, perfect hash function

Calculate load factor of a hash table.

Compare/contrast external hashing and main memory hashing.

Compare/contrast B+-trees and linear hashing.

1

COSC 404
Database System Implementation

SQL Indexing

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 404 - Dr. Ramon Lawrence

Creating Indexes in SQL
There are two general ways of creating an index:
1) By specifying it in your CREATE TABLE statement:

2) Using a CREATE INDEX command after a table is created:

CREATE TABLE test
(a int,

b int,
c varchar(10)
PRIMARY KEY (a),
UNIQUE (b),
INDEX (c)

);

CREATE INDEX myIdxName ON test (a,b);

Only one primary key index allowed.

UNIQUE index does not allow duplicate keys.

Creates an index that supports duplicates.

Page 3

COSC 404 - Dr. Ramon Lawrence

CREATE INDEX Command
CREATE INDEX syntax:

UNIQUE means that each value in the index is unique.

ASC/DESC specifies the sorted order of index.

Note: The syntax varies slightly between systems.

CREATE [UNIQUE] INDEX indexName
ON tableName (colName [ASC|DESC] [,...])

DROP INDEX indexName;

Page 4

COSC 404 - Dr. Ramon Lawrence

CREATE INDEX Command
Examples

Examples:
CREATE UNIQUE INDEX idxStudent ON Student(sid)

Creates an index on the field sid in the table Student

idxStudent is the name of the index.

The UNIQUE keyword ensures the uniqueness of sid values in
the table (and index).
Uniqueness is enforced even when adding an index to a table with

existing data. If the sid field is non-unique then the index creation fails.

CREATE INDEX clMajor ON Student(Major) CLUSTER

Creates a clustered (primary) index on the Major field of
Student table.

Note: Clustered index may or may not be on a key field.

Page 5

COSC 404 - Dr. Ramon Lawrence

CREATE INDEX Command
Examples (2)

CREATE INDEX idxMajorYear ON student(Major,Year)

Creates an index with two fields.

Duplicate search keys are possible.

Page 6

COSC 404 - Dr. Ramon Lawrence

Creating Indexes in MySQL
MySQL supports both ways of creating indexes. The CREATE
INDEX command is mapped to an ALTER TABLE statement.

Syntax for CREATE TABLE:
CREATE TABLE tbl_Name
(

[CONSTRAINT [name]] PRIMARY KEY [index_type] (index_col,...)
| KEY [index_name] [index_type] (index_col,...)
| INDEX [index_name] [index_type] (index_col,...)
| [CONSTRAINT [symbol]] UNIQUE [INDEX]

[index_name] [index_type] (index_col,...)
| [FULLTEXT|SPATIAL] [INDEX] [index_name] (index_col,...)
| [CONSTRAINT [symbol]] FOREIGN KEY

[index_name] (index_col_name,...)
...

)

2

Page 7

COSC 404 - Dr. Ramon Lawrence

Creating Indexes in MySQL (2)
Notes:
1) By specifying a primary key, an index is automatically

created by MySQL. You do not have to create another one!

2) The primary key index (and any other type of index) can
have more than one attribute.

3) MySQL assigns default names to indexes if you do not
provide them.

4) MySQL supports B+-tree, Hash, and R-tree indexes but
support depends on table type.

5) Can index only the first few characters of a CHAR/VARCHAR
field by using col_name(length) syntax. (smaller index size)

6) FULLTEXT indexes allow more powerful natural language
searching on text fields (but have a performance penalty).

7) SPATIAL indexes can index spatial data.
Page 8

COSC 404 - Dr. Ramon Lawrence

Creating Indexes in SQL Server
Microsoft SQL Server supports defining indexes in the CREATE
TABLE statement or using a CREATE INDEX command.

Notes:
1) The primary index is a cluster index (rows sorted and stored

by indexed column). Unique indexes are non-clustered.
A clustered (primary) index stores the records in the index.

A secondary index stores pointers to the records in the index.

Clustered indexes use B+-trees.

2) A primary key constraint auto-creates a clustered index.

2) Also supports full-text and spatial indexing.

Page 9

COSC 404 - Dr. Ramon Lawrence

Performance Improvement of Indexes
Indexes can improve query performance, especially when
indexing foreign keys and for queries with low selectivity.

Experiment:
Use TPC-H database and perform join between Orders and Customer

where the o_custkey field in Orders table is and is not indexed.

select * from orders o, customers c where o.o_custkey = c.c_custkey
 Result size = 1,500,000 rows in time 40 seconds

add condition: where o_custkey = 10
 # of rows = 20, without index = 7 seconds ; with index = less than a second

add condition: where o_custkey < 100
 # of rows = 979; without index = 7 seconds; with index = less than a second

add condition: where o_custkey < 1000
 What do you think will be faster a) with or b) without an index?

Bottom line: Indexes improve performance but only for queries
that have low selectivity (get return rows from index).

Page 10

COSC 404 - Dr. Ramon Lawrence

Indexing with Multiple Fields
Consider an index with multiple fields:

and a query that could use this index:

Commercial databases use a B+-tree index. Note order is
important as the index is sorted on the attributes in order.

There are also other methods for multiple field indexing:
Partitioned Hashing

Grid Files

CREATE INDEX idxMajorYear ON student(Major,Year)

SELECT * FROM student WHERE Major="CS" and Year="3"

Page 11

COSC 404 - Dr. Ramon Lawrence

Multiple Key Indexing
Grid Files

A grid file is designed for multiple search-key queries.
The grid file has a grid array and a linear scale for each search-

key attribute.

The grid array has a number of dimensions equal to number of
search-key attributes.

Each cell of the grid points to a disk bucket. Multiple cells of
the grid array can point to the same bucket.

To find the bucket for a search-key value, locate the row and
column of its cell using the linear scales and follow pointer.

If a bucket becomes full, a new bucket can be created if more
than one cell points to it. If only one cell points to it, an overflow
bucket needs to be created.

Page 12

COSC 404 - Dr. Ramon Lawrence

Example Grid File for Student Database

grid index

Major

Year
1 2 3 4

BA

BS

CS

ME

BA,1-4
BS-CS,3-4

ME,3-4BS-CS-ME, 1-2

3

Page 13

COSC 404 - Dr. Ramon Lawrence

Grid Files Querying
A grid file on two attributes A and B can answer queries:
Exact match queries:
A=value

B=value

A=value AND B=value

Range queries:
(a1 A a2)

(b1 B b2)

(a1 A a2 b1 B b2)

For example, to answer (a1 A a2 b1 B b2), use linear
scales to find candidate grid array cells, and look up all the
buckets pointed to from those cells.

Linear scales must be chosen to uniformly distribute records
across cells. Otherwise there will be many overflow buckets.

Page 14

COSC 404 - Dr. Ramon Lawrence

Grid Files Discussion
Using grid cells as bucket pointers allows the grid to be regular,
but increases the indirection.

Note that the linear scales are often allocated in a table where
each value maps to a number between 0 and N.

This allows easier indexing of the grid, and also permits the
linear scales to be ranges. Example:

Overall: Grid files are good for multi-key searches but require
space overhead and ranges that evenly split keys.

Salary Linear Scale

Page 15

COSC 404 - Dr. Ramon Lawrence

Multiple Key Indexing
Partitioned Hashing

The idea behind partitioned hashing is that the overall hash
location is a combination of the hash values from each key.

For example,

h1 h2

010110 111010

Key 1 Key 2

Hash Location

The overall hash location L is 12 bits long.
The first 6 bits are from h1, the second 6 from h2.

Page 16

COSC 404 - Dr. Ramon Lawrence

111

000
001
010
011
100
101
110

Hash Table
h1 is hash function for Major.
h1(BA) = 0
h1(BS)=0
h1(CS)=1
h1(ME)=1
….

h2 is hash function for Year.
h2(1) = 00
h2(2) = 01
h2(3) = 10
h2(4) = 11
….

10567,15973

Partitioned Hashing Example

Hash Table

Insert
<10567,CS,3>, <11589,BA,2>, <15973,CS,3>,
<29579,BS,1>,<34596,ME,4>, <75623,BA,3>,
<84920,CS,4>, <96256,ME,2>

11589
29579

75623

96256

34596,84920

Page 17

COSC 404 - Dr. Ramon Lawrence

Hash Table
h1 is hash function for Major.
h1(BA) = 0
h1(BS)=0
h1(CS)=1
h1(ME)=1
….

h2 is hash function for Year.
h2(1) = 00
h2(2) = 01
h2(3) = 10
h2(4) = 11
….

Partitioned Hashing Example
Searching

Find Major="CS" AND Year="3"

111

000
001
010
011
100
101
110 10567,15973

Hash Table

11589
29579

75623

96256

34596,84920

Page 18

COSC 404 - Dr. Ramon Lawrence

Hash Table
h1 is hash function for Major.
h1(BA) = 0
h1(BS)=0
h1(CS)=1
h1(ME)=1
….

h2 is hash function for Year.
h2(1) = 00
h2(2) = 01
h2(3) = 10
h2(4) = 11
….

Partitioned Hashing Example
Searching (2)

Find Year="2"

111

000
001
010
011
100
101
110 10567,15973

Hash Table

11589
29579

75623

96256

34596,84920

4

Page 19

COSC 404 - Dr. Ramon Lawrence

Hash Table
h1 is hash function for Major.
h1(BA) = 0
h1(BS)=0
h1(CS)=1
h1(ME)=1
….

h2 is hash function for Year.
h2(1) = 00
h2(2) = 01
h2(3) = 10
h2(4) = 11
….

Partitioned Hashing Example
Searching (3)

Find Major="BA"

111

000
001
010
011
100
101
110 10567,15973

Hash Table

11589
29579

75623

96256

34596,84920

Page 20

COSC 404 - Dr. Ramon Lawrence

Hash Table
h1 is hash function for Major.
h1(BA) = 0
h1(BS)=0
h1(CS)=1
h1(ME)=1
….

h2 is hash function for Year.
h2(1) = 00
h2(2) = 01
h2(3) = 10
h2(4) = 11
….

Partitioned Hashing Question

Find Major="BS" OR Year="1"

Buckets searched:

A) 2 buckets
B) 4 buckets
C) 5 buckets
D) 6 buckets
E) 8 buckets

Page 21

COSC 404 - Dr. Ramon Lawrence

Grid Files versus Partitioned Hashing
Both grid files and partitioned hashing have different query
performance.

Grid Files:
Good for all types of queries including range and nearest-

neighbor queries.

However, many buckets will be empty or nearly empty because
of attribute correlation. Thus, grid can be space inefficient.

Partitioned Hashing:
Useless for range and nearest-neighbor queries because

physical distance between points is not reflected in closeness
of buckets.

However, hash function will randomize record locations which
should more evenly divide records across buckets.
Partial key searches should be faster than grid files.

Page 22

COSC 404 - Dr. Ramon Lawrence

Bitmap Indexes
A bitmap index is useful for indexing attributes that have a
small number of values. (e.g. gender)
For each attribute value, create a bitmap where a 1 indicates

that a record at that position has that attribute value.

Retrieve matching records by id.
bitmap index

on Mjr
bitmap index

on Yrstudent table

Mjr bitmap
BA 01000100
BS 00010000
CS 10100010
ME 00001001

Yr bitmap
1 00010000
2 01000001
3 10100100
4 00001010

How could we use bitmap indexes to answer:
SELECT count(*) FROM student
WHERE Mjr = 'BA' and Year=2

Page 23

COSC 404 - Dr. Ramon Lawrence

Conclusion
The index structures we have seen, specifically, B+-trees are
used for indexing in commercial database systems.
There are also special indexing structures for text and spatial

data.

When tuning a database, examine the types of indexes you can
use and the configuration options available.

Grid files and partitioned hashing are specialized indexing
methods for multi-key indexes.

Bitmap indexes allow fast lookups when attributes have few
values and can be efficiently combined using logical
operations.

Page 24

COSC 404 - Dr. Ramon Lawrence

Major Objectives
The "One Things":
Perform searches using grid files.

Perform insertions and searches using partitioned hashing.

Major Theme:
Various DBMSs give you control over the types of indexes that

you can use and the ability to tune their parameters. Knowledge
of the underlying index structures helps performance tuning.

Objectives:
Understand how bitmap indexes are used for searching and why

they provide a space and speed improvement in certain cases.

1

COSC 404
Database System Implementation

Query Processing

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 404 - Dr. Ramon Lawrence

Query Processing
Overview

The goal of the query processor is very simple:

Return the answer to a SQL query in the most efficient way
possible given the organization of the database.

Achieving this goal is anything but simple:
Different file organizations and indexing affect performance.

Different algorithms can be used to perform the relational
algebra operations with varying performance based on the DB.

Estimating the cost of the query itself is hard.

Determining the best way to answer one query in isolation is
challenging. How about many concurrent queries?

Page 3

COSC 404 - Dr. Ramon Lawrence

Components of a Query Processor

DB Stats

Database

Query Output

SQL Query

Parser

Translator

Optimizer

Evaluator

Expression
Tree

Logical
Query Tree

Physical
Query Tree

SELECT Name FROM Student
WHERE Major="CS"

<Query>

SELECT

<SelList>

FROM

<FromList>

WHERE

<Condition>

<Attr> <Value>=

Major "CS"

<Attr>

Name

<Rel>

Student

Student

Name

Major='CS'

Student

(index scan)

(table scan)
Name

Major='CS'

Page 4

COSC 404 - Dr. Ramon Lawrence

Review: SQL Query Summary
The general form of the SELECT statement is:

SELECT <attribute list>

FROM <table list>

[WHERE (condition)]

[GROUP BY <grouping attributes>]

[HAVING <group condition>]

[ORDER BY <attribute list>]

Clauses in square brackets ([,]) are optional.

There are often numerous ways to express the same query in
SQL.

Page 5

COSC 404 - Dr. Ramon Lawrence

Review: SQL and Relational Algebra
The SELECT statement can be mapped directly to relational
algebra.

SELECT A1, A2, … , An

FROM R1, R2, … , Rm

WHERE P

is equivalent to:

A1, A2, …, An
(P (R1 R2 … Rm))

Page 6

COSC 404 - Dr. Ramon Lawrence

Review: Relational Algebra Operators
Relational Operators:
selection - return subset of rows

projection - return subset of columns

Cartesian product - all combinations of two relations

join - combines and
duplicate elimination - eliminates duplicates

Set operators:
Union - tuple in output if in either or both

Difference - - tuple in output if in 1st but not 2nd

Intersection - tuple in output if in both

Union compatibility means relations must have the same number
of columns with compatible domains.

2

Page 7

COSC 404 - Dr. Ramon Lawrence

Review: Selection and Projection
The selection operation returns an
output relation that has a subset of the
tuples of the input by using a predicate.

The projection operation returns an
output relation that contains a subset of
the attributes of the input.

Note: Duplicate tuples are eliminated.

Emp Relation

salary > 35000 OR title = 'PR' (Emp)

 eno,ename (Emp)

Projection Example

Selection Example

Input Relation

Page 8

COSC 404 - Dr. Ramon Lawrence

Review: Cartesian Product

Emp Relation Emp Proj

Proj Relation

The Cartesian (or cross) product of two relations R (of degree k1) and S
(of degree k2) combines the tuples of R and S in all possible ways.

The result of R S is a relation of degree (k1 + k2) and consists of all (k1 +
k2)-tuples where each tuple is a concatenation of one tuple of R with one
tuple of S. The cardinality of R S is |R| * |S|.

Page 9

COSC 404 - Dr. Ramon Lawrence

Review: Join
Theta () join combines cross product and selection: R⨝F S = F (R S).

An equijoin only contains the equality operator (=) in the join predicate.

 e.g. WorksOn⨝ WorksOn.pno = Proj.pno Proj

A natural join R ⨝ S is the equijoin of R and S over a set of attributes
common to both R and S that removes duplicate join attributes.

Proj RelationWorksOn Relation WorksOn WorksOn.pno = Proj.pno Proj

Page 10

COSC 404 - Dr. Ramon Lawrence

Review Question
Given this table and the query:

How many rows in the result?

A) 2

B) 3

C) 4

D) 5

Emp Relation

SELECT eno, salary
FROM emp
WHERE salary >= 40000

Page 11

COSC 404 - Dr. Ramon Lawrence

Review Question
Given these tables and the query:

How many rows in the result?

A) 0

B) 1

C) 2

D) 8

Πeno, ename (title='EE' (Emp ⨝dno=dno Dept))

Emp Relation

Dept Relation

Page 12

COSC 404 - Dr. Ramon Lawrence

Review Question
Question: What is the symbol for duplicate elimination?

A)
B)
C)
D) ⨝
E)

3

Page 13

COSC 404 - Dr. Ramon Lawrence

Algorithms for Relational Operators
Our initial focus is developing algorithms to implement the
relational operators of selection, projection, and join.

The query processor contains these implementations and uses
them to answer queries.

We will discuss when the algorithms should be applied when
discussing optimization. For now, we will build a toolkit of
potential algorithms that could be used.

Page 14

COSC 404 - Dr. Ramon Lawrence

Query Processing
Classifying Algorithms

Two ways to classify relational algebra algorithms:

1) By the number of times the data is read:
One-Pass - selection or projection operators or binary operators

where one relation fits entirely in memory.

Two-Pass - data does not fit entirely in memory in one pass, but
algorithm can process data using only two passes.

Multi-Pass - generalization to larger data sets.

2) By the type of relational algebra operator performed:
Tuple-at-a-time, unary operators - selection, projection
Do not need entire relation to perform operation.

Full-relation, unary operators - grouping,duplicate elimination

Full-relation, binary operators - join, set operations

Page 15

COSC 404 - Dr. Ramon Lawrence

Measuring Cost of Algorithms
Algorithms will be compared using number of block I/Os.
Note: CPU time is important but harder to model.

Assumptions:
The arguments of any operator are found on disk, but the

operator result is left in memory.
For example, a select operation on a relation, must read the relation from

disk, but after the operation is performed, the result is left in memory (and
can be potentially used by the next operator).

This is also true for the query result.

Page 16

COSC 404 - Dr. Ramon Lawrence

Measuring Cost of Algorithms (2)
Some basic statistics will be useful when discussing algorithms:
1) The number of buffer blocks available to the algorithm is M.
We will assume memory blocks are the same size as disk blocks.

The buffers are used to stored input and intermediate results; the buffers
do not have to be used to store output which is assumed to go elsewhere.

M is always less than the size of memory, but in practice, may even be
much smaller than that as many operators can be executing at once.

2) B(R) or just B (if R is assumed) is the # of blocks on disk used
to store all the tuples of R.
Usually, assume that R is clustered and that we can only read 1 block at a

time. Note that we will ignore free-space in blocks even though in practice
blocks are not normally kept completely full.

3) T(R) or just T (if R is assumed) is the # of tuples in R.

4) V(R,a) is the # of distinct values of the column a in R.
Note: V(Student,Id) = T(Student) as Id is a key.

Page 17

COSC 404 - Dr. Ramon Lawrence

Metrics Question
Question: The number of rows in table Emp is 50. There are
10 possible values for the title attribute. Select a true
statement.

A) T(Emp) = 10

B) V(Emp, eno) = 10

C) V(Emp, title) = 10

D) V(Emp, title) = 50

Page 18

COSC 404 - Dr. Ramon Lawrence

Scans and Sorts
Two basic operations are scanning and sorting an input.

There are two types of scans:
1) Table scan - read the relation R from disk one block at a time.

2) Index scan - read the relation R or only the tuples of R that
satisfy a given condition, by using an index on R.

Sorting can be performed in three ways:
1) Index sort - used when the relation R has a B+-tree index on

sort attribute a.

2) Main-memory sort - read the entire relation R into main
memory and use an efficient sorting algorithm.

3) External-merge sort - use the external-merge sort if the
entire relation R is too large to fit in memory.
We will discuss this sorting algorithm later.

4

Page 19

COSC 404 - Dr. Ramon Lawrence

Measuring Cost of Scan Operators
The cost of a table scan for relation R is B.

What would be the cost of an index scan of relation R that has B
data blocks and I index blocks?
Does it depend on the type of index?

Page 20

COSC 404 - Dr. Ramon Lawrence

Iterators for Operators
Database operations are implemented as iterators.
Also called pipelining or producer-consumer.

Instead of completing the entire operation before releasing
output, an operator releases output to other operators as it is
produced one tuple at a time.

Iterators are combined into a tree of operators. Iterators execute
in parallel and query results are produced faster.

Page 21

COSC 404 - Dr. Ramon Lawrence

Structure of Iterators
Database iterators implement three methods:
init() - initialize the iterator variables and algorithm.
Starts the process, but does not retrieve a tuple.

next() - return the next tuple of the result and perform any
required processing to be able to return the next tuple of the
result the next time next() is called.
next() returns NULL if there are no more tuples to return.

close() - destroy iterator variables and terminate the algorithm.

Each algorithm we discuss can be implemented as an iterator.

Page 22

COSC 404 - Dr. Ramon Lawrence

Iterator Example
Table Scan Iterator
init() {

b = the first block of R;
t = first tuple of R;

}
next() {

if (t is past the last tuple on block b) {
increment b to the next block;
if (there is no next block)

return NULL;
else /* b is a new block */

t = first tuple on block b;
}
oldt = t;
increment t to the next tuple of b;
return oldt;

}
close() {}

Page 23

COSC 404 - Dr. Ramon Lawrence

Iterator Example
Main-Memory Sort Iterator
init() {

Allocate buffer array A
read entire relation R block-by-block into A;
sort A using quick sort;
tLoc = 0; // First tuple location in A

}

next() {
if (tLoc >= T)

return NULL;
else
{ tLoc++;

return A[tLoc-1];
}

}

close() {}

How is this iterator different than
the table scan iterator?

Page 24

COSC 404 - Dr. Ramon Lawrence

Programming Iterators in Java
We will implement iterators in Java and combine them to build
execution trees.

Iterators are derived from the Operator class.

This class has the methods init(), next(), hasNext(),
and close().

The operator has an array of input operators which may consist
of 0, 1, or 2 operators.
A relation scan has 0 input operators.

5

Page 25

COSC 404 - Dr. Ramon Lawrence

Operator class
public abstract class Operator
{

protected Operator[] input; // Input operators
protected int numInputs; // # of inputs
protected Relation outputRelation; // Output relation
protected int BUFFER_SIZE; // # of buffer pages
protected int BLOCKING_FACTOR; // # of tuples per page

Operator() {this(null, 0, 0); }
Operator(Operator []in, int bfr, int bs){ ... }
// Iterator methods
abstract public void init() throws IOException;
abstract public Tuple next() throws IOException;
public void close() throws IOException
{ for (int i=0; i < numInputs; i++)

input[i].close(); }
public boolean hasNext() throws IOException
{ return false; }

} Page 26

COSC 404 - Dr. Ramon Lawrence

Scan Operator Example
public class FileScan extends Operator
{ protected String inFileName; // Name of input file to scan

protected BufferedInputStream inFile; // Reader for input file
protected Relation inputRelation; // Schema of file scanned

public FileScan(String inName, Relation r)
{ super(); inFileName = inName;

inputRelation = r; setOutputRelation(r);
}

public void init() throws FileNotFoundException, IOException
{ inFile = FileManager.openInputFile(inFileName); }

public Tuple next() throws IOException
{ Tuple t = new Tuple(inputRelation);

if (!t.read(inFile)) // Read a tuple from input file
return null;

return t;
}
public void close() throws IOException
{ FileManager.closeFile(inFile); }

}

Page 27

COSC 404 - Dr. Ramon Lawrence

Sort Operator Example
public class Sort extends Operator
{ public Sort(Operator in, SortComparator sorter)

{ // Initializes local variables ...}
public void init() throws IOException, FileNotFoundException
{ input[0].init();

buffer = new Tuple[arraySize]; // Initialize buffer
int count = 0;
while (count < arraySize)
{ if ((buffer[count] = input[0].next()) == null)

break;
count++;

}
curTuple = 0;
Arrays.sort(buffer, 0, count, sorter);
input[0].close();

}
public Tuple next() throws IOException
{ if (curTuple < arraySize)

return buffer[curTuple++];
return null;

}
// Note: close() method is empty

} Page 28

COSC 404 - Dr. Ramon Lawrence

Projection Operator Example
public class Projection extends Operator
{ protected ProjectionList plist; // Projection information

public Projection(Operator in, ProjectionList pl)
{ super(new Operator[] {in}, 0, 0);

plist = pl;
}
public void init() throws IOException
{ input[0].init();

Relation inR = input[0].getOutputRelation();
setOutputRelation(inR.projectRelation(plist));

}

public Tuple next() throws IOException
{ Tuple inTuple = input[0].next();

if (inTuple == null)
return null;

return new Tuple(…perform projection using plist from inTuple);
}
public void close() throws IOException
{ super.close(); }

}

Page 29

COSC 404 - Dr. Ramon Lawrence

Answering Queries Using Iterators
Given the user query:

This code would answer the query:

SELECT *
FROM emp

FileScan op = new FileScan("emp.dat", r);
op.init();

Tuple t;
t = op.next();
while (t != null)
{ System.out.println(t);

t = op.next();
}
op.close();

Page 30

COSC 404 - Dr. Ramon Lawrence

Iterator Practice Questions
Write the code to answer the query:

Assume that a SortComparator sc has been defined that you
can pass in to the Sort object to sort appropriately.

Challenge: Answer this query:

Assume you can provide an array of attribute names to the
Projection operator.

SELECT *
FROM emp
ORDER BY ename

SELECT eno, ename
FROM emp
ORDER BY ename

6

Page 31

COSC 404 - Dr. Ramon Lawrence

One-Pass Algorithms
One-pass algorithms read data from the input only once.

Selection and projection are one-pass, tuple-at-a-time operators.

Tuple-at-a-time operators require only one main memory buffer
(M=1) and cost the same as the scan.
Note that the CPU cost is the dominant cost of these operators.

Page 32

COSC 404 - Dr. Ramon Lawrence

One-Pass Algorithms
Grouping and Duplicate Elimination

Duplication elimination () and grouping () require reading the
entire relation and remembering tuples previously seen.

One-pass duplicate elimination algorithm:
1) Read each block of relation R one at a time.

2) For each tuple read, determine if:
This is the first time the tuple has been seen. If so, copy to output.

Otherwise, discard duplicate tuple.

Challenge: How do we know if a tuple has been seen before?

Answer: We must build a main memory data structure that
stores copies of all the tuples that we have already seen.

Page 33

COSC 404 - Dr. Ramon Lawrence

One-Pass Algorithms
Duplicate Elimination Overview

Seen
Before?

How do we use
these buffers?

Database

R

Output BufferInput Buffer

M-1 Buffers

Page 34

COSC 404 - Dr. Ramon Lawrence

One-Pass Algorithms
Duplicate Elimination Discussion

The M-1 buffers are used to store a fast lookup structure such
that given a tuple, we can determine if we have seen it before.
Main-memory hashing or balanced binary trees are used.
Note that an array would be inefficient. Why?

Space overhead for the data structure is ignored in our
calculations.

M-1 buffers allows us to store M-1 blocks of R. Thus, the
number of main memory buffers required is approximately:

M >= B((R))

Page 35

COSC 404 - Dr. Ramon Lawrence

One Pass Duplicate Elimination
Question

Question: If T(R)=100 and V(R,a)=1 and we perform (Πa(R)),
select a true statement.

A) The maximum memory size used is 100 tuples (not counting
input tuple).

B) The size of the result is 100 tuples.

C) The size of the result is unknown.

D) The maximum memory size used is 1 tuple (not counting
input tuple).

Page 36

COSC 404 - Dr. Ramon Lawrence

One-Pass Algorithms
Grouping

The grouping () operator can be evaluated similar to duplicate
elimination except now besides identifying if a particular group
already exists, we must also calculate the aggregate values for
each group as requested by the user.

How to calculate aggregate values:
MIN(a) or MAX(a) - for each group maintain the minimum or

maximum value of attribute a seen so far. Update as required.
COUNT(*) - add one for each tuple of the group seen.

SUM(a) - keep a running sum for a for each group.

AVG(a) - keep running sum and count for a for each group and
return SUM(a)/COUNT(a) after all tuples are seen.

7

Page 37

COSC 404 - Dr. Ramon Lawrence

One-Pass Algorithms
Grouping Example

Student Relation

SELECT Major, Count(*), Min(Year),
Max(Year), AVG(Year)

FROM Student GROUP BY Major

Memory Buffers

Major Count Min Max Avg

CS 1 3 3 3
BA 1 2 2 2
BS 1 1 1 1
ME 1 4 4 4

2
2 3 2.5
3 4 3.33

ME 2 2 4 3

Main memory table copied to output
to answer query.

Page 38

COSC 404 - Dr. Ramon Lawrence

One-Pass Algorithms
Grouping Discussion

After all tuples are seen and aggregate values are calculated,
write each tuple representing a group to the output.

The cost of the algorithm is B(R), and the memory requirement
M is almost always less than B(R), although it can be much
smaller depending on the group attributes.
Question: When would M ever be larger than B(R)?

Both duplicate elimination and grouping are blocking
algorithms by nature that do not fit well into the iterator model!

Page 39

COSC 404 - Dr. Ramon Lawrence

One-Pass Algorithms
Binary Operations

It is also possible to implement one-pass algorithms for the
binary operations of union, intersection, difference, cross-
product, and natural join.

For the set operators, we must distinguish between the set and
bag versions of the operators:
Union - set union (S) and bag union (B)

Intersection - set intersection (S) and bag intersection (B)

Difference - set difference (-S) and bag difference (-B)

Note that only bag union is a tuple-at-a-time algorithm. All other
operators require one of the two operands to fit entirely in main
memory in order to support a one-pass algorithm.
We will assume two operand relations R and S, with S being

small enough to fit entirely in memory. Page 40

COSC 404 - Dr. Ramon Lawrence

One-Pass Algorithms
Binary Operations - General Algorithm

The general algorithm is similar for all binary operations:
1) Read the smaller relation, S, entirely into main memory and

construct an efficient search structure for it.
This requires approximately B(S) main memory blocks.

2) Allocate one buffer for reading one block of the larger relation,
R, at a time.

3) For each block and each tuple of R
Compare the tuple of R with the tuples of S in memory and perform the

specific function required for the operator.

The function performed in step #3 is operator dependent.

All binary one-pass algorithms take B(R) + B(S) disk operations.

They work as long as B(S) <= M-1 or B(S) < M.

Page 41

COSC 404 - Dr. Ramon Lawrence

One-Pass Algorithms
Binary Operations Algorithms

Function performed on each tuple t of R for the operators:
1) Set Union - If t is not in S, copy to output, otherwise discard.
Note: All tuples of S were initially copied to output.

2) Set Intersection-If t is in S, copy to output, otherwise discard.
Note: No tuples of S were initially copied to output.

3) Set difference
R -S S: If t is not in S, copy to output, otherwise discard.

S -S R: If t is in S, then delete t from the copy of S in main memory. If t is
not in S, do nothing. After seeing all tuples of R, copy to output tuples of S
that remain in memory.

4) Bag Intersection
Read S into memory and associate a count for each distinct tuple.

If t is found in S and count is still positive, decrement count by 1 and
output t. Otherwise, discard t.

Page 42

COSC 404 - Dr. Ramon Lawrence

One-Pass Algorithms
Binary Operations Algorithms (2)

Function performed on each tuple t of R for the operators:
5) Bag difference
S -B R: Similar to bag intersection (using counts), except only output

tuples of S at the end if they have positive counts (and output that many).

R -B S: Exercise - try it for yourself.

6) Cross-product - Concatenate t with each tuple of S in main
memory. Output each tuple formed.

7) Natural Join
Assume connecting relations R(X,Y) and S(Y,Z) on attribute set Y.

X is all attributes of R not in Y, and Z is all attributes of S not in Y.

For each tuple t of R, find all tuples of S that match on Y.

For each match output a joined tuple.

8

Page 43

COSC 404 - Dr. Ramon Lawrence

One-Pass Algorithms
Review Questions

1) How many buffers are required to perform a selection
operation on a relation that has size 10,000 blocks?

2) Assume the number of buffers M=100. Let B(R)=10,000 and
B(S)=90. How many block reads are performed for R S?

3) If M=100, B(R)=5,000 and B(S)=1,000, how many block
reads are performed for R - S using a one-pass algorithm?

Page 44

COSC 404 - Dr. Ramon Lawrence

Nested-Loop Joins
Nested-loop joins are join algorithms that compute a join using
simple for loops.

These algorithms are essentially "one-and-a-half-pass"
algorithms because one of the relations is read only once, while
the other relation is read repeatedly.

There are two variants:
1) Tuple-based nested-loop join

2) Block-based nested-loop join

For this discussion, we will assume a natural join is to be
computed on relations R(X,Y) and S(Y,Z).

Page 45

COSC 404 - Dr. Ramon Lawrence

Nested-Loop Joins
Tuple-based Nested-Loop Join

In the tuple-based nested-loop join, tuples are matched using
two for loops. Algorithm:

Notes:
Very simple algorithm that can vary widely in performance if:
There is an index on the join attribute of R, so the entire relation R does

not have to be read.

Memory is managed smartly so that tuples are in memory when needed
(use buffers intelligently).

Worse case is T(R)*T(S) if for every tuple we have to read it from disk!

for (each tuple s in S)
for (each tuple r in R)

if (r and s join to make a tuple t)
output t;

Page 46

COSC 404 - Dr. Ramon Lawrence

Nested-Loop Joins
Tuple-based Nested-Loop Join Iterator
// Initialize relation iterators and read tuple of S
init() { R.init(); S.init(); s = S.next(); }

next() {
do {

r = R.next();
if (r == NULL){// R is exhausted for current s

R.close();
s = S.next();
if (s == NULL) return NULL; // Done
R.open(); // Re-initialize scan of R
r = R.next();

}
} while !(r and s join); // Found one joined tuple
return (the tuple created by joining r and s);

}
close() { R.close(); S.close();}

Page 47

COSC 404 - Dr. Ramon Lawrence

Nested-Loop Joins
Block-based Nested-Loop Join

Block-based nested-loop join is more efficient because it
operates on blocks instead of individual tuples.

Two major improvements:
1) Access relations by blocks instead of by tuples.

2) Buffer as many blocks as available of the outer relation S.
That is, load chunks of relation S into the buffer at a time.

The first improvement makes sure that as we read R in the inner
loop, we do it a block at a time to minimize I/O.

The second improvement enables us to join one tuple of R
(inner loop) with as many tuples of S that fit in memory at one
time (outer loop).
This means that we do not have to continually load a block of S

at time.

Page 48

COSC 404 - Dr. Ramon Lawrence

Nested-Loop Joins
Nested-Block Join Algorithm
for (each chunk of M-1 blocks of S)

read these blocks into main memory buffers;
organize these tuples into an efficient search

structure whose search key is the join attributes;
for (each block b of R)

read b into main memory;
for (each tuple t of b)

find tuples of S in memory that join with t;
output the join of t with each of these tuples;

Note that this algorithm has 3 for loops, but does the same
processing more efficiently than the tuple-based algorithm.
Outer loop processes tuples of S, inner loop processes tuples of R.

9

Page 49

COSC 404 - Dr. Ramon Lawrence

Nested-Loop Joins
Analysis and Discussion

Nested-block join analysis:
Assume S is the smaller relation.

of outer loop iterations = B(S)/M-1
Each iteration reads M-1 blocks of S and B(R) (all) blocks of R.

Number of disk I/O is:

ܤ ܵ ܤ ܴ ∗
ሺܵሻܤ
ܯ െ 1

In general, this can be approximated by B(S)*B(R)/M.

Page 50

COSC 404 - Dr. Ramon Lawrence

Nested-Loop Joins
Performance Example

If M=1,000, B(R)=100,000, T(R)=1,000,000, B(S)=5,000, and
T(S)=250,000, calculate the performance of tuple-based and
block-based nested loop joins.

Tuple-Based Join:
worst case = T(R) * T(S) = 1,000,000 * 250,000

= 25,000,000,000 = 25 billion!

Block-Based Join:
worst case = B(S) + B(R)*ceiling(B(S)/(M-1))

= 5,000 + 100,000 * ceiling(5,000 / 999)

= 605,000

Question: What is the I/Os if the larger relation R is in the outer loop?

Page 51

COSC 404 - Dr. Ramon Lawrence

Nested Loop Join Question
Question: Select a true statement.

A) NLJ buffers the smaller relation in memory.

B) NLJ buffers the larger relation in memory.

Page 52

COSC 404 - Dr. Ramon Lawrence

Sorting-based Two-Pass Algorithms
Two-pass algorithms read the input at most twice.

Sorting-based two-pass algorithms rely on the external sort
merge algorithm to accomplish their goals.

The basic process is as follows:
1) Create sorted sublists of size M blocks of the relation R.

2) Merge the sorted sublists by continually taking the minimum
value in each list.

3) Apply the appropriate function to implement the operator.

We will first study the external sort-merge algorithm then
demonstrate how its variations can be used to answer queries.

Page 53

COSC 404 - Dr. Ramon Lawrence

External Sort-Merge Algorithm
1) Create sorted runs as follows:

Let i be 0 initially, and M be the number of main memory blocks.

Repeat these steps until the end of the relation:
(a) Read M blocks of relation into memory.

(b) Sort the in-memory blocks.

(c) Write sorted data to run Ri; increment i.

2) Merge the runs in a single merge step:
Suppose for now that i < M. Use i blocks of memory to buffer input runs.

We will write output to disk instead of using 1 block to buffer output.

Repeat these steps until all input buffer pages are empty:
(a) Select the first record in sorted order from each of the buffers.

(b) Write the record to the output.

(c) Delete the record from the buffer page. If the buffer page is empty,
read the next block (if any) of the run (sublist) into the buffer.

Page 54

COSC 404 - Dr. Ramon Lawrence

External Sort-Merge Example

initial relation

G
A
D

24
19
31

C
B
E

33
14
16

R
D
M

6
21
3

A
D
G

19
31
24

B
C
E

14
33
16

D
M
R

21
3
6

sorted relation

A 19
B 14
C 33
D 21
D 31
E 16
G
M
R

24
3
6

Runs

Create Sorted
Sublists

Merge
Pass

Sort by column #1. M=3. (Note: Not using an output buffer.)

10

Page 55

COSC 404 - Dr. Ramon Lawrence

Multi-Pass External Sort-Merge
If i M, several merge passes are required as we can not
buffer the first block of all sublists in memory at the same time.
In this case, use an output block to store the result of a merge.

In each pass, contiguous groups of M-1 runs are merged.

A pass reduces the number of runs by a factor of M-1, and
creates runs longer by the same factor.

Repeated passes are performed until all runs are merged.

Page 56

COSC 404 - Dr. Ramon Lawrence

External Sort-Merge Example 2
Multi-Pass Merge

initial relation

G
A
D

24
19
31

C
B
E

33
14
16

R
D
M

6
21
3

P
D
A

2
7
4

A
D
G

19
31
24

B
C
E

14
33
16

D
M
R

21
3
6

A
D
P

4
7
2

A
B
C

19
14
33

D
E
G

31
16
24

A
D
D

4
7

21
M
P
R

3
2
6

sorted relation

A
A
B

4
19
14

C
D
D

33
7

21
D
E
G

31
16
24

M
P
R

3
2
6

Runs

Create Sorted
Sublists

Merge
Pass #1

Merge
Pass #2

Page 57

COSC 404 - Dr. Ramon Lawrence

External Sort-Merge Analysis
Cost analysis:
Two-pass external sort cost is: 3*B. (B=B(R))
Each block is read twice: once for initial sort, once for merge.

Each block is written once after the first pass.

The cost is 4*B if we include the cost of writing the output.

Multi-pass external sort cost is: B*(2 logM–1(B/M) + 1).
Disk accesses for initial run creation as well as in each pass is 2*B

(except for final pass that does not write out results).

Total number of merge passes required: logM–1(B/M)
 B/M is the # of initial runs, and # decreases by factor of M-1 every pass.

 Each pass reads/writes each block (2*B) except final run has no write.

Sort analysis:
A two-pass external sort can sort M2 blocks.

A N-pass external sort can sort MN blocks.
Page 58

COSC 404 - Dr. Ramon Lawrence

External Sort-Merge Analysis Example
A main memory size is 64 MB, the block size is 4 KB, and the
record size is 160 bytes.
1) How many records can be sorted using a two-pass sort?
Sort can sort M2 memory blocks.

of memory blocks = memory size/block size

Total # of blocks sorted = (64 MB / 4 KB)2 = approx. 268 million

Total # of records sorted = #blocks *blockingFactor = approx. 6.8 billion!

Total size is approximately 1 terabyte.

2) How many records can be sorted using a three-pass sort?
Sort can sort M3 memory blocks.

Same calculation results in 112 trillion records of total size 16 petabytes!

Bottom-line: Two way sort is sufficient for most purposes!

Page 59

COSC 404 - Dr. Ramon Lawrence

External Sort-Merge Usage
The external sort-merge algorithm can be used when:
1) SQL queries specify a sorted output.

2) For processing a join algorithm using merge-join algorithm.

3) Duplicate elimination.

4) Grouping and aggregation.

5) Set operations.

We will see how the basic external sort-merge algorithm can be
modified for these operations.

Page 60

COSC 404 - Dr. Ramon Lawrence

Duplicate Elimination Using Sorting
Algorithm (two-pass):
Sort the tuples of R into sublists using the available memory

buffers M.

In the second pass, buffer one block of each sublist in memory
like the sorting algorithm.

However, in this case, instead of sorting the tuples, only copy
one to output and ignore all tuples with duplicate values.
Every time we copy one value to the output, we search forward in all

sublists removing all copies of this value.

11

Page 61

COSC 404 - Dr. Ramon Lawrence

Runs

Duplicate elimination on column #1. M=3. blocking factor=2.

initial relation
2
5
2
1
2
2
4
5
4
3
4
2
1
5
2

1
2
2
2
2
5

2
3
4
4
4
5

1
2
5

First blocks (each with 2
records) are initially
loaded into memory.

Duplicate Elimination Example

Page 62

COSC 404 - Dr. Ramon Lawrence

Duplicate Elimination Example (2)
Runs
1
2
2
2
2
5

2
3
4
4
4
5

1
2
5

initial relation
2
5
2
1
2
2
4
5
4
3
4
2
1
5
2

output result

1

Page 63

COSC 404 - Dr. Ramon Lawrence

Duplicate Elimination Example (3)
Runs

2
2
2
2
5

2
3
4
4
4
5

2
5

initial relation
2
5
2
1
2
2
4
5
4
3
4
2
1
5
2

output result

1
2

Load new block.

Load new block.

Load new block.

Page 64

COSC 404 - Dr. Ramon Lawrence

Duplicate Elimination Example (4)
Runs

2

initial relation
2
5
2
1
2
2
4
5
4
3
4
2
1
5
2

output result

1
2
3
4
5

Final result.

Page 65

COSC 404 - Dr. Ramon Lawrence

Duplicate Elimination Analysis
The number of disk operations is always 3*B(R).
2*B(R) to read/write each block to create sorted sublists.

B(R) to read each block of each sublist when performing
duplicate elimination.

Remember the single pass algorithm was B(R).

The two-pass algorithm can handle relations where B(R)<=M2.

Page 66

COSC 404 - Dr. Ramon Lawrence

Grouping and Aggregation
Using Sorting

Algorithm (two-pass):
Sort the tuples of R into sublists using the available memory

buffers M.

In the second pass, buffer one block of each sublist in memory
like the sorting algorithm.

Find the smallest value of the sort key (grouping attributes) in
all the sublists. This value becomes the next group.
Prepare to calculate all aggregates for this group.

Examine all tuples with the given value for the sort key and calculate
aggregate functions accordingly.

Read blocks from the sublists into buffers as required.

When there are no more values for the given sort key, output a tuple
containing the grouped values and the calculated aggregate values.

Analysis: This algorithm also performs 3*B(R) disk operations.

12

Page 67

COSC 404 - Dr. Ramon Lawrence

Grouping Question
initial relation

2
5
2
1
2
2
4
5
4
3
4
2

Calculate the output for a query that
groups by the given integer attribute
and returns a count of the # of records
that contains that attribute.

Assume M=3 and blocking factor=2.

1
5
2

Page 68

COSC 404 - Dr. Ramon Lawrence

Set Operations Using Sorting
The set operations can also be implemented using a sorting
based algorithm.
All algorithms start with an initial sublist creation step where

both relations R and S are divided into sorted sublists.

Use one main memory buffer for each sublist of R and S.

Many of the algorithms require counting the # of tuples of R and
S that are identical to the current minimum tuple t.

Special steps for each algorithm operation:
Set Union - Find smallest tuple t of all buffers, copy t to output,

and remove all other copies of t.

Set Intersection - Find smallest tuple t of all buffers, copy t to
output if it appears in both R and S.

Bag Intersection - Find smallest tuple t of all buffers, output t
the minimum # of times it appears in R and S.

Page 69

COSC 404 - Dr. Ramon Lawrence

Set Operations Using Sorting (2)
Set Difference - Find smallest tuple t of all buffers, output t only

if it appears in R but not in S. (R -S S).

Bag difference - Find smallest tuple t of all buffers, output t the
number of times it appears in R minus the number of times it
appears in S.

Analysis: All algorithms for set operations perform
3*(B(R)+B(S)) disk operations, and the two-pass versions will
only work if B(R)+B(S) <= M2.

Note: More precisely the two-pass set algorithms only work if:

B(R)/M) + B(S)/M) <= M

Page 70

COSC 404 - Dr. Ramon Lawrence

Set Operations Example - Intersection

R
2
5
2
1
7
3
4
5

M=4. blocking factor=1.

S
1
4
9
1
2
4
6
5

First blocks (each with 1
record) are initially

loaded into memory.

1
2
2
5

3
4
5
7

1
1
4
9

2
4
5
6

Page 71

COSC 404 - Dr. Ramon Lawrence

Set Operations Example - Intersection (2)
Runs

1

1
2
2
5

3
4
5
7

1
1
4
9

2
4
5
6

Output

1 occurs in both R and S.

R

S

Page 72

COSC 404 - Dr. Ramon Lawrence

Set Operations Example - Intersection (3)
Runs

1

Output

Final Result.

R

S

2
4
5

13

Page 73

COSC 404 - Dr. Ramon Lawrence

Set Operations Questions

R
2
5
2
1
7
3
4
5

Show how the following operations are performed
using two-pass sorting based algorithms:
1) Set Union
2) Set Difference (R -S S)
3) Bag Difference
4) Bag Intersection

Assume M=4 and bfr=1.

For set operators, first eliminate duplicates in R and S.

S
1
4
9
1
2
4
6
5

Page 74

COSC 404 - Dr. Ramon Lawrence

Sort-Based Join Algorithm
Sorting can be used to join two relations R(X,Y) and S(Y,Z).

One of the challenges of any join algorithm is that the number
of tuples of the two relations that share a common value of the
join attribute(s) must be in memory at the same time.
This is difficult if the number exceeds the size of memory.
Worse-case: Only one value for the join attribute(s). All tuples join to

each other. If this is the case, nested-loop join is used.

We will look at two different algorithms based on sorting:
Sort-join - Allows for the most possible buffers for joining.

Sort-merge-join - Has fewer I/Os, but more sensitive to large
numbers of tuples with common join attribute.

Page 75

COSC 404 - Dr. Ramon Lawrence

Sort-Join Algorithm
1) Sort R and S using an external merge sort with Y as the key.

2) Merge the sorted R and S using one buffer for each relation.
a) Find the smallest value y of join attributes Y in the start of

blocks for R and S.

b) If y does not appear in the other relation, remove the tuples
with key y.

c) Otherwise, identify all tuples in both relations that have the
value y.
May need to read many blocks from R and S into memory. Use the M

main memory buffers for this purpose.

d) Output all tuples that can be formed by joining tuples of R
and S with common value y.

e) If either relation has no tuples buffered in memory, read the
next block of the relation into a memory buffer.

Page 76

COSC 404 - Dr. Ramon Lawrence

Sort-Join Example
Sort Phase

R
2
5
2

A
B
C

1
7
3

D
E
F

4
5

G
H

M=4. blocking factor=1.

S
1
4
9

z
r
w

1
2
4

x
v
u

6
5

t
s

1
2
2

D
A
C

5 B

3
4
5

F
G
H

7 E

1
1
4

x
z
r

9 w

2
4
5

v
u
s

6 t

3 F
4 G

5 H
7 E

1 D
2 A
2 C

5 B

1 x
1 z

4 r

9 w

2 v

4 u
5 s
6 t

Page 77

COSC 404 - Dr. Ramon Lawrence

Sort-Join Example
Merge Phase

R

M=4. blocking factor=1.

S

3 F
4 G

5 H
7 E

1 D
2 A
2 C

5 B

1 x
1 z

4 r

9 w

2 v

4 u
5 s
6 t

Output

1 D x
1 D z

Notes:
- Only one block of R and S in memory at a time.
- Use other two buffers to bring in records with
attribute values that match current join attribute.

Brought in for join on 1.
In memory after join on 1.

In memory after join on 1.

Buffer

1 x
1 D

1 z

R
S
extra
extra

Page 78

COSC 404 - Dr. Ramon Lawrence

Sort-Join Example
Merge Phase (2)

R

M=4. blocking factor=1.

S

3 F
4 G

5 H
7 E

1 D
2 A
2 C

5 B

1 x
1 z

4 r

9 w

2 v

4 u
5 s
6 t

2 A v

Brought in for join on 2.

In memory after join on 2.

Output

1 D x
1 D z

2 C v

Buffer

2 v
2 A

2 C

R
S
extra
extra

In memory after join on 2.

14

Page 79

COSC 404 - Dr. Ramon Lawrence

Sort-Join Example
Merge Phase (3)

R

M=4. blocking factor=1.

S

3 F
4 G

5 H
7 E

1 D
2 A
2 C

5 B

1 x
1 z

4 r

9 w

2 v

4 u
5 s
6 t

Brought in for join on 4.

Output

2 A v

1 D x
1 D z

2 C v

Buffer

4 r
4 G

4 u

R
S
extra
extra

In memory after join on 4.

Note: Skipped 3 in R because no match in S.

In memory after join on 4.

4 G r
4 G u

Page 80

COSC 404 - Dr. Ramon Lawrence

Sort-Join Example
Merge Phase (4)

R

M=4. blocking factor=1.

S

3 F
4 G

5 H
7 E

1 D
2 A
2 C

5 B

1 x
1 z

4 r

9 w

2 v

4 u
5 s
6 t

Output

Buffer

5 s
5 B

5 H

R
S
extra
extra

Done as 7 (R) and 6,9 (S) do not match.

In memory after join on 5.

2 A v

1 D x
1 D z

2 C v
4 G r
4 G u

In memory after join on 5.

5 B s
5 H s

Brought in for join on 5.

Page 81

COSC 404 - Dr. Ramon Lawrence

Sort-Join Analysis
The sort-join algorithm performs 5*(B(R)+B(S)) disk operations.
4*B(R)+4*B(S) to perform the external merge sort on relations.
Counting the cost to output relations after sort - hence, 4*B not 3*B.

1*B(R)+1*B(S) as each block of each relation read in merge
phase to perform join.

Algorithm limited to relations where B(R)<=M2 and B(S)<=M2.

The algorithm can use all the main memory buffers M to merge
tuples with the same key value.
If more tuples exist with the same key value than can fit in

memory, then we could perform a nested-loop join just on the
tuples with that given key value.
Also possible to do a one-pass join if the tuples with the key value for

one relation all fit in memory.

Page 82

COSC 404 - Dr. Ramon Lawrence

Sort-Based Join Algorithm
Algorithm #1 - Example

Let relations R and S occupy 6,000 and 3,000 blocks
respectively. Let M = 101 blocks.

Simple sort-join algorithm cost:
= 5*(B(R)+B(S)) = 45,000 disk I/Os

- Algorithm works because 6,000<=1012 and 3,000 <=1012.

- Requires that there is no join value y where the total # of tuples
from R and S with value y occupies more than 101 blocks.

Block nested-loop join cost:
= B(S) + B(S)*B(R)/(M-1) = 183,000 (S as smaller relation)

= B(S) + B(S)*B(R)/(M-1) = 186,000 (S as larger relation)

or approximately 180,000 disk I/Os

Page 83

COSC 404 - Dr. Ramon Lawrence

Sort-Merge-Join Algorithm
Idea: Merge the sorting steps and join steps to save disk I/Os.

Algorithm:
1) Create sorted sublists of size M using Y as the sort key for

both R and S.

2) Buffer first block of all sublists in memory.
Assumes no more than M sublists in total.

3) Find the smallest value y of attribute(s) Y in all sublists.

4) Identify all tuples in R and S with value y.
May be able to buffer some of them if currently using less than M buffers.

5) Output the join of all tuples of R and S that share value y.

Page 84

COSC 404 - Dr. Ramon Lawrence

Sort-Merge-Join Example

R
2
5
2

A
B
C

1
7
3

D
E
F

4
5

G
H

M=4. blocking factor=1.

S
1
4
9

z
r
w

1
2
4

x
v
u

6
5

t
s

1
2
2

D
A
C

5 B

3
4
5

F
G
H

7 E

1
1
4

x
z
r

9 w

2
4
5

v
u
s

6 t

Buffer

3 F
1 D

1 x

R1
R2
S1
S2

Output

1 D x
1 D z

2 v
1 z

Brought in for join on 1.

15

Page 85

COSC 404 - Dr. Ramon Lawrence

Sort-Merge-Join Example (2)

R

S

1
2
2

D
A
C

5 B

3
4
5

F
G
H

7 E

1
1
4

x
z
r

9 w

2
4
5

v
u
s

6 t

Buffer

3 F
2 A

4 r

R1
R2
S1
S2

Output

1 D x
1 D z

2 v

Brought in for join.

2 A v
2 C v

2 C

M=4. blocking factor=1. Page 86

COSC 404 - Dr. Ramon Lawrence

Sort-Merge-Join Example (3)

R

S

1
2
2

D
A
C

5 B

3
4
5

F
G
H

7 E

1
1
4

x
z
r

9 w

2
4
5

v
u
s

6 t

Buffer

3 F
5 B

4 r

R1
R2
S1
S2

Output

1 D x
1 D z

4 u

2 A v
2 C v

M=4. blocking factor=1.

No match for 3.

4 G

4 G r
4 G u

Page 87

COSC 404 - Dr. Ramon Lawrence

Sort-Merge-Join Example (4)

R

S

1
2
2

D
A
C

5 B

3
4
5

F
G
H

7 E

1
1
4

x
z
r

9 w

2
4
5

v
u
s

6 t

Buffer

5 H
5 B

9 w

R1
R2
S1
S2

Output

1 D x
1 D z

5 s

2 A v
2 C v

M=4. blocking factor=1.

4 G r
4 G u
5 B s
5 H s

Page 88

COSC 404 - Dr. Ramon Lawrence

Sort-Merge-Join Example (5)

R

S

1
2
2

D
A
C

5 B

3
4
5

F
G
H

7 E

1
1
4

x
z
r

9 w

2
4
5

v
u
s

6 t

Buffer

7 E
9 w

R1
R2
S1
S2

Output

1 D x
1 D z

6 t

2 A v
2 C v
4 G r
4 G u
5 B s
5 H s

No match for 9.

No match for 7.

No match for 6.

Done!

Page 89

COSC 404 - Dr. Ramon Lawrence

Sort-Merge-Join Analysis
Sort-merge-join algorithm performs 3*(B(R)+B(S)) disk I/Os.
2*B(R)+2*B(S) to create the sublists for each relation.

1*B(R)+1*B(S) as each block of each relation read in merge
phase to perform join.

The algorithm is limited to relations where B(R)+B(S)<=M2.

Page 90

COSC 404 - Dr. Ramon Lawrence

Sort-Merge-Join Example
Let relations R and S occupy 6,000 and 3,000 blocks
respectively. Let M = 101 blocks.

Merge-sort-join algorithm cost:
= 3*(B(R)+B(S)) = 27,000 disk I/Os

- Algorithm works because 6,000+3,000<=1012.

- # of memory blocks for sublists = 90

- 11 blocks free to use where there exists multiple join records
with same key value y.

16

Page 91

COSC 404 - Dr. Ramon Lawrence

Summary of Sorting Based Methods
Performance of sorting based methods:

Page 92

COSC 404 - Dr. Ramon Lawrence

Hashing-based Two-Pass Algorithms
Hashing-based two-pass algorithms use a hash function to
group all tuples with the same key in the same bucket.

The basic process is as follows:
1) Use a hash function on each tuple to hash the tuple using a

key to a bucket (or partition).

2) Perform the required operation by working on one bucket at a
time. If there are M buffers available, M-1 is the number of
buckets.

We start with the general external hash partitioning algorithm.

Page 93

COSC 404 - Dr. Ramon Lawrence

Partitioning Using Hashing Algorithm
1) Partition relation R using M buffers into M-1 buckets of
roughly equal size.

2) Use a buffer for the input, and one buffer for each of the M-1
buckets.

3) When a tuple of relation R is read, it is hashed using the hash
function h(x) and stored in the appropriate bucket.

4) As output buffers (for the buckets) are filled they are written to
disk. As the input buffer for R is exhausted, a new block is read.

The cost of the algorithm is 2*B(R).

Page 94

COSC 404 - Dr. Ramon Lawrence

h(x) = 0

Partitioning using Hashing Example

initial relation

G
A
D

24
19
31

C
B
E

33
14
16

R
D
M

6
21
3

G 24

Buffers

M=4, bfr=3, h(x) = x % 3 (Hash on column #2.)

h(x) = 1

h(x) = 2

A 19
D 31

G
A
D

24
19
31

input

Page 95

COSC 404 - Dr. Ramon Lawrence

Partitioning using Hashing Example (2)

initial relation

G
A
D

24
19
31

C
B
E

33
14
16

R
D
M

6
21
3

Buffers

M=4, bfr=3, h(x) = x % 3 (Hash on column #2.)

G 24
h(x) = 0

h(x) = 1
A
D

19
31

h(x) = 2

C
B
E

33
14
16

input
Second input block

C 33

B 14

E 16 Save full block to disk.

Page 96

COSC 404 - Dr. Ramon Lawrence

Partitioning using Hashing Example (3)

initial relation

G
A
D

24
19
31

C
B
E

33
14
16

R
D
M

6
21
3

Buffers

M=4, bfr=3, h(x) = x % 3 (Hash on column #2.)

G
C

24
33 h(x) = 0

h(x) = 2
B 14

R
D
M

6
21
3

input
Third input block

h(x) = 1
A
D
E

19
31
16

R 6

17

Page 97

COSC 404 - Dr. Ramon Lawrence

Partitioning using Hashing Example (4)

initial relation

G
A
D

24
19
31

C
B
E

33
14
16

R
D
M

6
21
3

Buffers

M=4, bfr=3, h(x) = x % 3 (Hash on column #2.)

h(x) = 0

h(x) = 1

h(x) = 2
B 14

R
D
M

6
21
3

input
Third input block

A
D
E

19
31
16

G
C
R

24
33
6

D 21
M 3

Page 98

COSC 404 - Dr. Ramon Lawrence

Duplicate Elimination Using Hashing
Algorithm (two-pass):
Partition tuples of R using hashing and M-1 buckets.

Two copies of the same tuple will hash to the same bucket.

One-pass algorithm can be used on each bucket to eliminate
duplicates by loading entire bucket into memory.

Analysis:
If all buckets are approximately the same size, each bucket Ri

will be of size B(R)/(M-1).

The two-pass algorithm will work if B(R) <= M*(M-1).

The # of disk operations is the same as for sorting, 3*B(R).

Page 99

COSC 404 - Dr. Ramon Lawrence

Grouping and Aggregation
Using Hashing

Algorithm (two-pass):
Partition tuples of R using hashing and M-1 buckets.

The hash function should ONLY use the grouping attributes.

Tuples with the same values of the grouping attributes will hash
to the same bucket.

A one-pass algorithm is used on each bucket to perform
grouping/aggregation by loading the entire bucket into memory.

The two-pass algorithm will work if B(R) <= M*(M-1).

On the second pass, we only need store one record per group.
Thus, even if a bucket size is larger than M, we may be able to

process it if all the group records in the bucket fit into M buffers.

The number of disk operations is 3*B(R).
Page 100

COSC 404 - Dr. Ramon Lawrence

Grouping using Hashing Question
initial relation

2
5
2
1
2
2
4
5
4
3
4
2

Calculate the output for a query that
groups by the given integer attribute
and returns a count of the # of records
that contains that attribute.

Assume M=4 and blocking factor=2.

1
5
2

Page 101

COSC 404 - Dr. Ramon Lawrence

Set Operations Using Hashing
Set operations can be done using a hash-based algorithm.
Start by hash partitioning R and S into M-1 buckets.

Perform a one-pass algorithm for the set operation on each of
the buckets produced.

All algorithms perform 3*(B(R) + B(S)) disk operations.

Algorithms require that min(B(R),B(S)) <= M2, since one of the
operands must fit in memory after partitioning into buckets in
order to perform the one-pass algorithm.

Page 102

COSC 404 - Dr. Ramon Lawrence

Hash Partitioning Question
Question: Given M memory buffers, how many hash buckets
are used when hash partitioning?

A) 1

B) M -1

C) M

D) M +1

18

Page 103

COSC 404 - Dr. Ramon Lawrence

Hash-Join Algorithm
Hashing can be used to join two relations R(X,Y) and S(Y,Z).

Algorithm:
Hash partition R and S using the hash key Y.

If any tuple tR of R will join with a tuple tS of S, then tR will be in
bucket Ri and, tS will be in bucket Si. (same bucket index)

For each bucket pair i, load the smaller bucket Ri or Si into
memory and perform a one-pass join.

Important notes for hash-based joins:
The smaller relation is called the build relation, and the other

relation is the probe relation. We will assume S is smaller.
The size of the smaller relation dictates the number of

partitioning steps needed. Page 104

COSC 404 - Dr. Ramon Lawrence

Hash Join Example
Partition Phase

R
2
5
2

A
B
C

1
7
3

D
E
F

4
5

G
H

M=4, bfr=2, h(x) = x % 3

S
1
4
9

z
r
w

1
2
4

x
v
u

6
5

t
s

3 F
h(x) = 0

Partitions for R

h(x) = 2
2
5

A
B

2
5

C
H

9
6

w
t

h(x) = 0

Partitions for S

h(x) = 2
2
5

v
s

h(x) = 1
1
4

z
r

1
4

x
u

h(x) = 1
1
7

D
E

4 G

Page 105

COSC 404 - Dr. Ramon Lawrence

Hash Join Example
Join Phase on Partition 1

Partition 1 for R

Partition 1 for S

Buffers

Output

1 D x
1 D z
4 G r
4 G u

h(x) = 1
1
7

D
E

4 G

h(x) = 1
1
4

z
r

1
4

x
u

1
7

D
E

4 G

1
4

z
r

1
4

x
u

Note that both relations fit entirely in memory, but can
perform join by having only one relation in memory and

reading 1 block at a time from the other one. Page 106

COSC 404 - Dr. Ramon Lawrence

Hash-Join Analysis
The hash-join algorithm performs 3*(B(R)+B(S)) disk I/Os.
2*B(R)+2*B(S) to perform the hash partitioning on the relations.

1*B(R)+1*B(S) as each block of each relation read in to perform
join (one bucket at a time).

Algorithm limited to relations where min(B(R),B(S))<=M2.

Page 107

COSC 404 - Dr. Ramon Lawrence

Hash-Join Example
Let relations R and S occupy 6,000 and 3,000 blocks
respectively. Let M = 101 blocks.

Hash-join algorithm cost:
= 3*(B(R)+B(S)) = 27,000 disk I/Os

- Average # of blocks per bucket is 60 (for R) and 30 (for S).

- Algorithm works because min(60,30)<=101.

Page 108

COSC 404 - Dr. Ramon Lawrence

Hybrid-Hash Join Algorithm
Hybrid hash join uses any extra space beyond what is needed
for buffers for each bucket to store one of the buckets in
memory. This reduces the number of I/Os. Idea:
Assume that we need k buckets in order to guarantee that the

partitions of the smaller relation S fit in memory after partitioning.

Of the M buffers, allocate k-1 buffers for each of the buckets
except the first one. Expected bucket size is B(S)/k.

Give bucket 0 the rest of the buffers (M-k+1) to store its tuples in
memory. The rest of the buckets are flushed to disk files.

When hash relation R, if tuple t of R hashes to bucket 0, we can
join it immediately and produce output. Otherwise, we put it in
the buffer for its partition (and flush this buffer as needed).

After read R, process all on-disk buckets using a one-pass join.

19

Page 109

COSC 404 - Dr. Ramon Lawrence

Hybrid-Hash Join Analysis
This approach saves two disk I/Os for every block of the
buckets of S that remain in memory.

Overall cost is:

Note: We are making the simplification that the in-memory partition takes
up all of memory M (in practice it gets M-k+1) buffers. This is usually a
small difference for large M and small k.

ሺ3 െ
ܯ2
ܤ ܵ

ሻሺܤ ܴ ܤ ܵ ሻ

Page 110

COSC 404 - Dr. Ramon Lawrence

Hash Join Example
Partition Phase

M=4, bfr=2, buckets=2
Keep bucket 0 in memory.
Bucket 0 can use up to 3 blocks.

S
1
4
9

z
r
w

1
2
4

x
v
u

6
5

t
s

Partitions for S

4
2

r
v

h(x) = 0
4
6

u
t

h(x) = 1
1
9

z
w

1
5

x
s

Buffers

Blocks for
bucket #0 stay

in buffer.

Last block for
bucket #1.

4
2

r
v

4
6

u
t

Page 111

COSC 404 - Dr. Ramon Lawrence

4
2

r
v

4
6

u
t

Hash Join Example
Buffered Join Phase

R
2
5
2

A
B
C

1
7
3

D
E
F

4
5

G
H

Partition R.
Join immediately if hash to
bucket 0. h(x) = 1

5 B

Output
2 A v
2 C v

On Disk

1 D

0
1
0
1

Buffers

Page 112

COSC 404 - Dr. Ramon Lawrence

Hash Join Example
Buffered Join Phase (2)

R
2
5
2

A
B
C

1
7
3

D
E
F

4
5

G
H

Partition R.
Join immediately if hash to
bucket 0.

Output
2 A v
2 C v

On Disk

1

4
2

r
v

4
6

u
t

h(x) = 1

Buffers

7 E

1

3 F
5 B
1 D

Page 113

COSC 404 - Dr. Ramon Lawrence

Hash Join Example
Buffered Join Phase (3)

R
2
5
2

A
B
C

1
7
3

D
E
F

4
5

G
H

Partition R.
Join immediately if hash to
bucket 0.

Output

0
1

2 A v
2 C v
4 G r
4 G u

On Disk

4
2

r
v

4
6

u
t

h(x) = 1

Buffers

5 B
1 D

7 E
3 F

5 H

Page 114

COSC 404 - Dr. Ramon Lawrence

Hash Join Example
Disk Join Phase

Perform regular hash join
on partition 1 of R and S
currently on disk. Output

5 B s
1 D z
1 D x
5 H s

2 A v
2 C v
4 G r
4 G u

Partition 1 On Disk for R

Partition 1 On Disk for S

Blocks
of S.

Buffer 1
block of R
at at time.

5 B
1 D

7 E
3 F

5 H

1
9

z
w

1
5

x
s

Buffers

5
1

B
D

1 z
9 w

1 x
5 s

20

Page 115

COSC 404 - Dr. Ramon Lawrence

Hash-Join Example Analysis
Hash-join algorithm cost 26 total block I/Os. (Expected 24!)
Total partition cost = 17 I/Os.
Partition of R: 4 reads, 5 writes.

Partition of S: 4 reads, 4 writes.

Join phase cost = 9 reads (5 for R and 4 for S).

Total cost of 26 is larger than expected cost of 24 because
tuples did not hash evenly into buckets.

Hybrid-hash join algorithm cost 16 block I/Os. (Expected 16!)
Partition cost is 12 disk I/Os.
Partition of R: 4 reads, 2 writes (for bucket #1) (do not write last block).

Partition of S: 4 reads, 2 writes.

Memory join is free.

Regular hash join: 2 read for R, 2 reads for S.
Page 116

COSC 404 - Dr. Ramon Lawrence

Hash Join Question
Question: Select a true statement.

A) The probe relation is the smallest relation.

B) The probe relation has an in-memory hash table built on its
tuples.

C) The build relation is the smallest relation.

D) The probe relation is buffered in memory.

Page 117

COSC 404 - Dr. Ramon Lawrence

Multi-Pass Hash Joins
We have examined two-pass hash joins where only one
partitioning step is needed. Hash-based joins can be extended
to support larger relations by performing recursive partitioning.

Unlike sort-based joins where the number of partition steps is
determined by the larger relation, for hash-based joins the
number of partition steps is determined by the smaller build
relation. This is often a significant advantage.

Page 118

COSC 404 - Dr. Ramon Lawrence

Adaptive Hash Join
During its execution, a join algorithm may be required to give up
memory or be given memory from the execution system based
on system load and execution factors.

An adaptive hash join algorithm [Zeller90] is able to adapt to
changing memory conditions by allowing the partition buckets to
change in size.

Basic idea (that makes it different from hybrid hash):
Each partition can hold a certain number of buffers and all are

initially memory resident. Tuples are inserted as usual.

When memory is exhausted, a victim partition is flushed to disk
and frozen (no new tuples can be added). This is repeated until
partitioning is complete.

The description of adaptive join algorithm above is for the
simpler version called dynamic hash join [DeWitt95].

Page 119

COSC 404 - Dr. Ramon Lawrence

Local Research
Skew-Aware Hash Join

Skew-aware hash join [Cutt09] selects the build partition tuples
to buffer based on their frequency of occurrence in the probe
relation.

When data is skewed (some data is much more common than
others), this can have a significant improvement on the number
of I/Os performed.

Algorithm optimization is currently in PostgreSQL hash join
implementation.

Page 120

COSC 404 - Dr. Ramon Lawrence

Summary of Hashing Based Methods
Performance of hashing based methods:

21

Page 121

COSC 404 - Dr. Ramon Lawrence

Comparison of
Sorting versus Hashing Methods

Speed and memory requirements for the algorithms are almost
identical. However, there are some differences:
1) Hash-based algorithms for binary operations have size

requirement based on the size of the smaller of the two
arguments rather than the sum of the argument sizes.

2) Sort-based algorithms allow us to produce the result in
sorted order and use this for later operations.

3) Hash-based algorithms depend on the buckets being of
equal size.
Hard to accomplish in practice, so generally, we limit bucket sizes to

slightly smaller values to handle this variation.

4) Sort-based algorithms may be able to write sorted sublists to
consecutive disk blocks saving rotational and seek times.

5) Both algorithms can save disk access time by writing/reading
several blocks at once if memory is available. Page 122

COSC 404 - Dr. Ramon Lawrence

Comparison of
Sorting versus Hashing Methods (2)
6) Hash based joins are usually best if neither of the input

relations are sorted or there are no indexes for equi-join.

Note that for small relation sizes, the simple nested-block join is
faster than both the sorting and hashing based methods!

Page 123

COSC 404 - Dr. Ramon Lawrence

Join Question
Question: For what percentage of join memory available
compared to the smaller relation size (i.e. M / B(S)) is block
nested-loop join faster than hybrid hash join?

A) 0% to 10%

B) 10% to 25%

C) 25% to 50%

D) 50% to 100%

Page 124

COSC 404 - Dr. Ramon Lawrence

Index-Based Algorithms
Index-based algorithms use index structures to improve
performance.

Indexes are especially useful for selections instead of
performing a table scan.

For example, if the query is a=v(R), and we have a B+-tree
index on attribute a then the query cost is the time to access
the index plus the time to read all the records with value v.

Page 125

COSC 404 - Dr. Ramon Lawrence

Index-Based Algorithms
Query Costs Example

Let B(R) = 1,000 and T(R) = 20,000.
That is, R has 20,000 tuples, and 20 tuples fit in a block.

Let a be an attribute of R, and evaluate the operation a=v(R).

Evaluation Cases (# of disk I/Os):
1) R is clustered and index is not used = B(R) = 1000.

2) V(R,a) = 100 and use a clustering index=(20,000/100)/20= 10.

3) V(R,a) = 10 and use a non-clustering index = 20,000/10 =
2000 I/Os.
Must retrieve on average 2000 tuples for condition and possible that each

tuple can be on a separate block.

4) V(R,a) = 20,000 (a is a key) - cost = 1 (+ index cost)

Page 126

COSC 404 - Dr. Ramon Lawrence

Evaluate query cost assuming:
V(Student, Major)=4 (4 different Major values: "BA", "BS", "CS", "ME")

B(Student) = 500, T(Student) = 10,000, blocking factor = 20

Cost estimate for query using Major index:
Since V(Student,Major)=4 , we expect that 10000/4 = 2,500 tuples have

"CS" as the value for the Major attribute.

If the index is a clustering index, 2,500/20 = 125 block reads are required
to read the Student tuples. (What would be the strategy?)

If the index is non-clustering, how many index blocks are read?
 The height of the index depends on the # of unique entries which is 4. The

B+-tree index would be of depth 1. We can assume that it would be in main
memory, only the pointer blocks would have to be read. If a leaf node can
store 200 pointers, then 2,000/200 = 13 index blocks would have to be read.

How many block I/Os in total for a non-clustering index?

How does this compare to doing a sequential scan?

Cost Estimate Example with Indices
Query: Major = “CS”(Student)

22

Page 127

COSC 404 - Dr. Ramon Lawrence

Index-Based Algorithms
Complicated Selections

Indexes can also be used to answer other types of selections:
1) A B-tree index allows efficient range query selections such

as a<=v(R) and a>=v(R).

2) Complex selections can be implemented by an index-scan
followed by another selection on the tuples returned.

Complex selections involve more than one condition connected
by boolean operators.
For example, a=v AND b>=10(R) is a complex selection.

This query can be evaluated by using the index to find all tuples
where a=v, then apply the second condition b >=10 to all the
tuples returned from the index scan.

Page 128

COSC 404 - Dr. Ramon Lawrence

Index Joins
An index can also be used to speed-up certain types of joins.

Consider joining R(X,Y) and S(Y,Z) by using a nested-block
join with S as the outer relation and R as the inner relation. We
have an index on R for attribute(s) Y.

We can modify the algorithm that for every tuple t of S, we use
the value of Y for t to lookup in the index for R.

This lookup will return only the tuples of R with matching values
for Y, and we can compute the join with t.

Cost: T(S)*(T(R)/V(R,Y)) tuples will be read
T(S)*T(R)/V(R,Y) (non-clustered)

T(S)*B(R)/V(R,Y) (clustered)

Not always faster than a nested-block join! Makes sense when
V(R,Y) is large and R is small.

Page 129

COSC 404 - Dr. Ramon Lawrence

Index-Merge Join Variant Example
Join R(X,Y) with S(Y,Z) by sorting R and read S using index.
with B(R)=6000,B(S)=3000,M = 101 blocks.

1) Assume only index on S for Y:
Sort R first = 2*B(R) = 12,000 disk I/Os (to form sorted sublists)

Merge with S using 60 buffers for R and 1 for index block for S.

Read all of R and S = 9,000 disk I/Os

Total = 21,000 disk I/Os

2) Assume index for both R and S for Y:
Do not need to sort either R or S.

Read all of R and S = 9,000 disk I/Os

Remember that there is always a small overhead of accessing
the index itself. Page 130

COSC 404 - Dr. Ramon Lawrence

Multi-Pass Algorithms
The two-pass algorithms based on sorting and hashing can be
extended to any number of passes using recursion.
Each pass partitions the relations into smaller pieces.

Eventually, the partitions will entirely fit in memory (base case).

Analysis of k-pass algorithm:
Memory requirements M = (B(R))1/k

Maximum relation size B(R) <= Mk

Disk operations = 2*k*B(R)
Note: If do not count write in final k pass, cost is: 2*k*B(R) - B(R).

Page 131

COSC 404 - Dr. Ramon Lawrence

Parallel Operators
We have discussed implementing selection, project, join,
duplicate elimination, and aggregation on a single processor.

Many algorithms have been developed to exploit parallelism in
the form of additional CPUs, memory, and hard drives.

We will not study these algorithms, but realize that they exist.

Page 132

COSC 404 - Dr. Ramon Lawrence

Join Algorithms
that Produce Results Early

One of the problems of join algorithms is that they must read
either one (hash-based) or both (sort-based) relations before
any join input can be produced.
This is not desirable in interactive settings where the goal is to

get answers to the user as soon as possible.

Research has been performed to define algorithms that can
produced results early and are capable of joining sources over
the Internet. These algorithms also handle network issues.
Sort-based algorithms: Progressive-Merge join [Dittrich02]

produces results early by sorting and joining both inputs
simultaneously in memory.

Hash-based algorithms: Hash-merge join [Mokbel04], X-Join
[Urban00] and Early Hash Join [Lawrence05] use two hash
tables. As tuples arrive they are inserted in their table and
probe the other.

23

Page 133

COSC 404 - Dr. Ramon Lawrence

Research Challenges
There are several open research challenges for database
algorithms:
1) Optimizing algorithms for cache performance

2) Examination of CPU costs as well as I/O costs

3) The migration to solid-state drives changes many of the
algorithm assumptions.
Random I/O does NOT cost more any more which implies algorithms

that performed more random I/O (index algorithms) may be more
competitive on the new storage technology.

Page 134

COSC 404 - Dr. Ramon Lawrence

Conclusion
Every relational algebra operator may be implemented using
many different algorithms. The performance of the algorithms
depend on the data, the database structure, and indexes.

Classify algorithms by:
1) # of passes: Algorithms only have a fixed buffered memory

area to use, and may require one, two, or more passes
depending on input size.

2) Type of operator: selection, projection, grouping, join.

3) Algorithms can be based on sorting, hashing, or indexing.

The actual algorithm is chosen by the query optimizer based on
its query plan and database statistics.

Page 135

COSC 404 - Dr. Ramon Lawrence

Major Objectives
The "One Things":
Diagram the components of a query processor and explain their

function (slide #5).

Calculate block access for one-pass algorithms.

Calculate block accesses for tuple & block nested joins.

Perform two-pass sorting methods including all operators, sort-
join and sort-merge-join and calculate performance.

Perform two-pass hashing methods including all operators, hash-
join and hybrid hash-join and calculate performance.

Major Theme:
The query processor can select from many different algorithms

to execute each relational algebra operator. The algorithm
selected depends on database characteristics. Page 136

COSC 404 - Dr. Ramon Lawrence

Objectives
Explain the goal of query processing.

Review: List the relational and set operators.

Diagram and explain query processor components.

Explain how index and table scans work and calculate the block
operations performed.

Write an iterator in Java for a relational operator.

List the tuple-at-a-time relational operators.

Illustrate how one-pass algorithms for selection, project,
grouping, duplicate elimination, and binary operators work and
be able to calculate performance and memory requirements.

Calculate performance of tuple-based and block-based nested
loop joins given relation sizes (memorize formulas!).

Page 137

COSC 404 - Dr. Ramon Lawrence

Objectives (2)
Perform and calculate performance of two-pass sorting based

algorithms - sort-merge algorithm, set operators, sort-merge-
join/sort-join.

Perform and calculate performance of two-pass hashing based
algorithms - hash partitioning, operation implementation and
performance, hash join, hybrid-hash join.

Compare/contrast sorting versus hashing methods

Calculate performance of index-based algorithms - cost
estimate, complicated selections, index joins

Explain how two-pass algorithms are extended to multi-pass
algorithms.

List some recent join algorithms: adaptive, hash-merge, XJoin,
progressive-merge.

1

COSC 404
Database System Implementation

Query Optimization

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 404 - Dr. Ramon Lawrence

Query Optimization
Overview

The query processor performs four main tasks:

1) Verifies the correctness of an SQL statement

2) Converts the SQL statement into relational algebra

3) Performs heuristic and cost-based optimization to build the
more efficient execution plan

4) Executes the plan and returns the results

Page 3

COSC 404 - Dr. Ramon Lawrence

Components of a Query Processor

DB Stats

Database

Query Output

SQL Query

Parser

Translator

Optimizer

Evaluator

Expression
Tree

Logical
Query Tree

Physical
Query Tree

SELECT Name FROM Student
WHERE Major='CS'

<Query>

SELECT

<SelList>

FROM

<FromList>

WHERE

<Condition>

<Attr> <Value>=

Major "CS"

<Attr>

Name

<Rel>

Student

Student

Name

Major='CS'

Student

(index scan)

(table scan)
Name

Major='CS'

Page 4

COSC 404 - Dr. Ramon Lawrence

Query Processor Components
The Parser

The role of the parser is to convert an SQL statement
represented as a string of characters into a parse tree.

A parse tree consists of nodes, and each node is either an:
Atom - lexical elements such as words (WHERE), attribute or

relation names, constants, operator symbols, etc.

Syntactic category - are names for query subparts.
E.g. <SFW> represents a query in select-from-where form.

Nodes that are atoms have no children. Nodes that correspond
to categories have children based on one of the rules of the
grammar for the language.

Page 5

COSC 404 - Dr. Ramon Lawrence

A Simple SQL Grammar
A grammar is a set of rules dictating the structure of the
language. It exactly specifies what strings correspond to the
language and what ones do not.
Compilers are used to parse grammars into parse trees.
Same process for SQL as programming languages, but somewhat

simpler because the grammar for SQL is smaller.

Our simple SQL grammar will only allow queries in the form of
SELECT-FROM-WHERE.
We will not support grouping, ordering, or SELECT DISTINCT.

We will support lists of attributes in the SELECT clause, lists of
relations in the FROM clause, and conditions in the WHERE
clause.

Page 6

COSC 404 - Dr. Ramon Lawrence

Simple SQL Grammar
<Query> ::= <SFW>
<Query> ::= (<Query>)

<SFW> ::= SELECT <SelList> FROM <FromList> WHERE
<Condition>

<SelList> ::= <Attr>
<SelList> ::= <Attr> , <SelList>

<FromList> ::= <Rel>
<FromList> ::= <Rel> , <FromList>

<Condition> ::= <Condition> AND <Condition>
<Condition> ::= <Tuple> IN <Query>
<Condition> ::= <Attr> = <Attr>
<Condition> ::= <Attr> LIKE <Value>
<Condition> ::= <Attr> = <Value>
<Tuple> ::= <Attr> // Tuple may be 1 attribute

2

Page 7

COSC 404 - Dr. Ramon Lawrence

A Simple SQL Grammar Discussion
The syntactic categories of <Attr>, <Rel>, and <Value> are
special because they are not defined by the rules of the
grammar.
<Attr> - must be a string of characters that matches an

attribute name in the database schema.
<Rel> - must be a character string that matches a relation

name in the database schema.
<Value> - is some quoted string that is a legal SQL pattern or

a valid numerical value.

Page 8

COSC 404 - Dr. Ramon Lawrence

Query Example Database

Student Relation

Student(Id,Name,Major,Year)
Department(Code,DeptName,Location)

Department Relation

Page 9

COSC 404 - Dr. Ramon Lawrence

Query Parsing Example
Return all students who major in computer science.

SELECT Name FROM Student WHERE Major='CS'

Rules applied:
<Query> ::= <SFW>
<SFW> ::= SELECT <SelList> FROM <FromList> WHERE <Condition>
<SelList> ::= <Attr> (<Attr> = “Name”)
<Condition> ::= <Attr> = <Value> (<Attr>=“Major”, <Value>=“CS”)
<FromList> ::= <Rel> (<Rel> = “Student”)

<Query>

SELECT

<SelList>

FROM

<FromList>

WHERE

<Condition>

<Attr> <Value>=

Major "CS"

<Attr>

Name

<Rel>

Student

<SFW>

Page 10

COSC 404 - Dr. Ramon Lawrence

Query Parsing Example 2
Return all departments who have a 4th year student.

SELECT DeptName FROM Department, Student
WHERE Code = Major AND Year = 4

Can you determine what rules are applied?

<SFW>

SELECT

<SelList>
FROM <FromList> WHERE <Condition>

<Attr>

DeptName

<FromList>,

<Rel>

Student

<Rel>

Department

<Query>

<Attr> <Value>=

Year 4

<Condition> <Condition>AND

<Attr> <Attr>=

Code Major

Page 11

COSC 404 - Dr. Ramon Lawrence

Query Parsing Example 3
Return all departments who have a 4th year student.

SELECT DeptName FROM Department WHERE Code IN
(SELECT Major FROM Student WHERE Year=4)

<SFW>

SELECT

<SelList>
FROM <FromList> WHERE

<Condition>

<Tuple>

<Query>

IN

<Attr>

DeptName

<Rel>

Department

<Query>

SELECT

<SelList> FROM
<FromList>

WHERE <Condition>

<Attr>

Major
<Rel>

Student

<Attr> <Value>=

Year 4

<SFW>

<Query>

)(<Attr>

Code

Page 12

COSC 404 - Dr. Ramon Lawrence

Query Processor Components
The Parser Functionality

The parser converts an SQL string to a parse tree.
This involves breaking the string into tokens.

Each token is matched with the grammar rules according to the
current parse tree.

Invalid tokens (not in grammar) generate an error.

If there are no rules in the grammar that apply to the current
SQL string, the command will be flagged to have a syntax error.

We will not concern ourselves with how the parser works.
However, we will note that the parser is responsible for
checking for syntax errors in the SQL statement.
That is, the parser determines if the SQL statement is valid

according to the grammar.

3

Page 13

COSC 404 - Dr. Ramon Lawrence

Query Processor Components
The Preprocessor

The preprocessor is a component of the parser that performs
semantic validation.

The preprocessor runs after the parser has built the parse tree.
Its functions include:
Mapping views into the parse tree if required.

Verify that the relation and attribute names are actually valid
relations and attributes in the database schema.

Verify that attribute names have a corresponding relation name
specified in the query. (Resolve attribute names to relations.)

Check types when comparing with constants or other attributes.

If a parse tree passes syntax and semantic validation, it is
called a valid parse tree.

A valid parse tree is sent to the logical query processor,
otherwise an error is sent back to the user. Page 14

COSC 404 - Dr. Ramon Lawrence

Query Parsing Question
Question: Select a true statement.

A) The SQL grammar contains information to validate if a given
field name is a valid field in the database.

B) The preprocessor runs before the parsing process.

C) SQL syntax errors are checked by the preprocessor.

D) Errors indicating a table does not exist are generated by the
preprocessor.

Page 15

COSC 404 - Dr. Ramon Lawrence

Query Processor Components
Translator

The translator, or logical query processor, is the component
that takes the parse tree and converts it into a logical query tree.

A logical query tree is a tree consisting of relational operators
and relations. It specifies what operations to apply and the order
to apply them. A logical query tree does not select a particular
algorithm to implement each relational operator.

We will study some rules for how a parse tree is converted into a
logical query tree.

Page 16

COSC 404 - Dr. Ramon Lawrence

Parse Trees to Logical Query Trees
The simplest parse tree to convert is one where there is only
one select-from-where (<SFW>) construct, and the
<Condition> construct has no nested queries.

The logical query tree produced consists of:
1) The cross-product () of all relations mentioned in the
<FromList> which are inputs to:

2) A selection operator, C, where C is the <Condition>
expression in the construct being replaced which is the input to:

3) A projection, L, where L is the list of attributes in the
<SelList>.

Page 17

COSC 404 - Dr. Ramon Lawrence

Parse Tree to Logical Tree Example

<Query>

SELECT

<SelList>

FROM

<FromList>

WHERE

<Condition>

<Attr> <Value>=

Major "CS"

<Attr>

Name

<Rel>

Student

<SFW>

SELECT Name FROM Student WHERE Major='CS'

Name

Major='CS'

Student

Page 18

COSC 404 - Dr. Ramon Lawrence

Parse Tree to Logical Tree Example 2

<SFW>

SELECT

<SelList>
FROM <FromList> WHERE <Condition>

<Attr>

DeptName

<FromList>,

<Rel>

Student

<Rel>

Department

<Query>

<Attr> <Value>=

Year 4

<Condition> <Condition>AND

<Attr> <Attr>=

Code Major

SELECT DeptName FROM Department, Student
WHERE Code = Major AND Year = 4

Student

Department

Code=Major AND Year = 4

DeptName

4

Page 19

COSC 404 - Dr. Ramon Lawrence

Converting Nested Parse Trees to
Logical Query Trees

Converting a parse tree that contains a nested query is slightly
more challenging.

A nested query may be correlated with the outside query if it
must be re-computed for every tuple produced by the outside
query. Otherwise, it is uncorrelated, and the nested query can
be converted to a non-nested query using joins.

We will define a two-operand selection operator that takes
the outer relation R as one input (left child), and the right child
is the condition applied to each tuple of R.
The condition is the subquery involving IN.

Page 20

COSC 404 - Dr. Ramon Lawrence

Converting Nested Parse Trees to
Logical Query Trees (2)

The nested subquery translation algorithm involves defining a
tree from root to leaves as follows:
1) Root node is a projection, L, where L is the list of attributes

in the <SelList> of the outer query.

2) Child of root is a selection operator, C, where C is the
<Condition> expression in the outer query ignoring the
subquery.

3) The two-operand selection operator with left-child as the
cross-product () of all relations mentioned in the <FromList>
of the outer query, and right child as the <Condition>
expression for the subquery.

4) The subquery itself involved in the <Condition> expression
is translated to relational algebra.

Page 21

COSC 404 - Dr. Ramon Lawrence

Parse Tree to Logical Tree Example 3
SELECT DeptName FROM Department WHERE Code IN

(SELECT Major FROM Student WHERE Year=4)

<SFW>

SELECT

<SelList>
FROM <FromList> WHERE

<Condition>

<Tuple>

<Query>

IN

<Attr>

DeptName

<Rel>

Department

<Query>

SELECT

<SelList> FROM
<FromList>

WHERE <Condition>

<Attr>

Major
<Rel>

Student

<Attr> <Value>=

Year 4

<SFW>

<Query>

)(<Attr>

Code

Page 22

COSC 404 - Dr. Ramon Lawrence

Parse Tree to Logical Tree Example 3 (2)
SELECT DeptName FROM Department WHERE Code IN

(SELECT Major FROM Student WHERE Year=4)

<Tuple>

Department <Condition>

IN

<Attr>

Code

Student

No outer level selection.

Only one outer
relation.

Condition in parse tree.

Subquery translated to
logical query tree.

Major

Year=4

TRUE

DeptName

Page 23

COSC 404 - Dr. Ramon Lawrence

Converting Nested Parse Trees to
Logical Query Trees (3)

Now, we must remove the two-operand selection and replace it
by relational algebra operators.

Rule for replacing two-operand selection (uncorrelated):
Let R be the first operand, and the second operand is a
<Condition> of the form t IN S. (S is uncorrelated subquery.)

1) Replace <Condition> by the tree that is expression for S.
May require applying duplicate elimination if expression has duplicates.

2) Replace two-operand selection by one-argument selection,
C, where C is the condition that equates each component of
the tuple t to the corresponding attribute of relation S.

3) Give C an argument that is the product of R and S.

Page 24

COSC 404 - Dr. Ramon Lawrence

Parse Tree to Logical Tree Conversion

Replaced with C

and .

t

R <Condition>

IN S
May need to
eliminate
duplicates.

S

R

C

5

Page 25

COSC 404 - Dr. Ramon Lawrence

Parse Tree to Logical Tree Example 3 (3)

<Tuple>

Department <Condition>

IN

<Attr>

Code

Student

Replaced with C

and .

Major is not
a key.

DeptName

Major

Year=4

Year=4

Department

Student

DeptName

Major

Code=Major

Page 26

COSC 404 - Dr. Ramon Lawrence

Correlated Nested Subqueries
Translating correlated subqueries is more difficult because the
result of the subquery depends on a value defined outside the
query itself.

Correlated subqueries may require the subquery to be
evaluated for each tuple of the outside relation as an attribute
of each tuple is used as the parameter for the subquery.
We will not study translation of correlated subqueries.

Example:

Return all students that are more senior than the
average for their majors.

SELECT Name FROM Student s WHERE year >
(SELECT Avg(Year) FROM student AS s2

WHERE s.major = s2.major)

Page 27

COSC 404 - Dr. Ramon Lawrence

Logical Query Tree Question
Question: True or False: A logical query tree has relational
algebra operators and specifies the algorithm used for each of
them.

A) True

B) False

Page 28

COSC 404 - Dr. Ramon Lawrence

Logical Query Tree Question (2)
Question: True or False: A logical query tree is the final plan
used for executing the query.

A) True

B) False

Page 29

COSC 404 - Dr. Ramon Lawrence

Parsing Review Question
Build the parse tree for the following SQL query then convert it
into a logical query tree.

SELECT Name, DeptName FROM Department, Student
WHERE Code = Major and Code = 'CS'

Page 30

COSC 404 - Dr. Ramon Lawrence

Optimizing the Logical Query Plan
The translation rules converting a parse tree to a logical query
tree do not always produce the best logical query tree.

It is possible to optimize the logical query tree by applying
relational algebra laws to convert the original tree into a more
efficient logical query tree.

Optimizing a logical query tree using relational algebra laws is
called heuristic optimization because the optimization
process uses common conversion techniques that result in
more efficient query trees in most cases, but not always.
The optimization rules are heuristics.

We begin with a summary of relational algebra laws.

6

Page 31

COSC 404 - Dr. Ramon Lawrence

Relational Algebra Laws
Just like there are laws associated with the mathematical
operators, there are laws associated with the relational algebra
operators.

These laws often involve the properties of:
commutativity - operator can be applied to operands

independent of order.
E.g. A + B = B + A - The “+” operator is commutative.

associativity - operator is independent of operand grouping.
E.g. A + (B + C) = (A + B) + C - The “+” operator is associative.

Page 32

COSC 404 - Dr. Ramon Lawrence

Associative and Commutative Operators
The relational algebra operators of cross-product (), join (),
set and bag union (S and B), and set and bag intersection
(S and B) are all associative and commutative.

R S = S R

Commutative Associative

R S = S R

R S = S R

R S = S R

(R S) T = R (S T)

(R S) T = R (S T)

(R S) T = R (S T)

(R S) T = R (S T)

Page 33

COSC 404 - Dr. Ramon Lawrence

1) Complex selections involving AND or OR can be broken into
two or more selections: (splitting laws)

2) Selection operators can be evaluated in any order:

3) Selection can be done before or after set operations and
joins:

Laws Involving Selection

C1 AND C2
(R) = C1

(C2
(R))

C1 OR C2
(R) = (C1

(R)) S (C2
(R))

C1 AND C2
(R) = C2

(C1
(R)) = C1

(C2
(R))

C(R S) = C(R) C(S)
C(R - S) = C(R) – S = C(R) - C(S)

C(R S) = C(R) S
C(R S) = C(R) S = C(R) C(S)

Page 34

COSC 404 - Dr. Ramon Lawrence

1) Selection and cross-product can be converted to a join:

2) Selection and join can also be combined:

Laws Involving Selection and Joins

C(R S) = R C S

C(R D S) = R C AND D S

Page 35

COSC 404 - Dr. Ramon Lawrence

1) Example relation is R(a,b,c).

Given expression:

Can be converted to:

then to:

There is another way to divide up the expression. What is it?

2) Given relations R(a,b) and S(b,c).

Given expression:

Can be converted to:

then to:

finally to:

Is there anything else we could do?

Laws Involving Selection Examples

(a=1 OR a=3) AND b<c(R)

a=1 OR a=3(b<c(R))
a=1(b<c(R)) a=3(b<c(R))

(a=1 OR a=3) AND b<c(R S)

(a=1 OR a=3) b<c(R S))

(a=1 OR a=3)(R b<c(S))
(a=1 OR a=3)(R) b<c(S)

Page 36

COSC 404 - Dr. Ramon Lawrence

Like selections, it is also possible to push projections down the
logical query tree. However, the performance gained is less
than selections because projections just reduce the number of
attributes instead of reducing the number of tuples.
Unlike selections, it is common for a pushed projection to also

remain where it is.

General principle: We may introduce a projection anywhere
in an expression tree, as long as it eliminates only attributes
that are never used by any of the operators above, and are not
in the result of the entire expression.

Note that discussion considers bag projection as normally
implemented in SQL (duplicates are not eliminated).

Laws Involving Projection

7

Page 37

COSC 404 - Dr. Ramon Lawrence

1) Projections can be done before joins as long as all attributes
required are preserved.

L is a set of attributes to be projected. M is the attributes of R that are
either join attributes or are attributes of L. N is the attributes of S that are
either join attributes or attributes of L.

2) Projection can be done before bag union but NOT before set
union or set/bag intersection and difference.

3) Projection can be done before selection.

4) Only the last projection operation is needed:

Laws Involving Projection (2)

L(R S) = L(M(R) N(S))
L(R S) = L((M(R) N(S))

L(R B S) = L(R) B L(S)

L (C (R)) = L(C (M(R)))

L (M (R)) = L(R) Page 38

COSC 404 - Dr. Ramon Lawrence

1) Given relations R(a,b,c) and S(c,d,e).

Given expression:

Can be converted to:

2) Using R(a,b,c) and the expression:

Can be converted to:

Laws Involving Projection Examples

b,d(R S)
b,d(b,c(R) c,d(S))

b(a=5(R))

b(a=5(a,b(R))

Page 39

COSC 404 - Dr. Ramon Lawrence

Duplicate elimination () can be done before many operators.

Note that (R) = R occurs when R has no duplicates:
1) R may be a stored relation with a primary key.

2) R may be the result after a grouping operation.

Laws for pushing duplicate elimination operator ():

Duplicate elimination () can also be pushed through bag
intersection, but not across union, difference, or projection.

Laws Involving Duplicate Elimination

(R S) = (R) (S)

(C(R) = C((R))

(R S) = (R) (S)
(R D S) = (R) D (S)

(R S) = (R) (S)
Page 40

COSC 404 - Dr. Ramon Lawrence

The grouping operator () laws depend on the aggregate
operators used.

There is one general rule, however, that grouping subsumes
duplicate elimination:

The reason is that some aggregate functions are unaffected by
duplicates (MIN and MAX) while other functions are (SUM,
COUNT, and AVG).

Laws Involving Grouping

(L(R)) = L(R)

Page 41

COSC 404 - Dr. Ramon Lawrence

Relational Algebra Question
Question: How many of the following equivalences are true?
Let C = predicate with only R attributes, D = predicate with only
S attributes, and E = predicate with only R and S attributes.

A) 0

B) 1

C) 2

D) 3

E) 4

C AND D (R S) = C(R) D(S)

C AND D AND E (R S) = E(C(R) D(S))
C OR D (R S) = [C(R) S] S [R D(S)]

L(R S S) = L(R) S L(S)

Page 42

COSC 404 - Dr. Ramon Lawrence

Give examples to show that:
a) Bag projection cannot be pushed below set union.

b) Duplicate elimination cannot be pushed below bag projection.

Relational Algebra Question

L(R S S) != L(R) S L(S)

(L(R)) != L((R))

8

Page 43

COSC 404 - Dr. Ramon Lawrence

Heuristic query optimization takes a logical query tree as
input and constructs a more efficient logical query tree by
applying equivalence preserving relational algebra laws.

Equivalence preserving transformations insure that the
query result is identical before and after the transformation is
applied. Two logical query trees are equivalent if they produce
the same result.

Note that heuristic optimization does not always produce the
most efficient logical query tree as the rules applied are only
heuristics!

Heuristic Query Optimization

Page 44

COSC 404 - Dr. Ramon Lawrence

Rules of Heuristic Query Optimization
1. Deconstruct conjunctive selections into a sequence of single
selection operations.

2. Move selection operations down the query tree for the
earliest possible execution.

3. Replace Cartesian product operations that are followed by a
selection condition by join operations.

4. Execute first selection and join operations that will produce
the smallest relations.

5. Deconstruct and move as far down the tree as possible lists
of projection attributes, creating new projections where needed.

Page 45

COSC 404 - Dr. Ramon Lawrence

Heuristic Optimization Example

SELECT Name FROM Student WHERE Major="CS"

No optimization possible.

Student

Name(Major=“CS’(Student))

Name

Major='CS'

Page 46

COSC 404 - Dr. Ramon Lawrence

Heuristic Optimization Example 2
SELECT DeptName FROM Department, Student

WHERE Code = Major AND Year = 4

Optimizations
- push selection down
- push projection down
- merge selection and

cross-product
Student Department

Year=4 DeptName,Code

Major=Code

DeptName

DeptName(Code=Major AND Year=4(Student Department))
Original:

Optimized:

DeptName((Year=4(Student)) Code=Major (DeptName,Code(Department)))

Student

Department

DeptName

Code=Major AND Year=4

Page 47

COSC 404 - Dr. Ramon Lawrence

Heuristic Optimization Example 3
SELECT DeptName FROM Department WHERE Id IN

(SELECT Major FROM Student WHERE Year=4)

Optimizations
- merge selection and

cross-product
- push projection down

Department

DeptName,Code

Major=Code

DeptName

Student

Major

Year=4

Department

Student

DeptName

Major

Year=4

Id=Major

Page 48

COSC 404 - Dr. Ramon Lawrence

A canonical logical query tree is a logical query tree where all
associative and commutative operators with more than two
operands are converted into multi-operand operators.
This makes it more convenient and obvious that the operands

can be combined in any order.

This is especially important for joins as the order of joins may
make a significant difference in the performance of the query.

Canonical Logical Query Trees

9

Page 49

COSC 404 - Dr. Ramon Lawrence

Canonical Logical Query Tree Example

R

S T

U V W

Original Query Tree Canonical Query Tree

R

S T

U V W

Page 50

COSC 404 - Dr. Ramon Lawrence

Canonical Query Tree Question
Question: What does the original logical query tree imply that
the canonical tree does not?

A) an order of operator execution

B) the algorithms used for each relational operator

C) the sizes of each input

Page 51

COSC 404 - Dr. Ramon Lawrence

Query Optimization
Physical Query Plan

A physical query plan is derived from a logical query plan by:
1) Selecting an order and grouping for operations like joins,

unions, and intersections.

2) Deciding on an algorithm for each operator in the logical
query plan.
 e.g. For joins: Nested-loop join, sort join or hash join

3) Adding additional operators to the logical query tree such as
sorting and scanning that are not present in the logical plan.

4) Determining if any operators should have their inputs
materialized for efficiency.

Whether we perform cost-based or heuristic optimization, we
eventually must arrive at a physical query tree that can be
executed by the evaluator.

Page 52

COSC 404 - Dr. Ramon Lawrence

Query Optimization
Heuristic versus Cost Optimization

To determine when one physical query plan is better than
another, we must have an estimate of the cost of the plan.

Heuristic optimization is normally used to pick the best logical
query plan.

Cost-based optimization is used to determine the best physical
query plan given a logical query plan.

Note that both can be used in the same query processor (and
typically are). Heuristic optimization is used to pick the best
logical plan which is then optimized by cost-based techniques.

Page 53

COSC 404 - Dr. Ramon Lawrence

Query Optimization
Estimating Operation Cost

To determine when one physical query plan is better than
another for cost-based optimization, we must have an estimate
of the cost of a physical query plan.

Note that the query optimizer will very rarely know the exact
cost of a query plan because the only way to know is to
execute the query itself!
Since the cost to execute a query is much greater than the cost

to optimize a query, we cannot execute the query to determine
its cost!

It is important to be able to estimate the cost of a query plan
without executing it based on statistics and general formulas.

Page 54

COSC 404 - Dr. Ramon Lawrence

Query Optimization
Estimating Operation Cost (2)

Statistics for base relations such as B(R), T(R), and V(R,a)
are used for optimization and can be gathered directly from the
data, or estimated using statistical gathering techniques.

One of the most important factors determining the cost of the
query is the size of the intermediate relations. An intermediate
relation is a relation generated by a relational algebra operator
that is the input to another query operator.
The final result is not an intermediate relation.

The goal is to come up with general rules that estimate the
sizes of intermediate relations that give accurate estimates, are
easy to compute, and are consistent.
There is no one set of agreed-upon rules!

10

Page 55

COSC 404 - Dr. Ramon Lawrence

Estimating Operation Cost
Estimating Projection Sizes

Calculating the size of a relation after the projection operation
is easy because we can compute it directly.
Assuming we know the size of the input, we can calculate the

size of the output based on the size of the input records and the
size of the output records.

The projection operator decreases the size of the tuples, not
the number of tuples.

For example, given relation R(a,b,c) with size of a = size of b =
4 bytes, and size of c = 100 bytes. T(R) = 10000 and
unspanned block size is 1024 bytes. If the projection operation
is a,b, what is the size of the output U in blocks?

T(U) = 10000. Output tuples are 8 bytes long.
bfr = 1024/8 = 128 B(U) = 10000/128 = 79
B(R) = 10000 / (1024/108) = 1112
Savings = (B(R) - B(U))/B(R)*100% = 93% Page 56

COSC 404 - Dr. Ramon Lawrence

Estimating Operation Cost
Estimating Selection Sizes

A selection operator generally decreases the number of tuples
in the output compared to the input. By how much does the
operator decrease the input size?

The selectivity (sf) is the fraction of tuples selected by a
selection operator. Common cases and their selectivities:
1) Equality: S = a=v (R) - sf = 1/V(R,a) T(S) = T(R)/V(R,a)
Reason: Based on the assumption that values occur equally likely in the

database. However, estimate is still the best on average even if the
values v for attribute a are not equally distributed in the database.

2) Inequality: S = a<v (R) - sf = 1/3 T(S) = T(R)/3
Reason: On average, you would think that the value should be T(R)/2.

However, queries with inequalities tend to return less than half the
tuples, so the rule compensates for this fact.

3) Not equals: S = a!=v (R) - sf = 1 T(S) = T(R)
Reason: Assume almost all tuples satisfy the condition.

Page 57

COSC 404 - Dr. Ramon Lawrence

Estimating Operation Cost
Estimating Selection Sizes (2)

Simple selection clauses can be connected using AND or OR.

A complex selection operator using AND (a=10 AND b<20(R)) is the
same as a cascade of simple selections (a=10 (b<20(R)).

The selectivity is the product of the selectivity of the individual
clauses.

Example: Given R(a,b,c) and S =a=10 AND b<20(R), what is the
best estimate for T(S)? Assume T(R)=10,000 and V(R,a) = 50.

The filter a=10 has selectivity of 1/V(R,a)=1/50.
The filter b<20 has selectivity of 1/3.
Total selectivity = 1/3 * 1/50 = 1/150.
T(S) = T(R)* 1/150 = 67

Page 58

COSC 404 - Dr. Ramon Lawrence

Estimating Operation Cost
Estimating Selection Sizes (3)

For complex selections using OR (S =C1 OR C2(R)), the # of
output tuples can be estimated by the sum of the # of tuples for
each condition.
Measuring the selectivity with OR is less precise, and simply

taking the sum is often an overestimate.

A better estimate assumes that the two clauses are
independent, leading to the formula:

n * (1 - (1-m1/n) * (1 – m2/n))

m1 and m2 are the # of tuples that satisfy C1 and C2 respectively.

n is the number of tuples of R (i.e. T(R)).

1-m1/n and 1-m2/n are the fraction of tuples that do not satisfy C1 (resp.
C2). The product of these numbers is the fraction that do not satisfy
either condition.

Page 59

COSC 404 - Dr. Ramon Lawrence

Estimating Operation Cost
Estimating Selection Sizes (4)

Example: Given R(a,b,c) and S =a=10 OR b<20(R), what is the
best estimate for T(S)? Assume T(R)=10,000 and V(R,a) = 50.

The filter a=10 has selectivity of 1/V(R,a)=1/50.
The filter b<20 has selectivity of 1/3.
Total selectivity = (1 - (1 - 1/50)(1 - 1/3)) = .3466
T(S) = T(R) *.3466 = 3466

Simple method results in T(S) = 200 + 3333 = 3533.

Page 60

COSC 404 - Dr. Ramon Lawrence

Estimating Operation Cost
Estimating Join Sizes

We will only study estimating the size of natural join.
Other types of joins are equivalent or can be translated into a

cross-product followed by a selection.

The two relations joined are R(X,Y) and S(Y,Z).
We will assume Y consists of only one attribute.

The challenge is we do not know how the set of values of Y in
R relate to the values of Y in S. There are some possibilities:
1) The two sets are disjoint. Result size = 0.

2) Y may be a foreign key of R joining to a primary key of S.
Result size in this case is T(R).

3) Almost all tuples of R and S have the same value for Y, so
result size in the worst case is T(R)*T(S).

11

Page 61

COSC 404 - Dr. Ramon Lawrence

Estimating Join Sizes (2)
The result size of joining relations R(X,Y) and S(Y,Z) can be
approximated by:

Argument:
Every tuple of R has a 1/V(S,Y) chance of joining with every tuple of S.

On average then, each tuple of R joins with T(S)/V(S,Y) tuples. If there
are T(R) tuples of R, then the expected size is T(R) * T(S)/V(S,Y).

A symmetric argument can be made from the perspective of joining
every tuple of S. Each tuple has a 1/V(R,Y) chance of joining with every
tuple of R. On average, each tuple of R joins with T(R)/V(R,Y) tuples.
The expected size is then T(S) * T(R)/V(R,Y).

In general, we choose the smaller estimate for the result size (divide by
the maximum value).

Page 62

COSC 404 - Dr. Ramon Lawrence

Estimating Operation Cost
Estimating Join Sizes Example

Example:
R(a,b) with T(R) = 1000 and V(R,b) = 20.

S(b,c) with T(S) = 2000, V(S,b) = 50, and V(S,c) = 100

U(c,d) with T(U) = 5000 and V(U,c) = 500

Calculate the natural join R S U.
1) (R S) U -

T(R S) = T(R)T(S)/max(V(R,b),V(S,b))

= 1000 * 2000 / 50 = 40,000

Now join with U.

Final size = T(R S)*T(U)/max(V(R S,c),V(U,c))

= 40000 * 5000 / 500 = 400,000

Now, calculate the natural join like this: R (S U).
Which of the two join orders is better?

Page 63

COSC 404 - Dr. Ramon Lawrence

Estimating Join Sizes
Estimating V(R,a)

The database will keep statistics on the number of distinct
values for each attribute a in each relation R, V(R,a).

When a sequence of operations is applied, it is necessary to
estimate V(R,a) on the intermediate relations.

For our purposes, there will be three common cases:
a is the primary key of R then V(R,a) = T(R)
The number of distinct values is the same as the # tuples in R.

a is a foreign key of R to another relation S then V(R,a) = T(S)
In the worst case, the number of distinct values of a cannot be larger than

the number of tuples of S since a is a foreign key to the primary key of S.

If a selection occurs on relation R before a join, then V(R,a) after
the selection is the same as V(R,a) before selection.
This is often strange since V(R,a) may be greater than # of tuples in

intermediate result! V(R,a) <> # of tuples in result.
Page 64

COSC 404 - Dr. Ramon Lawrence

Estimating Operation Cost
Estimating Sizes of Other Operators

The size of the result of set operators, duplicate elimination,
and grouping is hard to determine. Some estimates are below:
Union
bag union = sum of two argument sizes

set union = minimum is the size of the largest relation, maximum is the
sum of the two relations sizes. Estimate by taking average of min/max.

Intersection
minimum is 0, maximum is size of smallest relation. Take average.

Difference
Range is between T(R) and T(R) - T(S) tuples. Estimate: T(R) - 1/2*T(S)

Duplicate Elimination
Range is 1 to T(R). Estimate by either taking smaller of 1/2*T(R) or

product of all V(R,ai) for all attributes ai.

Grouping
Range and estimate is similar to duplicate elimination.

Page 65

COSC 404 - Dr. Ramon Lawrence

Query Optimization
Cost-Based Optimization

Cost-based optimization is used to determine the best
physical query plan given a logical query plan.

The cost of a query plan in terms of disk I/Os is affected by:
1) The logical operations chosen to implement the query (the

logical query plan).

2) The sizes of the intermediate results of operations.

3) The physical operators selected.

4) The ordering of similar operations such as joins.

5) If the inputs are materialized.

Page 66

COSC 404 - Dr. Ramon Lawrence

Cost-Based Optimization
Obtaining Size Estimates

The cost calculations for the physical operators relied on
reasonable estimates for B(R), T(R), and V(R,a).

Most DBMSs allow an administrator to explicitly request these
statistics be gathered. It is easy to gather them by performing
a scan of the relation. It is also common for the DBMS to
gather these statistics independently during its operation.
Note that by answering one query using a table scan, it can

simultaneously update its estimates about that table!

It is also possible to produce a histogram of values for use with
V(R,a) as not all values are equally likely in practice.
Histograms display the frequency that attribute values occur.

Since statistics tend not to change dramatically, statistics are
computed only periodically instead of after every update.

12

Page 67

COSC 404 - Dr. Ramon Lawrence

Using Size Estimates
in Heuristic Optimization

Size estimates can also be used during heuristic optimization.

In this case, we are not deciding on a physical plan, but rather
determining if a given logical transformation will make sense.

By using statistics, we can estimate intermediate relation sizes
(independent of the physical operator chosen), and thus
determine if the logical transformation is useful.

Page 68

COSC 404 - Dr. Ramon Lawrence

Using Size Estimates
in Cost-based Optimization

Given a logical query plan, the simplest algorithm to determine
the best physical plan is an exhaustive search.

In an exhaustive search, we evaluate the cost of every
physical plan that can be derived from the logical plan and pick
the one with minimum cost.

The time to perform an exhaustive search is extremely long
because there are many combinations of physical operator
algorithms, operator orderings, and join orderings.

Page 69

COSC 404 - Dr. Ramon Lawrence

Using Size Estimates
in Cost-based Optimization (2)

Since exhaustive search is costly, other approaches have been
proposed based on either a top-down or bottom-up approach.

Top-down algorithms start at the root of the logical query tree
and pick the best implementation for each node starting at the
root.

Bottom-up algorithms determine the best method for each
subexpression in the tree (starting at the leaves) until the best
method for the root is determined.

Page 70

COSC 404 - Dr. Ramon Lawrence

Cost-Based Optimization
Choosing a Selection Method

In building the physical query plan, we will have to pick an
algorithm to evaluate each selection operator.

Some of our choices are:
table scan

index scan

There also may be several variants of each choice if there are
multiple indexes.

We evaluate the cost of each choice and select the best one.

Page 71

COSC 404 - Dr. Ramon Lawrence

Cost-Based Optimization
Choosing a Join Method

In building the physical query plan, we will have to pick an
algorithm to evaluate each join operator:
nested-block join - one-pass join or nested-block join used if

reasonably sure that relations will fit in memory.

sort-join is good when arguments are sorted on the join
attribute or there are two or more joins on the same attribute.

index-join may be used when an index is available.

hash-join is generally used if a multipass join is required, and
no sorting or indexing can be exploited.

Page 72

COSC 404 - Dr. Ramon Lawrence

Cost-Based Optimization
Pipelining versus Materialization

The default action for iterators is pipelining when the inputs to
the operator provide results a tuple-at-a-time.

However, some operators require the ability to scan the inputs
multiple times. This requires the input operator to be able to
support rescan.

An alternative to using rescan is to materialize the results of an
input to disk. This has two benefits:
Operators do not have to implement rescan.

It may be more efficient to compute the result once, save it to
disk, then read it from disk multiple times than to re-compute it
each time.

Plans can use a materialization operator at any point to
materialize the output of another operator.

13

Page 73

COSC 404 - Dr. Ramon Lawrence

Selecting a Join Order
Since joins are the most costly operation, determining the best
possible join order will result in more efficient queries.

Selecting a join order is most important if we are performing a
join of three or more relations. However, a join of two relations
can be evaluated in two different ways depending on which
relation is chosen to be the left argument.
Some algorithms (such as nested-block join and one-pass join)

are more efficient if the left argument is the smaller relation.

A join tree is used to graphically display the join order.

Page 74

COSC 404 - Dr. Ramon Lawrence

Join Tree Examples

Left-Deep Join Tree

T

U

SR

Balanced Join Tree Right-Deep Join Tree

S

R

T U

T USR

Page 75

COSC 404 - Dr. Ramon Lawrence

Join Tree Question
Question: How many possible join tree shapes (different trees
ignoring relations at leaves) are there for joining 4 nodes?

A) 3

B) 4

C) 5

D) 6

E) 8

Page 76

COSC 404 - Dr. Ramon Lawrence

Join Tree Question (2)
Question: Assuming that every relation can join with every
other relation, how many distinct join trees (considering
different relations at leaf nodes) are there for joining 4 nodes?

A) 256

B) 120

C) 60

D) 20

E) 5

Page 77

COSC 404 - Dr. Ramon Lawrence

Cost-Based Optimization
Selecting a Join Order

Dynamic programming is used to select a join order.

Algorithm to find best join tree for a set of n relations:
1) Find the best plan for each relation.
File scan, index scan

2) Find the best plan to combine pairs of relations found in step
#1. If have two plans for R and S, test
R ⨝ S and S ⨝ R for all types of joins.

May also consider interesting sort orders.

3) Of the plans produced involving two relations, add a third
relation and test all possible combinations.

In practice the algorithm works top down recursively and
remembers the best subplans for later use.

Page 78

COSC 404 - Dr. Ramon Lawrence

Join Order Dynamic Programming
Algorithm

// S is set of relations to join

procedure findBestPlan(S)
{ if (bestplan[S].cost) // bestplan stores computed plans

return bestplan[S];

// else bestplan[S] has not been computed. Compute it now.
for each non-empty subset S1 of S such that S1 S
{ P1= findBestPlan(S1);

P2= findBestPlan(S - S1);
A = best algorithm for join of P1 and P2;
cost = P1.cost + P2.cost + cost of A;
if (cost < bestplan[S].cost)
{ bestplan[S].cost = cost;

bestplan[S].plan = P1 ⨝	P2 using A;

}

}

return bestplan[S];

}

14

Page 79

COSC 404 - Dr. Ramon Lawrence

Cost-Based Optimization Example
We will perform cost-based optimization on the three example
queries giving the following statistics:
T(Student) = 200,000 ; B(Student) = 50,000

T(Department) = 4 ; B(Department) = 4

V(Student, Major) = 4 ; V(Student, Year) = 4

Student has B+-tree secondary indexes on Major and Year, and
primary index on Id.

Department has a primary index on Code.

Page 80

COSC 404 - Dr. Ramon Lawrence

Cost-Based Optimization Example

Student

SELECT Name FROM Student WHERE Major="CS"

Logical Query Tree

Selection will return T(Student)/V(Student,Major) = 200,000/4 = 50,000 tuples.
Since tuples are not sorted by Major, each read may potentially require reading
another block (results in another seek + rotational latency).
Thus, table scan will be more efficient.
Projection performed using table scan of pipelined output from selection.

Name

Major='CS'

Physical Query Tree

Student

(table scan)

(table scan)

Name

Major='CS'

Page 81

COSC 404 - Dr. Ramon Lawrence

Cost-Based Optimization Example 2
SELECT DeptName FROM Department, Student

WHERE Code = Major AND Year = 4

Student Department

Year=4 DeptName,Code

Major=Code

DeptName

Logical Query Tree

(table scan)

Student Department

Year=4 DeptName,Code

Major=Code

DeptName

(table scan)

(one-pass join)

(scan)

Physical Query Tree

Selection uses table scan again due to high selectivity.
One-pass join chosen as result from Department subtree is small. Index-join cannot
be used as already performed projection on base relation. Page 82

COSC 404 - Dr. Ramon Lawrence

Cost-Based Optimization Example 3
Consider a query involving the join of relations:
Enrolled(StudentID,Year,CourseID)

Course(CID, Name)

and the relations Student and Department.

That is, Student Department Enrolled Course.

Determine the best join ordering given this information:
T(Enrolled) = 1,000,000; B(Enrolled) = 200,000

V(Enrolled,StudentID) = 180,000 ; V(Enrolled,CourseID) = 900

T(Course) = 1000 ; B(Course) = 100

The best join ordering would have the minimum sizes for the
intermediate relations, and we would like to perform the join
with the greatest selectivity first.

Page 83

COSC 404 - Dr. Ramon Lawrence

Cost-Based Optimization Example 3 (2)
Possible join pairs and intermediate result sizes:
Student Department = 200,000 * 4 / max(4,4) = 200,000

Student Enrolled

= 200,000*1,000,000 / max(200,000,180,000) = 1,000,000

Enrolled Course

=1,000,000 * 1,000 / max(900,1000) = 1,000,000

Conclusion: Join Student and Department first as it results in
smallest intermediate relation. Then, join that result with
Enrolled, finally join with Course.

Page 84

COSC 404 - Dr. Ramon Lawrence

Cost-based Optimization Question
Question: Would it be better or worse if we joined Enrolled
with Course then joined that with the result of Student and
Department?

A) same

B) better

C) worse

15

Page 85

COSC 404 - Dr. Ramon Lawrence

Join Ordering Example
Query:

Relation statistics:
B(C) = 100, B(E) = 200,000, B(S) = 20,000
T(C) = 1,000 ; T(E) = 1,000,000 ; T(S) = 200,000
Assume block size = 1000 bytes.
Tuple sizes: C = 100 bytes ; E = 200 bytes ; S = 100 bytes
V(E,sid) = 180,000 ; V(E,cid) = 900
Student has secondary B-tree index on Year.
Course has primary B-tree index on cid.

SELECT * FROM Course C, Enrolled E, Student S
WHERE Year = 4 AND C.cid = 'COSC404' AND

E.cid = E.cid and E.sid = S.sid

Page 86

COSC 404 - Dr. Ramon Lawrence

Join Ordering Example (2)
The first step is to calculate best plan for each relation:

Enrolled
only choice is file scan at cost = 200,000

Course with filter cid = 'COSC404':

file scan cost = 100

index scan cost = 1 (assume get record in 1 block with index)

Best plan = index scan with cost = 1

Student with filter Year = 4:

file scan cost = 20,000

index scan will return approximately ¼ of records (50,000). If
assume each does a block access that is 50,000 cost.

Best plan = file scan with cost = 20,000

Page 87

COSC 404 - Dr. Ramon Lawrence

Join Ordering Example (3)
Now calculate all pairs of relations (sets of size two). Test all types of joins
(sort, hash, block). Assume left is build input and M= 1000.

Enrolled, Course: (output size tuples = 1111 blocks = 334)

Enrolled ⨝ Course
Sort = 600,003 ; Hash = 598,003 ; Block nested = 200,201

Course ⨝ Enrolled
Sort = 600,003 ; Hash = 200,001; Block nested = 200,001

Enrolled, Student: (output size tuples = 1,000,000 blocks = 300,000)

Enrolled ⨝ Student
Sort = 660,000 ; Hash = 657,800 ; Block nested = 4,040,000

Student ⨝ Enrolled
Sort = 660,000 ; Hash = 638,000 ; Block nested = 4,220,000

Student, Course (Note: This may not be done if cross-products are not allowed.)

Student X Course cost = 20,000 output size = 40,000 blocks Page 88

COSC 404 - Dr. Ramon Lawrence

{Enrolled, Course}, {Student} {Enrolled, Student}, {Course}

{Student, Course}, {Enrolled} Best plan:

Join Ordering Example (4)

??

C

HJ

E

S

C

HJ

E

??

S

S

HJ

E S

HJ

E

?? ??

C C

??

E

C S

??

E

C S

HJ = 20,334
SJ = 61,002
NLJ = 20,334
Overall: 220,335

HJ = 58,969
SJ = 61,002
NLJ = 27,014
Overall: 227,015

HJ = 898,002
SJ = 900,003
NLJ = 300,301
Overall = 938,301

HJ = 300,001
SJ = 900,003
NLJ = 300,001
Overall = 938,001

HJ = 708,000
SJ = 720,000
NLJ = 8,240,000
Overall = 728,000

HJ = 717,600
SJ = 720,000
NLJ = 8,240,000
Overall = 737,000

HJ

C

HJ

E

S

Overall: 220,335

Page 89

COSC 404 - Dr. Ramon Lawrence

Conclusion
A query processor first parses a query into a parse tree,
validates its syntax, then translates the query into a relational
algebra logical query plan.

The logical query plan is optimized using heuristic optimization
that uses equivalence preserving transformations.

Cost-based optimization is used to select a join ordering and
build an execution plan which selects an implementation for
each of the relational algebra operations in the logical tree.

Page 90

COSC 404 - Dr. Ramon Lawrence

Major Objectives
The "One Things":
Convert an SQL query to a parse tree using a grammar.

Convert a parse tree to a logical query tree.

Use heuristic optimization and relational algebra laws to optimize
logical query trees.

Convert a logical query tree to a physical query tree.

Calculate size estimates for selection, projection, joins, and set
operations.

Major Theme:
The query optimizer uses heuristic (relational algebra laws) and

cost-based optimization to greatly improve the performance of
query execution.

16

Page 91

COSC 404 - Dr. Ramon Lawrence

Objectives
Explain the difference between syntax and semantic validation

and the query processor component responsible for each.

Define: valid parse tree, logical query tree, physical query tree

Explain the difference between correlated and uncorrelated
nested queries.

Define and use canonical logical query trees.

Define: join-orders: left-deep, right-deep, balanced join trees

Explain issues in selecting algorithms for selection and join.

Compare/contrast materialization versus pipelining and know
when to use them when building physical query plans.

1

COSC 404
Database System Implementation

Transaction Management

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 404 - Dr. Ramon Lawrence

Transaction Management
Overview

The database system must ensure that the data stored in the
database is always consistent.

There are several possible types of failures that may cause the
data to become inconsistent.

A transaction is an atomic program that executes on the
database and preserves the consistency of the database.
The input to a transaction is a consistent database, AND the

output of the transaction must also be a consistent database.

A transaction must execute completely or not at all.

Page 3

COSC 404 - Dr. Ramon Lawrence

Transaction Management
Motivating Example

Consider a person who wants to transfer $50 from a savings
account with balance $1000 to a checking account with current
balance = $250.
1) At the ATM, the person starts the process by telling the bank

to remove $50 from the savings account.

2) The $50 is removed from the savings account by the bank.

3) Before the customer can tell the ATM to deposit the $50 in
the checking account, the ATM “crashes.”

Where has the $50 gone?

It is lost if the ATM did not support transactions!
The customer wanted the withdraw and deposit to both
happen in one step, or neither action to happen.

Page 4

COSC 404 - Dr. Ramon Lawrence

Transaction Definition
A transaction is an atomic program that executes on the
database and preserves the consistency of the database.

The basic assumption is that when a transaction starts
executing the database is consistent, and when it finishes
executing the database is still in a consistent state.
Do not consider malicious or incorrect transactions.

This assumption is called The Correctness Principle.

Note that the database may be inconsistent during transaction
execution.
For the bank example, the $50 is removed from the savings

account and is not yet in the checking account at some point in
time.

Page 5

COSC 404 - Dr. Ramon Lawrence

Consistency Definition
A database is consistent if the data satisfies all constraints
specified in the database schema. A consistent database is
said to be in a consistent state.

A constraint is a predicate (rule) that the data must satisfy.
Examples:
StudentID is a key of relation Student.

StudentID Name holds in Student.

No student may have more than one major.

The field Major can only have one of the 4 values: {“BA”,”BS”,”CS”,”ME”}.

The field Year must be between 1 and 4.

Note that the database may be internally consistent but not
reflect the real-world reality.

Page 6

COSC 404 - Dr. Ramon Lawrence

Consistency Issues
There are two major challenges in preserving consistency:
1) The database system must handle failures of various kinds

such as hardware failures and system crashes.

2) The database system must support concurrent execution
of multiple transactions and guarantee that this concurrency
does not lead to inconsistency.

2

Page 7

COSC 404 - Dr. Ramon Lawrence

ACID Properties
To preserve integrity, transactions have the following properties:
Atomicity - Either all operations of the transaction are properly

reflected in the database or none are.

Consistency - Execution of a transaction in isolation preserves
the consistency of the database.

Isolation - Although multiple transactions may execute
concurrently, each transaction must be unaware of other
concurrently executing transactions.
Intermediate transaction results must be hidden from other concurrently

executing transactions. That is, for every pair of transactions Ti and Tj, it
appears to Ti that either Tj, finished execution before Ti started, or Tj
started execution after Ti finished.

Durability - After a transaction completes successfully, the
changes it has made to the database persist, even if there are
system failures.

Page 8

COSC 404 - Dr. Ramon Lawrence

Transaction Operations
Since a transaction is a general program, there are an enormous
number of potential operations that a transaction can perform.

However, there are two really important operations:
read(A,t) (or read(A) when t is not important)
Read database element A into local variable t.

write(A,t) (or write(A) when t is not important)
Write the value of local variable t to the database element A.

For most of the discussion, we will assume that the buffer
manager insures that database element is in memory. We could
make the memory management more explicit by using:
input(A)
Read database element A into local memory buffer.

output(A)
Write the block containing A to disk.

Page 9

COSC 404 - Dr. Ramon Lawrence

Fund Transfer Transaction Example
Transaction to transfer $50 from account A to account B:

1. read(A,t)

2. t := t – 50

3. write(A,t)

4. read(B,t)

5. t := t + 50

6. write(B,t)

Page 10

COSC 404 - Dr. Ramon Lawrence

Fund Transfer Transaction Example (2)
Atomicity requirement – If the transaction fails after step 3
and before step 6, the system should ensure that its updates
are not reflected in the database, or inconsistency will result.

Consistency requirement – The sum of A and B is
unchanged by the execution of the transaction.

Isolation requirement – If between steps 3 and 6, another
transaction accesses the partially updated database, it will see
an inconsistent database (A + B is less than it should be).
Can be ensured trivially by running transactions serially, that is

one after the other. However, executing multiple transactions
concurrently has significant benefits.

Durability requirement – Once the user has been notified that
the transaction has completed (i.e., the $50 transfer occurred),
the updates by the transaction must persist despite failures.

Page 11

COSC 404 - Dr. Ramon Lawrence

ACID Properties
Question: Two transactions running at the same time can see
each other's updates. What ACID property is violated?

A) atomicity

B) consistency

C) isolation

D) durability

E) none of them

Page 12

COSC 404 - Dr. Ramon Lawrence

ACID Properties (2)
Question: A company stores a customer's address in the
database. The customer moves and does not tell the company
to update its database. What ACID property is violated?

A) atomicity

B) consistency

C) isolation

D) durability

E) none of them

3

Page 13

COSC 404 - Dr. Ramon Lawrence

Transaction Questions
Example database:

1) Write a transaction to change the name of a student to “Joe
Smith.” Let A represent the database object currently storing
the name.

2) Write a transaction to swap the names of two students with
names A and B.

3) Write a transaction to increase the Year attribute of all
students by 1.

Student(Id,Name,Major,Year)

Page 14

COSC 404 - Dr. Ramon Lawrence

Transaction States
An executing transaction can be in one of several states:
Active - is the initial state. The transaction stays in this state

while it is executing.

Partially committed - A transaction is partially committed after
its final statement has been executed.

Failed - A transaction enters the failed state after the discovery
that normal execution can no longer proceed.

Aborted - A transaction is aborted after it has been rolled back
and the database restored to its prior state before the
transaction. There are two options after abort:
restart the transaction – only if no internal logical error

kill the transaction - problem with transaction itself

Committed - Commit state occurs after successful completion.
May also consider terminated as a transaction state.

Page 15

COSC 404 - Dr. Ramon Lawrence

Transaction State Diagram

Partially
Committed Committed

Aborted

Active

Failed

Page 16

COSC 404 - Dr. Ramon Lawrence

Transaction States
Question: Is it possible for a transaction to be in the aborted
and committed states at different times during its lifetime?

A) yes

B) no

Page 17

COSC 404 - Dr. Ramon Lawrence

Concurrent Executions
Multiple transactions are allowed to run concurrently in the
system. Advantages are:
Increased processor and disk utilization, leading to better

transaction throughput: one transaction can be using the CPU
while another is reading from or writing to the disk.

Reduced average response time for transactions as short
transactions need not wait behind long ones.

Concurrency control schemes are mechanisms to control the
interaction among the concurrent transactions in order to
prevent them from destroying the consistency of the database.
We will study concurrency control schemes after examining the

notion of correctness of concurrent executions.

Page 18

COSC 404 - Dr. Ramon Lawrence

Schedules
A schedule is the chronological order in which instructions of
concurrent transactions are executed.
A schedule for a set of transactions must consist of all

instructions of those transactions.

We must preserve the order in which the instructions appear in
each individual transaction.

It is useful to think of a schedule as a journal of the database
actions. It is a historical record that the database keeps as it is
processing transactions.

A serial schedule is a schedule where the instructions
belonging to each transaction appear together.
i.e. There is no interleaving of transaction operations.

For n transactions, there are n! different serial schedules.

4

Page 19

COSC 404 - Dr. Ramon Lawrence

Let T1 transfer $50 from A to B, and T2 transfer 10% of the
balance from A to B. Let A=100 and B=200. The following is a
serial schedule, in which T1 is followed by T2:

T1 T2
read(A,t)
t := t – 50
write(A,t)
read(B,o)
o := o + 50
write(B,o)

read(A,t)
temp := t*0.1;
t := t – temp
write(A,t)
read(B,o)
o := o + temp
write(B,o)

Example Schedules

After schedule:
A=45, B=255

Is there another
serial schedule?

Page 20

COSC 404 - Dr. Ramon Lawrence

Let T1 and T2 be the transactions defined previously. The
following schedule is not a serial schedule, but it is equivalent
to the previous serial schedule:

T1 T2
read(A,t)
t := t – 50
write(A,t)

read(A,t)
temp := t*0.1;
t := t – temp
write(A,t)

read(B,o)
o := o + 50
write(B,o)

read(B,o)
o := o + temp
write(B,o)

Example Schedules (2)

After schedule:
A=45, B=255

Page 21

COSC 404 - Dr. Ramon Lawrence

Example Schedules (3)
The following concurrent schedule does not preserve the value
of the sum A + B: (inconsistent state)

T1 T2
read(A,t)
t := t – 50

read(A,t)
temp := t*0.1;
t := t – temp
write(A,t)
read(B,o)

write(A,t)

read(B,o)
o := o + 50
write(B,o)

o := o + temp
write(B,o)

After schedule:
A=50, B=210

Is there another
schedule with a
different result?

Page 22

COSC 404 - Dr. Ramon Lawrence

Correct Schedules
Since the operating system can interleave the operations of
concurrent transactions in any order, the database
management system must ensure that only correct schedules
are possible.

The database system guarantees only correct schedules are
possible by implementing concurrency control protocols that
guarantee that the schedule actually executed is equivalent to
some serial schedule.

Page 23

COSC 404 - Dr. Ramon Lawrence

Schedules
Question: Is the following schedule valid for the two
transactions below?

Schedule:

T1 T2
read(A,t)

read(B,o)

write(A,t)
write(B,o)

read(A,t)
write(A,t)
read(B,o)
write(B,o)

Transaction T1:
read(A,t)
write(A,t)
read(B,o)
write(B,o)

Transaction T2:
read(A,t)
write(A,t)
read(B,o)
write(B,o)

A) yes B) no
Page 24

COSC 404 - Dr. Ramon Lawrence

Why is Concurrency Control Needed?
Concurrency control is needed to ensure that the schedules
executed leave the database in a consistent state.

Examples of concurrency control problems include:
The Lost Update Problem - occurs when two transactions

access the same data item, and one transaction reads the data
item before the other transaction commits its written version.
(The update from this transaction is lost.)

Dirty Read Problem - occurs when a transaction reads a data
value written by another transaction which later aborts.

Incorrect Summary Problem - occurs when a transaction is
calculating an aggregate function and some other transaction(s)
is updating record values that may not all be reflected correctly
in the summation calculation.

5

Page 25

COSC 404 - Dr. Ramon Lawrence

Lost Update Example
The lost update problem occurs when two transactions read
the same value before either of them commits their write.

T1 T2

read(A,t)
t := t – 50

read (A,t)
temp := t *0.1
t = t – temp
write(A,t)

read(B,o)
write(A,t)

write(B,o)

A is written without
T1’s changes!

Page 26

COSC 404 - Dr. Ramon Lawrence

Dirty Read Example
The dirty read (or temporary update) problem occurs when a
transaction reads a value of a later aborted transaction.

T1 T2

read(A,t)
t := t – 50
write(A,t)

read (A,t)
temp := t *0.1
t = t – temp
write(A,t)

read(B,o)
abort If T1 aborts, then T2 has used its

incorrect value of A, and should
not be allowed to commit.

Page 27

COSC 404 - Dr. Ramon Lawrence

Y is updated after its value is used in
summation. (not consistent with X)

Incorrect Summary Example

sum = 0
read(A)
sum = sum + A
...

read(X)
X = X -100
write(X)

read (X)
sum = sum + X
read (Y)
sum = sum + Y
...

read(Y)
Y = Y +100
write(Y)

The incorrect summary problem occurs when a transaction
updates values when another transaction is calculating a sum.

T1 T2

X is updated before its value is
used in summation.

Page 28

COSC 404 - Dr. Ramon Lawrence

Consistency Issues

Question: What consistency issue does this schedule have?

T1 T2

read(A,t)
read (A,t)

write(A,t)

write(B, 10)
read(B,u)

write(C,t)

write(C,t+u)

A) lost update B) dirty read C) incorrect summary D) none
E) more than one

Page 29

COSC 404 - Dr. Ramon Lawrence

Serializability
A schedule is serializable if it is equivalent to a serial schedule.

There are two different forms of serializability:
1. conflict serializability

2. view serializability

We ignore operations other than read and write instructions,
and we assume that transactions may perform arbitrary
computations on data in local buffers in between reads and
writes. Our simplified schedules consist of only read and write
instructions.

Page 30

COSC 404 - Dr. Ramon Lawrence

Conflict Serializability
Conflicting Operations

To understand conflict serializability, we must understand what
it means for two operations to conflict.

Operations Oi and Oj of transactions Ti and Tj respectively,
conflict if and only if there exists some item Q accessed by
both Oi and Oj, and at least one of these operations wrote Q.

Possibilities:
1. Oi = read(Q), Oj = read(Q). Oi and Oj do not conflict.
2. Oi = read(Q), Oj = write(Q). Conflict - order is important
3. Oi = write(Q), Oj = read(Q). Conflict - reverse of #2
4. Oi = write(Q), Oj = write(Q). Conflict - who writes last?

Intuitively, a conflict between Oi and Oj forces a (logical)
temporal order between them. If Oi and Oj are consecutive in a
schedule and they do not conflict, their results would remain
the same even if they had been interchanged in the schedule.

6

Page 31

COSC 404 - Dr. Ramon Lawrence

If a schedule S can be transformed into a schedule S´ by a
series of swaps of non-conflicting instructions, we say that S
and S´ are conflict equivalent.

We say that a schedule S is conflict serializable if it is conflict
equivalent to a serial schedule.

Example of a schedule that is not conflict serializable:

T3 T4
read(Q)

write(Q)
write(Q)

We are unable to swap instructions in the above schedule to obtain
either the serial schedule < T3, T4 >, or the serial schedule < T4, T3 >.

Conflict Serializability

Page 32

COSC 404 - Dr. Ramon Lawrence

Conflict Serializability (3)
The schedule below can be transformed into a serial schedule
by a series of swaps of non-conflicting instructions. It is
conflict serializable.

T1 T2
read(A)
write(A)

read (A)
write(A)

read (B)
write(B)

read (B)
write(B)

What is the serial
schedule?

Page 33

COSC 404 - Dr. Ramon Lawrence

Conflict Serializability Question
Question: Is this schedule conflict serializable?

T1 T2
read(A)

write(A)
read(B)

write(B)
read(C)

read(C)
write(C)

A) yes B) no
Page 34

COSC 404 - Dr. Ramon Lawrence

Serializability Questions
T1: r1(A); w1(A); r1(B); w1(B);

T2: r2(B); w2(B); r2(A); w2(A);

Questions:
1) How many possible serial schedules are there?

2) How many schedules are conflict equivalent to the serial
order (T1 ,T2)?

3) Write one non-serial schedule that is conflict equivalent to
the serial execution (T2 ,T1), if possible.

Note shorthand notation!
E.g. r1(A) = T1 does read(A)

Page 35

COSC 404 - Dr. Ramon Lawrence

Testing for Serializability
It is possible to determine if some schedule of transactions T1,
T2, ..., Tn is serializable using a precedence graph.

A precedence graph is a directed graph where the vertices
are the transactions, and there is an arc from Ti to Tj if the two
transactions conflict, and Ti accessed the data item on which
they conflict earlier.
We may label the arc using the item that was accessed.

Example: r1(X); w1(X); r2(X); r2(Y); w2(Y); r1(Y); w1(Y);
X

Y

T1 T2

Page 36

COSC 404 - Dr. Ramon Lawrence

Precedence Graph Example Schedule
T1 T2 T3 T4 T5

read(X)
read(Y)
read(Z)

read(V)
read(W)
read(W)

read(Y)
write(Y)

write(Z)
read(U)

read(Y)
write(Y)
read(Z)
write(Z)

read(U)
write(U)

7

Page 37

COSC 404 - Dr. Ramon Lawrence

Precedence Graph for Schedule
y

T1 T2

T5

T3 T4

y
z

z

y,z

Page 38

COSC 404 - Dr. Ramon Lawrence

Test for Conflict Serializability
A schedule is conflict serializable if and only if its precedence
graph is acyclic.

Cycle-detection algorithms exist which take O(n2) time, where n
is the number of vertices in the graph.
Better algorithms take O(n + e) where e is the # of edges.

If the precedence graph is acyclic, the serializability order can
be obtained by a topological sorting of the graph.
This is a linear order consistent with the partial order of the

graph.

For example, one possible serializability order for the previous
example would be:

T5 T1 T3 T2 T4

Page 39

COSC 404 - Dr. Ramon Lawrence

Precedence Graph Questions
Give the precedence graph for the following schedules:

1) r2(B); w2(B); r1(A); w1(A); r1(B); w1(B); r2(A); w2(A);

2) w1(A); w2(B); w3(C); w4(D); w5(E); w5(A);

3) Construct a non-serial schedule with 3 transactions and 3
data items that has a precedence graph containing 6 arcs, but
is still conflict serializable.

Page 40

COSC 404 - Dr. Ramon Lawrence

Other Schedule Properties
There are other desirable schedule properties:

Recoverability - A recoverable schedule insures that a
database can recover from failure even when concurrent
transactions have been executing.

Cascade-Free - A cascading rollback occurs when a single
transaction failure leads to a series of transaction rollbacks. A
cascade-free schedule avoids cascading rollbacks.

Strict - Strict schedules simplify recovery procedures in the
advent of failure.

Each of these properties subsumes the next. That is, all strict
schedules are also cascade-free and recoverable. All
cascade-free schedules are recoverable.

Page 41

COSC 404 - Dr. Ramon Lawrence

All Schedules

Schedule Properties Diagram

Recoverable

Cascade-Free

Strict

Serializable

Serial

Page 42

COSC 404 - Dr. Ramon Lawrence

Schedule Properties Questions
Question: How many of the following statements are true?
i) Every serial schedule is a strict schedule.

ii) A serializable schedule may not be recoverable.

iii) Every cascade-free schedule is also a strict schedule.

iv) There are more recoverable schedules than cascade-free
schedules.

A) 0

B) 1

C) 2

D) 3

E) 4

8

Page 43

COSC 404 - Dr. Ramon Lawrence

Recoverability
We need to address the effect of transaction failures on
concurrently running transactions.
Let a transaction Tj read a data value written by another

transaction Ti . If Ti aborts, then Tj should also abort because
the data it read was inconsistent.

A recoverable schedule has the property that if a transaction Tj
reads a data item previously written by a transaction Ti , the
commit of Ti appears before the commit of Tj.
Note that if Ti aborts before Tj commits then the schedule is

recoverable. It is not recoverable if Ti aborts after Tj commits.

Obviously, the database system wants to only allow
recoverable schedules in advent of failures.

Page 44

COSC 404 - Dr. Ramon Lawrence

Non-Recoverable Schedules
The following schedule is not recoverable if T9 commits
immediately after the read:

T8 T9
read(A)
write(A)

read(A)

commit
read(B)
abort

The schedule is not recoverable because the commit for T9
cannot be undone, but it should be because T8 was never
committed!

T8 aborts, but T9 is already
committed based on update of T8!

Page 45

COSC 404 - Dr. Ramon Lawrence

Recoverable Schedule Question
Question: Is this schedule recoverable?

T8 T9
read(A)
write(A)

read(A)

commit
read(B)
commit

A) yes B) no

Page 46

COSC 404 - Dr. Ramon Lawrence

Cascading rollback occurs when a single transaction failure
leads to a series of transaction rollbacks.

Consider the following schedule where no transactions have
yet committed (so the schedule is recoverable):

T10 T11 T12
read(A)
read(B)
write(A)

read(A)
write(A)

read(A)

abort

If T10 fails, T11 and T12 must also be rolled back.
Can lead to the undoing of a significant amount of work!
Note that T10 does not have to abort for the schedule to have cascading

rollback. T11 and T12 will be FORCED to abort if T10 aborts. However,
even if T10 commits, the schedule is not cascade-free because
it has the potential for cascading aborts (but they did not occur).

Cascading Rollback

Page 47

COSC 404 - Dr. Ramon Lawrence

Cascadeless Schedules
In a cascadeless schedule, cascading rollbacks cannot occur.
For each pair of transactions Ti and Tj such that Tj reads a data

item previously written by Ti, the commit of Ti appears before
the read operation of Tj.

That is, transactions only read committed values.

Every cascadeless schedule is also recoverable.

A recoverable schedule never rolls back committed
transactions, but may cascade rollback uncommitted
transactions.

Page 48

COSC 404 - Dr. Ramon Lawrence

Cascade-Free Schedule Question
Question: Is this schedule cascade-free?

T8 T9
read(A)
write(A)

read(B)
read(B)
commit

commit

A) yes B) no

9

Page 49

COSC 404 - Dr. Ramon Lawrence

Strict Schedules
In a strict schedule, a transaction can neither read nor write a
data item until the last transaction that wrote the data item
commits (or aborts).
Strict schedules simplify recovery procedures because undoing

an item write of an aborted transaction just involves restoring
the before image (old value) of the item.

A strict schedule is always recoverable and cascadeless, but
not vice versa.

Example: T10 T11
read(A)
read(B)
write(A)

write(A)
commit

abort

Page 50

COSC 404 - Dr. Ramon Lawrence

T1: r1(A); w1(A); r1(B); w1(B); c1

T2: r2(A); w2(A); r2(B); w2(B); c2

T3: r3(B); r3(A); w3(B); c3

Given the three transactions T1, T2, T3, come up with the
following schedules:
a) A serial schedule

b) A conflict serializable schedule (non-serial)

c) A non-conflict serializable schedule

d) A non-recoverable, non-serial schedule

e) A cascade-free, non-serial schedule

f) A strict, non-serial schedule

Schedule Questions

Page 51

COSC 404 - Dr. Ramon Lawrence

View Serializability
Let S and S´ be two schedules with the same transactions. S
and S´ are view equivalent if these three conditions are met:
1. For each data item Q, if transaction Ti reads the initial value of

Q in schedule S, then transaction Ti must also read the initial
value of Q in schedule S´.

2. For each data item Q, if transaction Ti executes read(Q) in
schedule S, and that value was produced by transaction Tj,
then transaction Ti must also read the value of Q that was
produced by transaction Tj in schedule S´.

3. For each data item Q, the transaction (if any) that performs the
final write(Q) operation in schedule S must perform the final
write(Q) operation in schedule S´.

Conditions 1 and 2 ensure each transaction reads the same
values, and condition 3 ensures the same final result.

Page 52

COSC 404 - Dr. Ramon Lawrence

A schedule S is view serializable if it is view equivalent to a
serial schedule.
Every conflict serializable schedule is also view serializable.
Every view serializable schedule which is not conflict serializable has

blind writes. (A write without a read.)

This schedule is view serializable but not conflict serializable:

T3 T4 T8
read(Q)

write(Q)
write(Q)

write (Q)

Schedule is equivalent to serial schedule: T3 T4 T8

View Serializability (2)

Page 53

COSC 404 - Dr. Ramon Lawrence

Test for View Serializability
The precedence graph test for conflict serializability can be
modified to test for view serializability:
Construct a labeled precedence graph.

Look for an acyclic graph that is derived from the labeled
precedence graph by choosing one edge from every pair of
edges with the same non-zero label. (2n such graphs)

Schedule is view serializable if and only if such an acyclic graph
can be found.

The problem of looking for such an acyclic graph falls in the
class of NP-complete problems.
Thus existence of an efficient algorithm is unlikely.

However practical algorithms that just check some sufficient
conditions for view serializability can still be used.

Page 54

COSC 404 - Dr. Ramon Lawrence

The schedule below produces the same outcome as the serial
schedule < T1, T5 >, yet is not conflict or view equivalent.

T1 T5
read(A)

A := A – 50
write(A)

read(B)
B := B – 10
write(B)

read(B)
B := B + 50
write(B)

read(A)
A := A + 10
write(A)

Determining such equivalence requires analysis of operations
other than read and write.

Other Notions of Serializability

Why DO these
schedules result in the
same answer?

10

Page 55

COSC 404 - Dr. Ramon Lawrence

Concurrency Control and
Serializability Tests

Testing a schedule for serializability after it has executed is a
little too late!

The goal is to develop concurrency control protocols that will
ensure serializability.
They do not use the precedence graph as it is being created.

Instead a protocol will impose a discipline that avoids non-
serializable schedules.

Tests for serializability help understand why a concurrency
control protocol is correct.

Page 56

COSC 404 - Dr. Ramon Lawrence

Transaction Management
Summary

A transaction is a unit of program execution that accesses and
may update data values and must be executed atomically.

Transactions should demonstrate the ACID properties:
atomicity, consistency, isolation, and durability

A schedule is the sequence of operations (possibly interleaved)
from multiple concurrent transactions. A schedule is serializable
if it can be proven equivalent to a serial schedule.
Two types: conflict serializability and view serializability

Tests for conflict serializability involves defining a precedence
graph and checking for cycles.

A schedule may also be recoverable, cascade-free, or strict.

Serializability tests are re-active, concurrency control protocols
are pro-active. (prevent non-serializability)

Page 57

COSC 404 - Dr. Ramon Lawrence

Major Objectives
The "One Things":
List and explain the ACID properties of transactions.

Test for conflict serializability using a precedence graph.

Major Theme:
Transactions are used to guarantee a set of operations are

performed in an atomic manner. The DBMS must ensure
interleaving of concurrent transactions is (conflict) serializable
using a concurrency control method.

Page 58

COSC 404 - Dr. Ramon Lawrence

Objectives
Define: transaction, atomic, consistent, constraint

Explain the two challenges in preserving consistency.

List and explain the ACID properties of transactions.

Write a transaction using read/write operations.

List the transactions states and draw the state diagram.

Define schedules and serial schedules.

List three problems that motivate concurrency control.

Define conflict serializability and conflicting operations.

Test for conflict serializability using a precedence graph.

Define, recognize, and create examples of recoverable,
cascade-free, and strict schedules.

Draw the Venn diagram for schedules.

Page 59

COSC 404 - Dr. Ramon Lawrence

Objectives (2)
Define view serializability and the 3 rules for view equivalent

schedules.

Define and give an example of a blind write.

Recognize and create view serializable schedules.

1

COSC 404
Database System Implementation

Concurrency Control

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 404 - Dr. Ramon Lawrence

Concurrency Control Overview
Concurrency control (CC) is a mechanism for guaranteeing
that concurrent transactions in the database exhibit the ACID
properties. Specifically, the isolation property.

There are different concurrency control protocols:
lock-based protocols

timestamp protocols

validation protocols

snapshot isolation

Page 3

COSC 404 - Dr. Ramon Lawrence

Lock-Based Protocols
A lock is a mechanism to control concurrent access to data.
An item can only be accessed through the lock.

Data items can be locked in two modes:
exclusive (X) mode: Data item can be both read as well as

written. X-lock is requested using lock-X instruction.

shared (S) mode: Data item can only be read. S-lock is
requested using lock-S instruction.

Lock requests are made to the concurrency control manager. A
transaction can only proceed after the request is granted and
must follow the restrictions of the lock.

Page 4

COSC 404 - Dr. Ramon Lawrence

Lock-Based Protocols (2)
Lock-compatibility matrix:

A transaction may be granted a lock on an item if the requested
lock is compatible with locks already held on the item by other
transactions.
Any # of transactions can hold shared locks on an item.

If any transaction holds an exclusive lock on the item, no other
transaction may hold any lock on the item.

If a lock cannot be granted, the requesting transaction is made
to wait until all incompatible locks held by other transactions
are released. The lock is then granted.

S X

falsetrueS

X false false

Page 5

COSC 404 - Dr. Ramon Lawrence

Lock-Based Protocol Example
Example of a transaction performing locking:

lock-S(A);

read (A);

unlock(A);

lock-S(B);

read (B);

unlock(B);

display(A+B)

Simple locking is not sufficient to guarantee serializability.
 If A and B get updated in-between the read of A and B, the

displayed sum would be wrong.

A locking protocol is a set of rules followed by all transactions
while requesting and releasing locks. Locking protocols restrict
the set of possible schedules.

Another transaction updates B here.

Page 6

COSC 404 - Dr. Ramon Lawrence

Pitfalls of Lock-Based Protocols
Consider the partial schedule:

Neither T3 nor T4 can make progress as executing lock-S(B)
causes T4 to wait for T3 to release its lock on B, while executing
lock-X(A) causes T3 to wait for T4 to release its lock on A.

Such a situation is called a deadlock. To handle a deadlock
one of T3 or T4 must be rolled back and its locks released.

T3 T4

lock-X(B)
read(B)
B:- B-50
write(B)

lock-S(A)
read(A)
lock-S(B)

lock-X(A)

2

Page 7

COSC 404 - Dr. Ramon Lawrence

Pitfalls of Lock-Based Protocols (2)
The potential for deadlock exists in most locking protocols.

Starvation is also possible if the concurrency control manager
is badly designed. Examples:
A transaction may be waiting for an exclusive lock on an item,

while a sequence of other transactions request and are granted
a shared lock on the same item.

The same transaction is repeatedly rolled back due to
deadlocks.

The concurrency control manager can be designed to prevent
starvation.
For example, do not grant a shared lock if the item is

exclusively locked or a transaction is waiting for a lock-X.

Page 8

COSC 404 - Dr. Ramon Lawrence

Locking Question
Question: Which of the following statements are true?

A) A shared lock allows a transaction to write a data item.

B) More than one transaction can have a shared lock on an
item.

C) More than one transaction can have an exclusive lock on an
item.

D) Deadlock can be avoided by releasing locks as early as
possible.

E) More than one statement is true.

Page 9

COSC 404 - Dr. Ramon Lawrence

The Two-Phase Locking Protocol
Two-Phase Locking (2PL) ensures conflict-serializable
schedules by requiring all locks be acquired before first unlock.

Phase 1: Growing Phase
transaction may obtain locks

transaction may not release locks

Phase 2: Shrinking Phase
transaction may release locks

transaction may not obtain locks

The protocol ensures serializability. It can be proved that the
transactions can be serialized in the order of their lock points
(i.e. the point where a transaction acquired its final lock). Page 10

COSC 404 - Dr. Ramon Lawrence

The Two-Phase Locking Protocol (2)
2PL does not ensure freedom from deadlocks.

Cascading roll-back is also possible under two-phase locking.

Conservative 2PL is deadlock free as all locks must be pre-
declared and allocated at transaction start time.

Strict 2PL prevents cascading rollback as a transaction holds
all its exclusive locks until it commits/aborts.

Thus, uncommitted data is locked and cannot be accessed.

Rigorous 2PL is even stricter as all locks are held till
commit/abort. (also cascade free)

Transactions can be serialized in the order that they commit.

Database systems that use locking use strict or rigorous 2PL.

Page 11

COSC 404 - Dr. Ramon Lawrence

Lock Conversions
Increased concurrency is possible by allowing lock conversions.
Upgrade - convert shared lock to exclusive lock

Downgrade - convert exclusive lock to shared lock

For two-phase locking with lock conversions:
Upgrades and lock acquires are allowed in growing phase.

Downgrades and lock releases are in the shrinking phase.

Page 12

COSC 404 - Dr. Ramon Lawrence

Automatic Acquisition of Locks

A simple automated algorithm can place lock requests for a
transaction Ti issuing the standard read/write instructions:

The operation read(D) is processed as:

if Ti has a lock on D then read(D) otherwise

request a lock-S on D (may be necessary to wait for a lock-X)

when lock-S request is granted, then read(D)

The operation write(D) is processed as:
if Ti has a lock-X on D then write(D) otherwise

if Ti has a lock-S on D then upgrade lock on D to lock-X
 may have to wait for upgrade

otherwise request a new lock-X

finally write(D) when receive upgrade or new lock

All locks are released after commit or abort.

3

Page 13

COSC 404 - Dr. Ramon Lawrence

Example on Auto Lock Insertion
Abbreviations:
A transaction Ti requesting a lock-S on D is given as: sli (D).

A transaction Ti requesting a lock-X on D is given as: xli (D).

A transaction Ti unlocking a data item D is given as: uli(D).

Given transaction T1, insert lock operations according to 2PL:
T1: r1(A); r1(C); w1(B); w1(C);

Basic 2PL:
sl1(A); r1(A); sl1(C); r1(C); xl1(B); ul1(A); w1(B); ul1(B); xl1(C); w1(C);

ul1(C); c1;

locks may be released anytime after
this operation when not needed

Page 14

COSC 404 - Dr. Ramon Lawrence

Example on Auto Lock Insertion (2)
Conservative 2PL:
atomic(sl1(A), xl1(C), xl1(B))

r1(A); r1(C); w1(B); w1(C); c1;ul1(A); ul1(B); ul1(C);

Strict 2PL:
sl1(A); r1(A); xl1(C); r1(C); xl1(B); w1(B); xl1(C); ul1(A); w1(C); c1; ul1(B);

ul1(C);

Rigorous 2PL:
sl1(A); r1(A); xl1(C); r1(C); xl1(B); w1(B);); xl1(C); w1(C); c1; ul1(A);

ul1(B); ul1(C);

locks may be released after they are
no longer needed

read locks may be released before commit
(after last lock operation)

all locks released after commit

Page 15

COSC 404 - Dr. Ramon Lawrence

2PL Question
Question: How many of the following statements are true?
i) Conservative 2PL is deadlock-free.

ii) Rigorous 2PL releases only write locks after commit.

iii) Lock upgrades are allowed during the shrinking phase of 2PL.

iv) Strict 2PL produces strict schedules.

A) 0

B) 1

C) 2

D) 3

E) 4

Page 16

COSC 404 - Dr. Ramon Lawrence

Questions on 2PL
1) Given the following transactions, insert lock operations
according to 2PL:

T1: r1(A); w1(A); r1(B); w1(B);

T2: r2(B); w2(B); r2(A); w2(A);

2) Write one non-serial schedule that obeys to 2PL, or argue
why one is not possible.

3) Repeat #1 and #2 for these transactions:

T1: r1(A); w1(A); r1(B); w1(B); c1

T2: r2(A); w2(A); r2(B); w2(B); c2

T3: r3(C); r3(A); w3(C); c3

Page 17

COSC 404 - Dr. Ramon Lawrence

Multiple Granularity
To this point, we have been locking individual data items. It is
beneficial to allow locking of various size data items.
Define a hierarchy of data granularities, where the small

granularities are nested within larger ones.

Can be represented graphically as a tree.

When a transaction locks a node in the tree explicitly, it
implicitly locks all the node's descendents in the same mode.

Granularity of locking (level in tree where locking is done):
fine granularity (lower in tree): high concurrency, high locking

overhead (e.g. record locking, attribute locking)

coarse granularity (higher in tree): low locking overhead, low
concurrency (e.g. table locking, database locking)

Page 18

COSC 404 - Dr. Ramon Lawrence

The highest level in the hierarchy is the entire database.

The levels below are relation, tuple and field in that order.

Example of Granularity Hierarchy

R1

t1 t2 t3

f1 f2 f3

DB

R2 R3

t1 t2 t3

f1 f2 f3

t1 t2 t3

f1 f2 f3

4

Page 19

COSC 404 - Dr. Ramon Lawrence

Intention Lock Modes
In addition to S and X lock modes, there are three additional
lock modes with multiple granularity:
intention-shared (IS): indicates explicit locking at a lower level

of the tree but only with shared locks.

intention-exclusive (IX): indicates explicit locking at a lower
level with exclusive or shared locks

shared and intention-exclusive (SIX): the subtree rooted by
that node is locked explicitly in shared mode and explicit locking
is being done at a lower level with exclusive-mode locks.

Intention locks allow a higher level node to be locked in S or X
mode without having to check all descendent nodes.

Page 20

COSC 404 - Dr. Ramon Lawrence

Compatibility Matrix with
Intention Lock Modes

The compatibility matrix for all lock modes is:

IS IX S SIX X

IS

IX

S

SIX

X

Page 21

COSC 404 - Dr. Ramon Lawrence

X

SIX

S IX

IS

Strongest

Weakest

Multi Granularity Lock "Strength"

Page 22

COSC 404 - Dr. Ramon Lawrence

Multiple Granularity Locking
Transaction Ti can lock a node Q using the rules:
The lock compatibility matrix must be observed.

The root of the tree must be locked first (in any mode).

A node Q can be locked by Ti in S or IS mode only if the parent
of Q is currently locked by Ti in either IX or IS mode.

A node Q can be locked by Ti in X, SIX, or IX mode only if the
parent of Q is currently locked by Ti in either IX or SIX mode.

Ti can lock a node only if it has not previously unlocked any
node (that is, this is a variant of two-phase locking).

Ti can unlock a node Q only if none of the children of Q are
currently locked by Ti.

Locks are acquired in root-to-leaf order, and released in
leaf-to-root order.

Page 23

COSC 404 - Dr. Ramon Lawrence

Multiple Granularity Locking Example
T1 wants to lock R1.t2.f1 in X-mode.

R1

t1 t2 t3

f1 f2 f3

DB

R2 R3

t1 t2 t3

f1 f2 f3

t1 t2 t3

f1 f2 f3

DBT1(IX)

R1

T1(IX)

t2

T1(IX)

f1

T1(X)

Page 24

COSC 404 - Dr. Ramon Lawrence

Multiple Granularity Locking Example (2)
T2 wants to lock R1.t2.f2 in X-mode. Does it work?

R1

t1 t2 t3

f1 f2 f3

DB

R2 R3

t1 t2 t3

f1 f2 f3

t1 t2 t3

f1 f2 f3

DBT1(IX)

R1

T1(IX)

t2

T1(IX)

f1

T1(X)

T2(IX)

T2(IX)

T2(IX)

f2

T2(X)

Yes, it works!

5

Page 25

COSC 404 - Dr. Ramon Lawrence

Multiple Granularity Locking Example (3)
T2 wants to lock R1.t2.f2 in X-mode. Does it work?

R1

t1 t2 t3

f1 f2 f3

DB

R2 R3

t1 t2 t3

f1 f2 f3

t1 t2 t3

f1 f2 f3

DBT1(IX)

R1

T1(IX)

t2

T1(X)

T2(IX)

T2(IX)
T2(IX)
conflicts

No, conflict at t2! Page 26

COSC 404 - Dr. Ramon Lawrence

Multiple Granularity Locking Example (4)
T2 wants to lock R1.t2.f2 in X-mode. Does it work?

R1

t1 t2 t3

f1 f2 f3

DB

R2 R3

t1 t2 t3

f1 f2 f3

t1 t2 t3

f1 f2 f3

DBT1(IS)

R1

T1(IS)

t1

T1(S)

T2(IX)

T2(IX)

T2(IX)

t2

f2

T2(X)

Yes, it works!

Page 27

COSC 404 - Dr. Ramon Lawrence

Multiple Granularity Locking Example (5)
T2 wants to lock R1.t2.f2 in S-mode. Does it work?

R1

t1 t2 t3

f1 f2 f3

DB

R2 R3

t1 t2 t3

f1 f2 f3

t1 t2 t3

f1 f2 f3

DBT1(IX)

R1

T1(SIX)

T2(IS)

T2(IS)

T2(IS)

f2

T2(S)

t2

T1(IX)

f1

T1(X)

Yes, it works!
Page 28

COSC 404 - Dr. Ramon Lawrence

Multiple Granularity Locking Example (6)
T2 wants to lock R1.t2.f2 in X-mode. Does it work?

R1

t1 t2 t3

f1 f2 f3

DB

R2 R3

t1 t2 t3

f1 f2 f3

t1 t2 t3

f1 f2 f3

DBT1(IX)

R1

T1(SIX)

T2(IX)

T2(IX)
conflicts

t2

T1(IX)

f1

T1(X)

No, conflict at R1!

Page 29

COSC 404 - Dr. Ramon Lawrence

Multiple Granularity Locking Question
Question: How many of the following statements are true?
i) The protocol always must lock the root node first.

ii) If a child node is locked, its parent node must also be locked.

iii) The protocol allows locking several tables at the same time.

iv) The protocol is deadlock free.

A) 0

B) 1

C) 2

D) 3

E) 4

Page 30

COSC 404 - Dr. Ramon Lawrence

Deadlock Handling
A system is deadlocked if there is a set of transactions such
that every transaction in the set is waiting for another
transaction in the set.

Two mechanisms for deadlock handling:
deadlock prevention - do not allow system to enter deadlock

state

deadlock detection - detect deadlock condition and abort
transactions to remove deadlock state

Cost of deadlock handling includes:
overhead of scheme itself

potential losses in transaction processing due to rollbacks

6

Page 31

COSC 404 - Dr. Ramon Lawrence

Deadlock Prevention
Deadlock prevention protocols ensure that the system will
never enter into a deadlock state.

Some strategies:
Require that each transaction locks all its data items before it

begins execution (predeclare locks, e.g. conservative 2PL).

Impose a partial ordering on data items and require that a
transaction lock data items only in the order specified.

Wound-wait and wait-die strategies use timestamps to
determine transaction age and determine if a transaction should
wait or be rolled back on a lock conflict.

Page 32

COSC 404 - Dr. Ramon Lawrence

Wound-Wait and Wait-Die Strategies
Wait-Die scheme — non-preemptive
Older transaction may wait for younger one to release data

item. Younger transactions never wait for older ones; they are
rolled back instead.

A transaction may die several times before acquiring needed
data item.

Wound-Wait scheme — preemptive
Older transaction wounds (forces rollback) of younger

transaction instead of waiting for it. Younger transactions may
wait for older ones.

May cause fewer rollbacks than wait-die scheme.

Note: A rolled back transaction is restarted with its original
timestamp. Older transactions have precedence over newer
ones, and starvation is avoided.

Page 33

COSC 404 - Dr. Ramon Lawrence

Timeout-Based Schemes
In a Timeout-Based Schemes:
A transaction waits for a lock only for a specified amount of

time. After that, the transaction times out and is rolled back.

Thus deadlocks are not possible.

Simple to implement, but starvation is possible.

Difficult to determine good value of the timeout interval.
Too short - false deadlocks (unnecessary rollbacks)

Too long - wasted time while system is in deadlock

Page 34

COSC 404 - Dr. Ramon Lawrence

Deadlock Detection & Recovery
If deadlocks are not prevented, then a detection and recovery
procedure is needed to recover when the system enters the
deadlock state.

An algorithm is run periodically to check for deadlock. If the
system is in deadlock, then transactions are aborted to resolve
the deadlock.

Deadlock detection requires the system:
Maintain information about currently allocated locks.

Provide an algorithm to detect a deadlock state.

Recover from deadlock by aborting transactions efficiently.

Page 35

COSC 404 - Dr. Ramon Lawrence

Wait-for Graphs
Deadlocks can be detected using a wait-for graph, G = (V,E):
V is a set of vertices (all the transactions in the system).

E is a set of edges; each element is an ordered pair Ti Tj.

If Ti Tj is in E, then there is a directed edge from Ti to Tj,
implying that Ti is waiting for Tj to release a data item.

When Ti requests a data item currently being held by Tj, then
the edge Ti Tj is inserted into the graph.
This edge is removed only when Tj is no longer holding a data

item needed by Ti.

The system is in a deadlock state if and only if the wait-for
graph has a cycle. Must invoke a deadlock-detection algorithm
periodically to look for cycles.

Page 36

COSC 404 - Dr. Ramon Lawrence

Wait-for graph with no cycle Wait-for graph with a cycle

Wait-for Graph Examples

7

Page 37

COSC 404 - Dr. Ramon Lawrence

Deadlock Recovery
When a deadlock is detected three factors to consider:
Victim selection - Some transaction will have to rolled back

(made a victim) to break deadlock.
Select the victim transaction that will incur minimum cost (computation

time, data items used, etc.).

Rollback - determine how far to roll back transaction
Total rollback: Abort the transaction and then restart it.

More effective to roll back transaction only as far as necessary to break
deadlock. (requires system store additional information)

Starvation happens if same transaction is always chosen as
victim.
Include the number of rollbacks in the cost factor to avoid starvation.

Page 38

COSC 404 - Dr. Ramon Lawrence

Deadlock Question
Question: How many of the following statements are true?
i) A deadlock prevention protocol ensures deadlock never

occurs.

ii) In Wound-Wait, an older transaction waits on a younger one.

iii) A wait-for graph has undirected edges between transactions.

iv) A wait-for graph with 5 nodes but only 3 in a cycle is not in a
deadlock state.

A) 0

B) 1

C) 2

D) 3

E) 4

Page 39

COSC 404 - Dr. Ramon Lawrence

Questions on Deadlocks
1) Assume a read-lock is requested before each read, and a
write lock before each write. All unlocks occur after the last
operation of a transaction. Explain what operations are denied
during each schedule, draw the wait-for graph, and pick a
transaction to abort if a deadlock does occur.

a) r1(A); r2(B); w1(C); r3(D); r4(E); w3(B); w2(C); w4(A); w1(D);

b) r1(A); r2(B); r3(C); w1(B); w2(C); w3(D);

c) r1(A); r2(B); r3(C); w1(B); w2(C); w3(A);

Page 40

COSC 404 - Dr. Ramon Lawrence

Timestamp-Based Protocol

A timestamp protocol serializes transactions in the order they
are assigned timestamps by the system.

Each transaction Ti is issued a timestamp TS(Ti) when it enters
the system.

If an old transaction Ti has timestamp TS(Ti), a new transaction
Tj has timestamp TS(Tj) where TS(Ti) < TS(Tj).

The timestamp can be assigned using the system clock or some
logical counter that is incremented for every timestamp.

Timestamp protocols do not use locks, so deadlock cannot
occur!

Page 41

COSC 404 - Dr. Ramon Lawrence

Timestamp-Based Protocol
Read and Write Timestamps

To ensure serializability, the protocol maintains for each data Q
two timestamp values:

W-timestamp(Q) is the largest timestamp of any transaction
that executed write(Q) successfully.

R-timestamp(Q) is the largest timestamp of any transaction
that executed read(Q) successfully.

The timestamp ordering protocol ensures that any conflicting
read and write operations are executed in timestamp order.

Page 42

COSC 404 - Dr. Ramon Lawrence

Timestamp-Based Protocol Rules
Suppose a transaction Ti issues a read(Q):
If TS(Ti) < W-timestamp(Q), then Ti needs to read a value of Q

that was already overwritten.
Hence, the read operation is rejected, and Ti is rolled back.

If TS(Ti) W-timestamp(Q), then the read operation is executed.
The R-timestamp(Q) is set to the maximum of R-timestamp(Q) and TS(Ti).

Suppose that transaction Ti issues a write(Q):
If TS(Ti) R-timestamp(Q) AND TS(Ti) W-timestamp(Q), then

the write operation is executed.

If TS(Ti) < R-timestamp(Q), then the value of Q that Ti is
producing was previously read by newer transaction.
Hence, the write operation is rejected, and Ti is rolled back.

If TS(Ti) < W-timestamp(Q), then Ti is attempting to write an
obsolete value of Q. Ti is rolled back.

8

Page 43

COSC 404 - Dr. Ramon Lawrence

Timestamp Example
A partial schedule for several data items for transactions with
timestamps 1, 2, 3, 4, 5:

T1 T2 T3 T4 T5

read(Y)
read(X)

read(Y)
write(Y)

read(Z)
write(X)
abort

read(X)
write(Z)
abort

write(Y)
write(Z)

Page 44

COSC 404 - Dr. Ramon Lawrence

Correctness of Timestamp-Ordering Protocol

The timestamp-ordering protocol guarantees serializability
since all the arcs in the precedence graph are of the form:

Thus, there will be no cycles in the precedence graph.

Timestamp protocol ensures freedom from deadlock as no
transaction ever waits.

Protocol is not recoverable or cascade-free.

Can achieve both properties if perform all writes atomically at
end of the transaction.

transaction
with smaller
timestamp

transaction
with larger
timestamp

Page 45

COSC 404 - Dr. Ramon Lawrence

Thomas’ Write Rule
Modified version of the timestamp-ordering protocol in which
obsolete write operations may be ignored under certain
circumstances:

When Ti attempts to write data item Q, if TS(Ti) < W-
timestamp(Q), then Ti is attempting to write an obsolete value of
{Q}. Hence, rather than rolling back Ti as the timestamp
ordering protocol would have done, this write operation can be
ignored. Otherwise protocol is unchanged.

Thomas' Write Rule allows greater potential concurrency.
Unlike previous protocols, it allows some view-serializable
schedules that are not conflict-serializable.

Page 46

COSC 404 - Dr. Ramon Lawrence

Timestamp Protocol Question
Question: How many of the following statements are true?
i) Deadlock is not possible with timestamp protocols.

ii) A transaction that arrives later to the system always has a
smaller timestamp.

iii) The precedence graph for the timestamp algorithm has edges
from smaller timestamp transactions to larger ones.

iv) A write is only performed if transaction has a timestamp >=
the read timestamp for the data item.

A) 0

B) 1

C) 2

D) 3

E) 4

Page 47

COSC 404 - Dr. Ramon Lawrence

Questions on Timestamping
1) Indicate what happens during each of these schedules
where concurrency control is performed using timestamps:

a) st1; st2; r1(A); r2(B); w2(A); w1(B);

b) st1; r1(A); st2; w2(B); r2(A); w1(B);

c) st1; st2; st3; r1(A); r2(B); w1(C); r3(B); r3(C); w2(B); w3(A);

d) st1; st3; st2; r1(A); r2(B); w1(C); r3(B); r3(C); w2(B); w3(A);

Page 48

COSC 404 - Dr. Ramon Lawrence

Validation Protocols
Validation or optimistic concurrency control protocols
assume that the number of conflicts is low and verify correctness
after a transaction is completed. Three phases:
1) Read phase – Transaction reads data items and performs

operations. Writes are stored in local transaction memory.

2) Validation phase – Transaction checks if can proceed to
write phase without violating serializability.

3) Write phase – All writes are copied to the database.

The validation test uses timestamps to guarantee that for two
transactions Ti and Tj with TS(Ti) < TS(Tj) either:
1) Ti finished before Tj started OR

2) Set of data items written by Ti does not intersect with items
read by Tj and Ti completes writes before Tj validates.

9

Page 49

COSC 404 - Dr. Ramon Lawrence

Multiversion Schemes
Multiversion schemes keep old versions of data to increase
concurrency. This is especially useful for read transactions.

Each successful write creates a new version of the data item.
Use timestamps or transaction ids to label versions.

When a read operation is issued, select an appropriate version
of the data item based on the timestamp.

Reads never have to wait as an appropriate version is returned
immediately.

Page 50

COSC 404 - Dr. Ramon Lawrence

Multiversion Timestamp Ordering
Each data item Q has a sequence of versions <Q1, Q2,, Qm>.
Each version Qk contains three fields:
Content - the value of version Qk

W-timestamp(Qk) - timestamp of the transaction that created
(wrote) version Qk

R-timestamp(Qk) - largest timestamp of a transaction that
successfully read version Qk

When a transaction Ti creates a new version Qk of Q, Qk's W-
timestamp and R-timestamp are initialized to TS(Ti).

R-timestamp of Qk is updated whenever a transaction Tj reads
Qk, and TS(Tj) > R-timestamp(Qk).

Page 51

COSC 404 - Dr. Ramon Lawrence

Multiversion Timestamp Scheme
The following scheme ensures serializability:

Let Qk denote the version of Q whose write timestamp is the
largest write timestamp less than or equal to TS(Ti).

If transaction Ti issues a read(Q) then:

 The value returned is the content of version Qk.

If transaction Ti issues a write(Q):

If TS(Ti) < R-timestamp(Qk), then Ti is rolled back.

If TS(Ti) = W-timestamp(Qk), Qk is overwritten.

Otherwise a new version of Q is created.

Page 52

COSC 404 - Dr. Ramon Lawrence

Multiversion Timestamp Scheme (2)
Reads always succeed; writes may be rejected if:
Some other transaction Tj that (in the serialization order defined

by the timestamp values) should read Ti's write, has already
read a version created by a transaction older than Ti.

Challenges:
Must have an efficient way of handling versions (and discarding

when no longer needed).

Conflicts resolved through rollbacks rather than waiting so user
application must be prepared to resubmit failed transactions.
Only update transactions can be rolled back.

Page 53

COSC 404 - Dr. Ramon Lawrence

Multiversion 2PL
Multiversion 2PL requires:
1) An integer counter used for timestamps for items and

transactions.

2) Read-only transactions retrieve counter at start of transaction
and use it to determine version to read. No locking used.

3) Update transactions perform rigorous 2PL. At commit,
transaction increments timestamp counter and sets timestamp
on every item it created.

Multiversion 2PL allows read transactions to never wait on locks
and produces schedules that are recoverable and cascadeless.

Page 54

COSC 404 - Dr. Ramon Lawrence

Snapshot Isolation
Snapshot isolation is a widely-used protocol that gives each
transaction its own "snapshot" of the database to execute on.

A snapshot consists of committed data values in the database
before the transaction starts.

Read-only transactions never wait and are never aborted.

Update transactions keep updates private until commit when
they are written to the database atomically. A validation is
performed before writing the updates are allowed.

10

Page 55

COSC 404 - Dr. Ramon Lawrence

Snapshot Isolation
Validation Test

Two ways to validate:

First committer wins:
Transaction T enters prepared to commit state and checks:
If any concurrent transaction has updated any item T wants to update.

If yes, T is aborted. If no, T commits and updates written to database.

First update wins:
If transaction T wants to update, it must get write lock on item.

When lock is acquired, check if item has been updated by a
concurrent transaction. If so, abort, otherwise proceed.

Page 56

COSC 404 - Dr. Ramon Lawrence

Snapshot Isolation
Serializability Issues

Despite its advantages and being widely implemented (Oracle,
PostgreSQL, SQL Server), snapshot isolation does not ensure
serializability.

There are cases where particular transaction schedules are not
serializable.

However, these issues can be often ignored or avoided,
especially since primary and foreign key constraints are
validated after snapshot validation and will often detect conflicts.

Page 57

COSC 404 - Dr. Ramon Lawrence

Multiversion and Snapshot Isolation
Question

Question: How many of the following statements are true?
i) Reads always succeed with a multiversion scheme.

ii) Writes always succeed and create a new version each write.

iii) Snapshot isolation guarantees serializability.

iv) In a multiversion scheme, a read for a transaction may occur
on a data value that is not the most recent.

A) 0

B) 1

C) 2

D) 3

E) 4

Page 58

COSC 404 - Dr. Ramon Lawrence

Insert and Delete Operations
In addition to read/write operations, the system must handle
delete and insert operations.

Deletion with two-phase locking:
May only be performed if the transaction deleting the tuple has

an exclusive lock on the tuple to be deleted.

Insertion with two-phase locking:
A transaction that inserts a new tuple into the database is given

an X-mode lock on the tuple.

Page 59

COSC 404 - Dr. Ramon Lawrence

The Phantom Phenomenon
Inserts/deletes can lead to the phantom phenomenon:
A transaction that scans a relation (e.g., find all students) and a

transaction that inserts a tuple in the relation (e.g., inserts a
new student) may conflict in spite of not accessing any tuple in
common.

If only tuple locks are used, non-serializable schedules can
result: the scan transaction may not see the new tuple, yet may
be serialized before the insert transaction.

Transactions conflict over a phantom tuple.

The transaction scanning the relation reads information that
indicates what tuples the relation contains. A transaction
inserting a tuple updates the same info.

This information should be locked.

Page 60

COSC 404 - Dr. Ramon Lawrence

The Phantom Phenomenon (2)
Can prevent problem by:
Accepting the issue (read committed isolation)

Locking the entire relation (multi-granularity locking)

Using index-locking or predicate-locking to guarantee that
conflicts within the relation are detected.

Having a special lock associated with the entire file. Read
transactions that scan the whole relation must get a read lock
on it and update transactions must get a write lock.

11

Page 61

COSC 404 - Dr. Ramon Lawrence

Transaction Definition in SQL
In SQL, a transaction begins implicitly.

A transaction in SQL ends by:
Commit accepts updates of current transaction.

Rollback aborts current transaction and discards its updates.
Failures may also cause a transaction to be aborted.

An isolation level reflects how a transaction perceives the
results of other transactions. It applies only to your perspective
of the database, not other transactions/users. Lowering
isolation level improves performance but may potentially
sacrifice consistency.

Page 62

COSC 404 - Dr. Ramon Lawrence

Example Transactions
Transaction to deposit $50 into a bank account:

Transaction to calculate totals for all accounts (twice):

Transaction to add a new account:

BEGIN TRANSACTION;
UPDATE Account WHERE num = 'S1' SET balance=balance+50;

COMMIT T1;

BEGIN TRANSACTION;
SELECT SUM(balance) as total1 FROM Account;
SELECT SUM(balance) as total2 FROM Account;

COMMIT T2;

BEGIN TRANSACTION;
INSERT INTO ACCOUNT (num, balance) VALUES ('S5' , 100);

COMMIT T3;

Page 63

COSC 404 - Dr. Ramon Lawrence

Levels of Consistency in SQL-92
The isolation level can be specified by:

SET TRANSACTION ISOLATION LEVEL = X where X is

Serializable - transactions behave like executed one at a time.

Repeatable read - repeated reads must return same data. Does
not necessarily read newly inserted records.

Read committed - only committed values can be read, but
successive reads may return different values.

Read uncommitted - even uncommitted records may be read.
Reading an uncommitted value is called a dirty read.

Page 64

COSC 404 - Dr. Ramon Lawrence

Scheduling of Transactions
Each transaction in a database is a separate executing program.
A transaction may be its own program or a thread of execution.

The operating system schedules the execution of programs
outside of the control of the DBMS.
Thus, transactions may be executed in any order (as long as the

order of operations within a transaction are the same). This
interleaving is what produces different schedules.

The DBMS uses its concurrency control protocol to restrict the
schedules to those that respect the consistency specified by the
user for the transaction isolation level.
All transactions must write lock any data item updated and the

relation lock if inserting.

Isolation level only affects read locks.

Page 65

COSC 404 - Dr. Ramon Lawrence

Scheduling Question
Question: TRUE or FALSE: The database has complete control
over the scheduling of transactions.

A) True

B) False

Page 66

COSC 404 - Dr. Ramon Lawrence

Isolation Example
Serializable

A serializable schedule requires that regardless of the
interleaving of the operations, the final result is the same as
some serial ordering of the transactions.
Read and write locks are held to commit. Also have a relation-

level lock.

For three transactions, there are 3! = 6 serial schedules.

For these examples, assume that the total amount of money in
all accounts is $5000 before the transactions begin.

12

Page 67

COSC 404 - Dr. Ramon Lawrence

Isolation Example
Serializable (2)

Example schedule for T1, T2, T3:

After execution, total1 = $5050 and total2 = $5050.
The results for all six serial schedules are:
T1, T2, T3 – total1 = $5050 ; total2 = $5050

T1, T3, T2 – total1 = $5150 ; total2 = $5150

T2, T1, T3 – total1 = $5000 ; total2 = $5000

T2, T3, T1 – total1 = $5000 ; total2 = $5000
T3, T1, T2 – total1 = $5150 ; total2 = $5150

T3, T2, T1 – total1 = $5100 ; total2 = $5100

UPDATE Account WHERE num = 'S1' SET balance=balance+50;
COMMIT T1;
SELECT SUM(balance) as total1 FROM Account;
SELECT SUM(balance) as total2 FROM Account;
COMMIT T2;
INSERT INTO ACCOUNT (num, balance) VALUES ('S5' , 100);
COMMIT T3;

Page 68

COSC 404 - Dr. Ramon Lawrence

Isolation Example
Repeatable read

With repeatable read, a transaction is guaranteed to get the
same data back on multiple reads but may see phantom
records inserted in between reads.
Read and write locks are held to commit.

Example schedule:

After execution, total1 = $5050 and total2 = $5150 as the
second read sees the newly inserted tuple.

UPDATE Account WHERE num = 'S1' SET balance=balance+50;
COMMIT T1;
SELECT SUM(balance) as total1 FROM Account;
INSERT INTO ACCOUNT (num, balance) VALUES ('S5' , 100);
COMMIT T3;
SELECT SUM(balance) as total2 FROM Account;
COMMIT T2;

Page 69

COSC 404 - Dr. Ramon Lawrence

Isolation Example
Read Committed

With read committed, each read will get the most recently
committed values even if different than an earlier read.
Read locks are released after every statement. Write locks

released at commit.

Example schedule:

After execution, total1 = $5000 and total2 = $5150 as the
second read sees the newly inserted tuple and T1’s update.

SELECT SUM(balance) as total1 FROM Account;
UPDATE Account WHERE num = 'S1' SET balance=balance+50;
COMMIT T1;
INSERT INTO ACCOUNT (num, balance) VALUES ('S5' , 100);
COMMIT T3;
SELECT SUM(balance) as total2 FROM Account;
COMMIT T2;

Page 70

COSC 404 - Dr. Ramon Lawrence

Read uncommitted allows a transaction to read dirty data that
has not been (and may never be) committed.
Transaction acquires no read locks.

Example schedule:

After execution, total1 = $5050 and total2 = $5150 as T2’s sees
even uncommitted data. Note that both T1 and T3 abort so T2
sees incorrect data. It is very dangerous to use read
uncommitted if the transaction updates the database!

Isolation Example
Read Uncommitted

UPDATE Account WHERE num = 'S1' SET balance=balance+50;
SELECT SUM(balance) as total1 FROM Account;
INSERT INTO ACCOUNT (num, balance) VALUES ('S5' , 100);
SELECT SUM(balance) as total2 FROM Account;
COMMIT T2;
ABORT T3;
ABORT T1;

Page 71

COSC 404 - Dr. Ramon Lawrence

Summary of Isolation Levels
Isolation Level Problems Lock Usage Speed Comments

Serializable None Read locks held
to commit ; read
lock on relation

Slowest Only level that guarantees
correctness.

Repeatable read Phantom
tuples

Read locks held
to commit

Medium Useful for modify
transactions.

Read committed Phantom
tuples, values
may change

Read locks
released after
each statement

Fast Useful for transactions
where operations are
separable but updates are
all or none.

Read uncommitted Phantoms,
values may
change, dirty
reads

No read locks Fastest Useful for read-only
transactions that tolerate
inaccurate results

Page 72

COSC 404 - Dr. Ramon Lawrence

Isolation Levels Question
Question: How many of the following statements are true?
i) Serializability guarantees that there are no phantom tuples.

ii) Read committed may be affected by phantom tuples.

iii) In read committed, two reads at separate times may retrieve
different values.

iv) Read uncommitted is the fastest isolation level.

A) 0

B) 1

C) 2

D) 3

E) 4

13

Page 73

COSC 404 - Dr. Ramon Lawrence

Transaction Practice Question
Given these transactions and table Bid(itemID, price)
that initially contains the two tuples: (i1,10) and (i2,20):

Assume that T1 executes with isolation level serializable and
both transactions successfully commit.
1) If T2 executes with isolation level serializable, what are all

the possible pairs of values for p1 and p2 returned by T2?

2) If T2 executes with isolation level read committed, what are
all the possible pairs of values for p1 and p2 for T2?

T1: BEGIN TRANSACTION;
S1: UPDATE Bid SET price = price + 5;
S2: INSERT INTO Bid VALUES (i3,30);
COMMIT;

T2: BEGIN TRANSACTION;
S1: SELECT SUM(price) AS p1 FROM Bid;
S2: SELECT MAX(price) AS p2 FROM Bid;
COMMIT;

Page 74

COSC 404 - Dr. Ramon Lawrence

Concurrency Control in PostgreSQL
PostgreSQL uses snapshot isolation for DML and 2PL for DDL.
Snapshot isolation implementation is referred to as multi-version

concurrency control (MVCC).
Uses first updater wins policy. Uses x-locks on written rows.

Each transaction has id (logical counter). Each tuple has transaction id
that created it. Keeps track of snapshot info for each transaction.

Tradeoff: Reads never wait but more space used that must be handled.

Uses deadlock detection with timeouts (default 1 sec.).

Isolation levels supported:
read committed (default), serializable
For read committed, timestamp is at statement level. For serializable,

timestamp is transaction's first timestamp.

A transaction will wait for a lock on a row currently being updated. If
update committed by another transaction, waiting transaction issues error
"could not serialize access due to concurrent update". Only possible for
update/deletes.

Page 75

COSC 404 - Dr. Ramon Lawrence

Concurrency Control in MySQL
MySQL with the InnoDB storage engine uses snapshot
isolation (multi-version concurrency control) for reads and 2PL
for updates.

Supports all 4 isolation levels with different locks acquired for
different levels. Default is repeatable read.

Page 76

COSC 404 - Dr. Ramon Lawrence

Concurrency Control in
Microsoft SQL Server

Microsoft SQL Server uses 2PL and optimistic concurrency
control.

Supports all four isolation levels plus two snapshot isolation
levels.

Uses multiple granularity locking and automatically determines
correct sizes (table, extent, page, rows).

Older snapshots are stored in temporary database.

Deadlock detection performed every 5 seconds by default.

Page 77

COSC 404 - Dr. Ramon Lawrence

Concurrency Control in Oracle
Oracle uses multiversion read consistency (snapshots).
No locks for a read operation, so a read never blocks for a write.

Uses row-level locking and transaction will wait if tries to change
row updated by uncommitted transactions.

System change number (SCN) used for ordering operations.

Stores row lock on data block where row is stored.

Locks held throughout transaction, released at commit/abort
Different types of locks; DDL, DML, mutex, latches

Does deadlock detection using wait-for graphs

Oracle Flashback Technology allows recovering a table to a
point in time. Can be used to recover deleted rows or dropped
tables without doing full restore from backup.

Implements: read committed and serializable isolation levels
Page 78

COSC 404 - Dr. Ramon Lawrence

Concurrency Control in
MongoDB

MongoDB is a NoSQL document database. Performs atomic
updates at document-level with no support for transactions.

MongoDB does not support any of the traditional isolation
levels directly.

Uses reader-writer locks to ensure a data item can be read by
many but only written by one at a time.
Waiting writers have precedence over readers.

Until Mongo 3.0, locking was at the database level. Mongo 3.0
and above perform multiple granularity locking (database,
collection, document).

14

Page 79

COSC 404 - Dr. Ramon Lawrence

Concurrency Control
Summary

Concurrency control protocols are used to ensure concurrent
transactions maintain their isolation.
Two-phase locking (2PL) and multigranularity locking

schemes are commonly used.

Deadlocks must be handled by either deadlock prevention or
deadlock detection and recovery.
Prevention: wound-wait and wait-die schemes

Detection: wait-for graphs and transaction rollback

Multiversion schemes and snapshots create new versions on
every update and determine the correct version for reads.
Allows higher concurrency but uses more space. Very common.

SQL isolation levels are read uncommitted, read committed,
repeatable read, and serializable.
Differ on handling of dirty reads and phantom tuples. Page 80

COSC 404 - Dr. Ramon Lawrence

Major Objectives
The "One Things":
Explain how two-phase locking (2PL) works and detect valid 2PL

schedules.

Perform deadlock detection and recovery using wait-for graphs.

Explain and use the timestamp based protocol.

Perform multiple granularity locking using lock modes, rules, and
compatibility matrix.

Understand difference between snapshot based approaches
(MVCC) and using 2PL.

Page 81

COSC 404 - Dr. Ramon Lawrence

Objectives
Define concurrency control, locking protocol, deadlock,

starvation, exclusive and shared locks (compatibility matrix).

Define and use conservative, strict, and rigorous 2PL.

Explain the use of lock conversions (upgrades/downgrades).

Insert locks into a schedule using automatic algorithm.

List some methods for deadlock prevention.

List three factors with deadlock recovery.

Define and motivate a validation based protocol.

Explain the motivation for multiversion 2PL and timestamping.

Explain the general approach for snapshot protocols.

Explain how the phantom phenomenon occurs.

List consistency levels in SQL-92 and determine which
schedules are valid under each consistency level.

1

COSC 404
Database System Implementation

Recovery

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 404 - Dr. Ramon Lawrence

Recovery
Motivation

A database system like any computer system is subject to
various types of failures.

The database system must ensure the ACID properties
(specifically durability and atomicity) despite failures.

We will categorize the various types of failures, and provide
approaches for recovering from failures.

The process of restoring the database to a consistent state
after a failure is called recovery, and is performed by the
recovery system.

Page 3

COSC 404 - Dr. Ramon Lawrence

Why is Recoverability Needed?
Recoverability is needed because the database system can fail
for many reasons during transaction processing:
Computer Failure - computer crash due to hardware, software,

or network problems.

Disk Failure - disk fails to correctly read/write blocks

Physical Problems/Catastrophes - external problems
resulting in data loss or system destruction (e.g. earthquake)

Transaction failures (but not database system failures):
Transaction Error - error in transaction (e.g. divide by 0)

Exception Conditions - transaction detects exception
condition (e.g. data not present, insufficient bank funds)

Concurrency Control Enforcement - transaction can be
forced to abort to resolve deadlock or for serializability.

Page 4

COSC 404 - Dr. Ramon Lawrence

Failure Classification
The various types of failures can be classified in three
categories:
Transaction Failures:
 Logical errors: Transaction cannot complete due to some internal error

condition (bad input, data not found).

 System errors: The database system must terminate an active
transaction due to an error condition (e.g. deadlock).

Software Failures:
 System crash: A failure causes the system to crash, but non-volatile

storage contents are not corrupted.

 Examples: software design errors, bugs, buffer/stack overflows

Hardware Failures:
 Disk failure: A head crash destroys all or part of disk storage.

 Examples: overutilization/overloading (used beyond its design), wearout
failure, poor manufacturing

Page 5

COSC 404 - Dr. Ramon Lawrence

Terminology
A system is reliable if it functions as per specifications and
produces a correct output for a given input.

A system failure occurs if it does not function according to
specifications and fails to deliver the service desired.

An error occurs if the system assumes an undesirable state.

A fault is detected when either an error is propagated from one
component to another or the failure of a component is detected.

Page 6

COSC 404 - Dr. Ramon Lawrence

Reliability Mechanisms
Fault Avoidance
Attempt to eliminate all forms of hardware and software errors.

Fault Tolerance
Provide component redundancies that cater to faults occurring

within the system and its components.

Tradeoff:
Fault tolerance requires more components.

More components means more faults.

Therefore, more components are need to handle the increasing
faults.

2

Page 7

COSC 404 - Dr. Ramon Lawrence

Storage Structure (review)
Volatile storage does not survive system crashes.
main memory, cache memory

Nonvolatile storage survives system crashes.
Hard drive, solid-state drive

Stable storage is a theoretical form of storage that survives all
failures.
Approximated by maintaining multiple copies on distinct

nonvolatile media.

Practically achieving stable storage requires duplication of
information such as maintaining multiple copies of each block
on separate disks (RAID), or sending copies to remote sites to
protect against disasters such as fire or flooding.
e.g. Multiple availability zones with Amazon hosting Page 8

COSC 404 - Dr. Ramon Lawrence

Data Access
Physical blocks are those blocks residing on the disk. Buffer
blocks are the blocks residing temporarily in main memory.

Block movements between disk and main memory are initiated
through the following two operations:
input(B) transfers the physical block B to main memory.

output(B) transfers the buffer block B to the disk.

Each transaction Ti has its private work area in which local
copies of all data items accessed and updated by it are kept.
Assume that Ti's local copy of a data item X is called xi.

Page 9

COSC 404 - Dr. Ramon Lawrence

Data Access (2)
A transaction transfers data items between system buffer
blocks and its private work-area using operations:
read(X, xi) assigns the value of item X to the local variable xi.

write(X, xi) assigns the value of local variable xi to data item X
in the buffer block.

Both these commands may require an input(BX), if the block BX
in which X resides is not already in memory.

Transactions perform read(X) while accessing X for the first
time; all subsequent accesses are to the local copy. After last
access, transaction executes write(X).

output(BX) need not immediately follow write(X). System can
perform the output operation when it deems fit.

Page 10

COSC 404 - Dr. Ramon Lawrence

y1

buffer

XBuffer Block A

YBuffer Block B

input(A)

output(B)

x1

read(X)
write(Y)

A

B

disk

work area
of T1

work area
of T2

memory

x2

Example of Data Access

Page 11

COSC 404 - Dr. Ramon Lawrence

Buffer Management
The blocks in a database buffer are managed by a
replacement policy (such as LRU).

Other considerations:
steal vs. no-steal – no-steal prevents a buffer that is written by

an uncommitted transaction to be saved to disk (removed from
the buffer). Steal policy allows writing uncommitted updates.
 Implemented using a pin bit on each buffer block.

force vs. no-force – A force approach writes updates for
committed transactions to disk immediately. No-force allows a
committed update to remain in the buffer for some time.

Databases typically implement steal/no-force as it provides the
most flexibility and best performance. Page 12

COSC 404 - Dr. Ramon Lawrence

Log-Based Recovery
In log-based recovery, a log is kept on stable storage, and
consists of a sequence of log records.

The log will record the sequence of database operations, and
can be used to replay the database actions after a failure. The
recovery manager uses the log to restore data items to their
consistent state.

Recovery is related to concurrency control. We will assume
that strict 2PL is performed that guarantees an item updated by
a transaction T cannot be updated by another transaction until
transaction T commits or aborts.

3

Page 13

COSC 404 - Dr. Ramon Lawrence

Log-Based Recovery
Log Records

There are several types of log records:
Start Records: When transaction Ti starts, it registers by

writing a <Ti start> log record.

Commit Records: When Ti finishes its last statement and
successfully commits, the record <Ti commit> is written.

Abort Records: When Ti aborts for whatever reason, the
record <Ti abort> is written.

Update Records: Before Ti executes write(X), a log record
<Ti, X, V1, V2> is written, where V1 is the value of X before the
write, and V2 is the value to be written to X.
 That is, Ti has performed a write on data item X. X had value V1 before

the write, and will have value V2 after the write.

Log records are written to stable storage.

Page 14

COSC 404 - Dr. Ramon Lawrence

Log Record Buffering
Log records are buffered in main memory, instead of being
output directly to stable storage. Log records are output to
stable storage when a block of log records in the buffer is full,
or a log force operation is executed.
Several log records can thus be output using a single output

operation, reducing the I/O cost.

These rules must be followed if log records are buffered:
Log records are output in the order in which they are created.

Transaction Ti enters the commit state after the log record <Ti
commit> has been output to stable storage.

Before a block of data in main memory is output to the
database, all log records pertaining to data in that block must
have been output to stable storage. (This rule is called the
write-ahead logging or WAL rule.)

Page 15

COSC 404 - Dr. Ramon Lawrence

Undo/Redo Logging
Undo/redo logging performs recovery by:
undo updates for transactions that are not committed

redo updates for transactions that were committed before
failure

Redo/undo logging (WAL) rule:
Before modifying any database element X on disk because of

changes made by some transaction T, it is necessary that
update record <T, X, V1, V2> appear on disk.

Page 16

COSC 404 - Dr. Ramon Lawrence

Write-Ahead Logging
Question: Write-ahead logging means:

A) If a data item is updated, it must be written to storage before
the log record.

B) If a data item is read, it must read a written, committed value.

C) An updated data item must only be written to storage after
the log record for the update is written to storage.

D) None of the above

Page 17

COSC 404 - Dr. Ramon Lawrence

Recovery with Undo/Redo Logging
The recovery system must:
Redo all the committed transactions in the order earliest-first.

Undo all uncompleted transactions in the order latest-first.

When the system recovers, it does the following:
1) Initialize undo-list and redo-list to empty.

2) First pass: Scan the log backwards from end to build list of
transactions to undo and redo.

3) Second pass: Scan the log forwards from the beginning and
redo updates of committed transactions.

4) Third pass: Scan the log backwards from end and undo
updates of uncommitted transactions.

5) For each undo transaction T, write a <T abort> log record.
Flush the log and resume normal operation.

Page 18

COSC 404 - Dr. Ramon Lawrence

Undo/Redo Recovery Example

The log as it appears at three instances of time:

Recovery actions in each case above are:
(a) undo (T0): B is restored to 2000 and A to 1000.

(b) redo (T0) and undo (T1): A set to 950 and B set to 2050 then
C is restored to 700.

(c) redo (T0) and redo (T1): A and B are set to 950 and 2050
respectively. Then C is set to 600.

<T0 start>
<T0, A, 1000, 950>
<T0, B, 2000, 2050>

<T0 start>
<T0, A, 1000, 950>
<T0, B, 2000, 2050>
<T0 commit>
<T1 start>
<T1, C, 700, 600>

<T0 start>
<T0, A, 1000, 950>
<T0, B, 2000, 2050>
<T0 commit>
<T1 start>
<T1, C, 700, 600>
<T1 commit>

(a)

(b)
(c)

4

Page 19

COSC 404 - Dr. Ramon Lawrence

Undo/Redo Logging
Question: How many of the following statements are true?
i) The first pass scans log forward to build undo and redo lists.

ii) The second pass scans log forward performing redo.

iii) The third pass scans log forward performing undo.

iv) An update that is "redone" may or may not change the actual
value in storage.

A) 0

B) 1

C) 2

D) 3

E) 4
Page 20

COSC 404 - Dr. Ramon Lawrence

Checkpoints
Recovery using the entire log would be expensive as the log
grows in size over time.

To reduce the size of the log in order to make recovery faster,
checkpoints are used to speed up recovery.

Page 21

COSC 404 - Dr. Ramon Lawrence

Checkpointing (blocking)
Checkpointing approach that blocks new transactions:
1) Stop accepting new transactions.

2) Wait until all currently running transactions either commit or
abort.

3) Output all log records currently residing in main memory onto
stable storage. (flush log) Output all updated buffers.

4) Write a log record <checkpoint> and flush log again.

5) Resume accepting transactions.

This guarantees all transactions before the checkpoint have
their results reflected in the database. Recovery only needs to
focus on log after the checkpoint.

Page 22

COSC 404 - Dr. Ramon Lawrence

Online (fuzzy) Checkpointing
The biggest problem with the previous technique is the system
must stop processing transactions during the checkpoint.

Online checkpointing allows transactions to continue to run
and be submitted during the procedure:
1) Write a log record <checkpoint start (T1 ... TN)> where T1...TN

are the currently executing transactions. (flush log)

2) Write to disk all dirty buffers that have been modified before
the checkpoint start. The buffers written include buffers
changed by uncommitted transactions.
 Note that the checkpoint procedure does not write dirty buffers that get

modified between the checkpoint start and the checkpoint end records.

3) After all dirty buffers (recorded at checkpoint start) have
been flushed, write a log record <checkpoint end> and flush the
log.

Page 23

COSC 404 - Dr. Ramon Lawrence

Online Checkpointing
Question: How many of the following statements are true?
i) Transactions may still run during an online checkpoint.

ii) All updates in the buffer (committed or not) when the
checkpoint starts are written to storage by end of checkpoint.

iii) Updates in the buffer done after checkpoint start are written to
storage.

iv) The checkpoint start record contains all transactions, running
and committed, before the checkpoint.

A) 0

B) 1

C) 2

D) 3

E) 4
Page 24

COSC 404 - Dr. Ramon Lawrence

Recovery using Undo/Redo and
Checkpointing

Steps for recovery using undo/redo and checkpointing:
1) First pass backwards scan stops at the first start checkpoint

log record found with a matching end checkpoint.
 This scan will enumerate all transactions since last checkpoint and all

active transactions when checkpoint began.

 Divide these transactions into undo and redo lists.

2) Second pass forward scan starts at start checkpoint record
and ends when all transactions are redone.

3) Third pass backwards scan starts at end of log and stops
when all transactions in the undo list have been undone.
 We know a transaction has no more operations when we encounter its

transaction start log record.

5

Page 25

COSC 404 - Dr. Ramon Lawrence

T

T

T

T

T

T

T
T

T

T

T

T

T1

2

3

4

5 6

7

8 9

10

11

12
13

System
Start-Up

System
Crash

Time

Checkpoint

Undo/Redo Checkpoints Example

What transactions are undone, redone, or committed?

Page 26

COSC 404 - Dr. Ramon Lawrence

Undo/Redo Recovery Example
The recovery algorithm on the following log:

Checkpoint: T1, T2 were active (undo-list)

T3 in redo-list.
Redo T3 write on D value now 10.

Undo T2 write on C value now 10.
Undo T2 write on C value now 0.

Undo T1 write on B value now 0.

Redo T3 write on A value now 20.

Undo T2 complete.

Undo T1 complete. (Undo complete.)

First Backwards Pass. (build lists from end)

Backwards Pass - Undo (start at end)
Forwards Pass - Redo (start at checkpoint)

<T0 start>
<T0, A, 0, 10>
<T0 commit>
<T1 start>
<T1, B, 0, 10>
<T2 start>
<T2, C, 0, 10>
<T2, C, 10, 20>
<checkpoint start (T1, T2)>
<checkpoint end>
<T3 start>
<T3, A, 10, 20>
<T3, D, 0, 10>

<T3 commit>
Write abort transaction to log.<T1 abort>
Write abort transaction to log.<T2 abort>

Page 27

COSC 404 - Dr. Ramon Lawrence

Undo/Redo Recovery with Checkpoints
Question: How many of the following statements are true?
i) The first pass stops at the last checkpoint end record.

ii) The second pass starts at the last checkpoint start record with
a matching checkpoint end record.

iii) The third pass stops when the start record for all transactions
to be undone have been seen.

iv) The second pass stops at the end of the log.

v) The first pass starts at the end of the log.

A) 0

B) 1

C) 2

D) 3

E) 4 Page 28

COSC 404 - Dr. Ramon Lawrence

ARIES Recovery Algorithm
Recovery algorithm described is a simplification of the ARIES
recovery algorithm that is widely used in databases.

Three steps:
1) Analysis – determine dirty pages in buffer, active

transactions, and starting point for REDO step

2) REDO – reapplies updates of committed transactions

3) UNDO – scan log backwards undoing updates for non-
committed transactions

Implementation details:
Every log record has a log sequence number (LSN).

Also stores Transaction Table and Dirty Page Table.

Handles failure during recovery by logging undo operations so
do not have to be repeated (uses compensation log records).

Page 29

COSC 404 - Dr. Ramon Lawrence

Nonvolatile Storage Failures
Solution: Periodically dump the entire contents of the
database to stable storage.

No transaction may be active during the dump procedure. A
procedure similar to checkpointing must take place:
Output all log records currently residing in main memory onto

stable storage.

Output all buffer blocks onto the disk.

Copy the contents of the database to stable storage.

Output a record <dump> to log on stable storage.

To recover from disk failure, restore database from most recent
dump. Then log is consulted and all transactions that
committed since the dump are redone.
Can be extended to allow transactions to be active during

dump; known as fuzzy or online dump. Page 30

COSC 404 - Dr. Ramon Lawrence

Advanced Recovery Techniques
Support high-concurrency locking techniques, such as those
used for B+-tree concurrency control.

Operations like B+-tree insertions and deletions release locks
early. They cannot be undone by restoring old values (physical
undo), since once a lock is released, other transactions may
have updated the B+-tree.

Instead, insertions/deletions are undone by executing a
deletion/insertion operation (known as logical undo).
For such operations, undo log records should contain the undo

operation to be executed; called logical undo logging, in
contrast to physical undo logging.

Redo information is logged physically (that is, new value for
each write) even for such operations.

6

Page 31

COSC 404 - Dr. Ramon Lawrence

Undo/Redo Logging Questions

Explain undo/redo logging recovery for the following log as it
appears at three instances of time:

(a)

<T1 start>
<T1, A, 4, 5>
<T2 start>
<T1 commit>
<T2, B, 9, 10>
System Failure

(c)

<T1 start>
<T1, A, 4, 5>
<T2 start>
<T1 commit>
<T2, B, 9, 10>
<checkpoint start (T2)>
<T2, C, 14, 15>
<T3 start>
<T3, D, 19, 20>
<checkpoint end>
<T2 commit>
System Failure

(b)

<T1 start>
<T1, A, 4, 5>
<T2 start>
<T1 commit>
<T2, B, 9, 10>
<checkpoint start (T2)>
<T2, C, 14, 15>
<T3 start>
<T3, D, 19, 20>
System Failure

Page 32

COSC 404 - Dr. Ramon Lawrence

Summary
A database system must be able to recover in the presence of
hardware and software failures. The database system must
ensure a consistent database after failure and preserve the
ACID properties.

Log-based recovery records all updates in a log and undo/redo
operations are used to restore the database to a consistent state
(write-ahead logging is used).

Checkpointing reduces the cost of log-based recovery.

Database backups are needed to handle catastrophic failures.

Advanced (logical) recovery is necessary for B+-tree indexes.

Page 33

COSC 404 - Dr. Ramon Lawrence

Major Objectives
The "One Things":
Perform Undo/Redo logging with checkpoints.

Major Theme:
The recovery system rebuilds the database into a consistent

state after failure using the log records saved to stable store
while the database was operational. Various methods including
checkpoints are used to speed-up recovery after failures.

Page 34

COSC 404 - Dr. Ramon Lawrence

Objectives
Define: recovery and recovery system

List the types of failures and motivation for recovery.

Define: reliable, failure, error, fault, stable storage

Compare/contrast fault avoidance versus fault tolerance.

Read and write log records in a log.

Define: write-ahead logging rule (WAL), log force operation

Motivate the importance of checkpoints and online
checkpointing.

Compare/contrast physical versus logical logging.

1

COSC 404
Database System Implementation

Scaling Databases
Distribution, Parallelism, Virtualization

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 404 - Dr. Ramon Lawrence

Scaling Database Systems
Scaling a database system involves handling:
larger data sets and queries that involve more data

larger number of users/transactions/queries

handling failures and concurrency issues when supporting more
users and servers

Scaling is achieved by adding more servers (i.e. cluster) and
replicating/distributing/partitioning data across those servers that
handle the data and query load.

There are a variety of architectures and approaches.

Page 3

COSC 404 - Dr. Ramon Lawrence

Performance Measures for
Parallel and Distributed Systems

Throughput - the number of tasks that can be completed in a
given time interval.

Response time - the amount of time it takes to complete a
single task from the time it is submitted.

Speedup - how much faster a fixed-sized problem can be
executed on hardware that is N-times faster.
speedup = time on basic system / time on N-times faster system

Speedup is linear if equation equals N.

Scaleup - is the ability of a system N times larger to perform a
job N times larger, in the same time as the original system.
scaleup = time to execute small problem on small system

time to execute large problem on large system

Scale up is linear if equation equals 1.
Page 4

COSC 404 - Dr. Ramon Lawrence

Factors Limiting Speedup and Scaleup
Speedup and scaleup are often sublinear due to:
Startup costs: Cost of starting up multiple processes may

dominate computation time if the degree of parallelism is high.

Interference: Processes accessing shared resources (e.g.
system bus, disks, or locks) compete with each other and spend
time waiting on other processes, rather than performing work.

Skew: Increasing the degree of parallelism increases the
variance in service times of parallel executing tasks. Overall
execution time determined by slowest of executing tasks.

Page 5

COSC 404 - Dr. Ramon Lawrence

Parallel Performance Measures
Question: How many of the following statements are true?
i) Response time is how long it takes to complete a given task

from the time it is submitted.

ii) Throughput is the rate at which tasks can be completed.

iii) Interference is one factor that can limit scaleup.

iv) When a company wants to grow its database, scaleup is an
important factor.

A) 0

B) 1

C) 2

D) 3

E) 4 Page 6

COSC 404 - Dr. Ramon Lawrence

Parallel Database Systems
A parallel database system consist of multiple processors and
disks connected by a fast interconnection network.

Parallel database systems are used for:
storing large volumes of data

processing time-consuming decision-support queries

providing high throughput for transaction processing

Parallel execution occurs within a system in the form of
exploiting parallelism available in CPUs and graphics cards.

2

Page 7

COSC 404 - Dr. Ramon Lawrence

Distributed Database System
A distributed database system (DDBS) is a database system
distributed across several network nodes that appears to the
user as a single system.

A DDBS processes complex queries by coordinating among the
individual nodes. Processing may be done at a site other than
the location of query submission. This requires cooperation on
transaction management, concurrency control, and query
optimization.

Parallel and distributed databases have many features in
common and the line between them is not always clear. One
main difference is that a distributed system is designed to be
physically/geographically distributed where a parallel DBMS
may be in a single server/data center. Page 8

COSC 404 - Dr. Ramon Lawrence

Parallel and Distributed Databases
Advantages and Disadvantages

Advantages:
PERFORMANCE, availability, reliability

Local autonomy

Reflects organization structure

Economics (smaller systems)

Less network traffic compared to centralized

Disadvantages:
Complexity

Lack of control

Cost

Security

More complex database design

Page 9

COSC 404 - Dr. Ramon Lawrence

Parallel/Distributed Architectures
Shared memory - processors share a common memory.
Memory shared using a bus allowing fast communication

between processors. Good for small parallel systems.

Architecture is not scalable since the bus is a bottleneck.

Shared disk - processors share a common disk.
Processors shared data on disk but have private memories.

Bottleneck at disk system instead of bus. Slower data sharing.

Shared nothing - processors share no memory or disks.
A node consists of a processor, memory, and one or more disks.

Nodes communicate over the network.

Can be scaled up to thousands of processors.

Hierarchical - hybrid combination of the above architectures.

Page 10

COSC 404 - Dr. Ramon Lawrence

Parallel/Distributed Architectures

Page 11

COSC 404 - Dr. Ramon Lawrence

Parallel/Distributed Architectures
Question: How many of the following statements are true?
i) Shared memory is used when servers are in different locations.

ii) Shared nothing is the architecture that is the least popular.

iii) MongoDB assumes/uses a shared disk architecture.

iv) The shared disk architecture is the hardest to implement.

A) 0

B) 1

C) 2

D) 3

E) 4

Page 12

COSC 404 - Dr. Ramon Lawrence

Types of Database Parallelism
A database can exploit a parallel hardware system by:
Partitioning/Sharding - dividing the data across hardware to

allow for parallel I/O and query processing.

Interquery Parallelism - executing multiple queries concurrently
using the parallel hardware resources.

Intraquery Parallelism - executing operators of a query plan in
parallel or parallelizing individual operators.

3

Page 13

COSC 404 - Dr. Ramon Lawrence

Distributed Data Storage
Replication and Partitioning

A key decision in a parallel/distributed database is how to
allocate the data across nodes.

This allocation involves both replication and partitioning:
Replication - system maintains multiple copies of data stored at

different sites for faster retrieval and fault tolerance.

Partitioning - relation is partitioned into several
fragments/partitions stored in distinct sites.

Replication and partitioning - relation is partitioned into several
partitions and system maintains several identical replicas of each
partition.

Page 14

COSC 404 - Dr. Ramon Lawrence

Data Replication Discussion
Replication is good for reads and bad for writes!

Advantages of Replication:
Availability - failure of a site containing a relation does not result

in unavailability if replicas exist.

Parallelism - queries on a relation may be processed by several
nodes in parallel.

Reduced data transfer - relation is available locally at each site
containing a replica of it.

Disadvantages of Replication:
Increased update cost - each replica must be updated.

Increased complexity of concurrency control - concurrent
updates to distinct replicas may lead to inconsistent data.

Increased space requirements - more storage is needed.

Page 15

COSC 404 - Dr. Ramon Lawrence

Maintaining Consistency with
Replication – CAP Theorem

The CAP Theorem (Brewer 2000) proves that a distributed
system can have only two of these three properties: consistency,
availability, and partition-tolerance.

In a large system, partitions cannot be prevented, so must
sacrifice either availability or consistency.

Many new NoSQL databases select availability over consistency
which means that the replicas are not always consistent in time,
which is called weak or eventual consistency.
Strong consistency – all replicas same value at end of update

Weak consistency – may take some time for all replicas to
become consistent

Page 16

COSC 404 - Dr. Ramon Lawrence

BASE Properties – Not ACID
In eventually consistent systems, the ACID properties do not
hold. We may consider these systems to have BASE properties:

Basically Available
If server is accessible, can do reads and updates (even if have

network partition). Availability at the cost of consistency.

Soft state
Each replica may have different values (due to partitioning or

time delay in update propagation).

Eventually consistent
Replicas are not consistent at instance of update but will be

come become consistent eventually as updates are propagated
and conflicts resolved.

Merging inconsistent updates is still a challenge.

Page 17

COSC 404 - Dr. Ramon Lawrence

Master/Slave Configuration for Handling
Replication and Ensuring Consistency

In a master/slave configuration, one master server is
responsible for updates to each partition and sends the updates
to the slaves that contain copies of the partition.
Primary copy ownership – one site owns data, perform

updates on that site, and updates are sent out to subscribers
who update their replicas. These updates may be sent out by
shipping the log to the slave sites.

The master node is read/write. The slave nodes are read only.
This requires a way to specify a read-only transaction (e.g. set at
connection or statement level before executing query) so that it
can be processed by a slave node.

Page 18

COSC 404 - Dr. Ramon Lawrence

Master/Master Configuration for
Handling Replication and Consistency

In a master/master configuration, more than one server is
able to perform updates on a given partition. This requires co-
ordination by the masters.

Techniques:
Any update must be "approved" by all (or a majority) of the

master servers. This approval may be done before commit
(online) using a distributed algorithm (e.g. two phase commit).

Updates may be allowed on multiple servers simultaneously, but
there must be some system or user-configured resolution
mechanism to handle conflicts.

4

Page 19

COSC 404 - Dr. Ramon Lawrence

Data Partitioning
Partitioning is the process of dividing a relation r into partitions
r1, r2, …, rn that can be combined to reconstruct r.
Horizontal partitioning (sharding) - each tuple of r is assigned

to one or more partitions (shards).
Partition can be defined using selection from r.

Reconstruct r from partitions by performing union.

Vertical partitioning - the schema for relation r is split into
several smaller schemas.
Partitions are defined using projection on r.

Reconstruct r by joining partitions.

All schemas must contain a common candidate key (or superkey) to
ensure lossless join property.

A special attribute, such as a tuple id attribute may be added to each
schema to serve as a candidate key.

Vertical and horizontal partitioning can be mixed.
Page 20

COSC 404 - Dr. Ramon Lawrence

Horizontal Data Partitioning
and Sharding

Horizontal partitioning/sharding – tuples are divided among
many servers such that each tuple resides on one server.
Partitioning techniques (assuming n servers):
Round-robin: Send the ith tuple in the relation to server i mod n.

Hash partitioning: Use a hash function h(x) on partitioning attributes x
that maps each tuple to one of the n servers.

Range partitioning: Chose a partitioning attribute V and divide the
domain of V using a partitioning vector [vo, v1, ..., vn-2]. For each tuple with
value v, if v vi then tuple goes on server i. If v vn-2 go to server n-1.

Question: How does each partitioning technique perform for
these different types of queries?
1) Scanning the entire relation

2) Lookup queries (on the partition attribute)

3) Range queries (on the partition attribute)

4) Lookup or range queries not on the partition attribute

Page 21

COSC 404 - Dr. Ramon Lawrence

branch-name account-number balance

Hillside
Hillside
Hillside

A-305
A-226
A-155

500
336
62

account1

branch-name account-number balance

Valleyview
Valleyview
Valleyview
Valleyview

A-177
A-402
A-408
A-639

205
10000

1123
750

account2

Horizontal Partitioning Example

Partitioned Account relation on branch-name attribute. Page 22

COSC 404 - Dr. Ramon Lawrence

account number balance tuple-id

500
336
205
10000
62
1123
750

1
2
3
4
5
6
7

A-305
A-226
A-177
A-402
A-155
A-408
A-639

deposit2

Vertical Partitioning Example

Partitioned Deposit relation.

deposit1
Hillside
Hillside
Valleyview
Valleyview
Hillside
Valleyview
Valleyview

Lowman
Camp
Camp
Kahn
Kahn
Kahn
Green

branch-name customer-name tuple-id

1
2
3
4
5
6
7

Page 23

COSC 404 - Dr. Ramon Lawrence

Advantages of Partitioning
Horizontal:
allows parallel processing on a relation

allows a relation to be split so that tuples are located where they
are most frequently accessed

Vertical:
allows for further decomposition from what can be achieved with

normalization

tuple id attribute allows efficient joining of vertical fragments

allows parallel processing on a relation

allows tuples to be split so that each part of the tuple is stored
where it is most frequently accessed

Page 24

COSC 404 - Dr. Ramon Lawrence

Skew
Skew is when the distribution of data is not uniform. Skew
reduces the performance of algorithms such as partitioning that
intend for the data to be uniformly distributed across hardware.

Types of skew:
Attribute-value skew
Some values appear in the partitioning attributes of many tuples. All the

tuples with the same value for the partitioning attribute end up in the same
partition.
 E.g. Ages of students are skewed between 18-25.

Can occur with range-partitioning and hash-partitioning.

Partition skew
With range-partitioning, badly chosen partition vector may assign too

many tuples to some partitions and too few to others.

Less likely with hash-partitioning if a good hash-function is chosen.

5

Page 25

COSC 404 - Dr. Ramon Lawrence

Partitioning
Question: How many of the following statements are true?
i) Sharding is another name for horizontal partitioning.

ii) Vertical partitioning divides a relation by its attributes.

iii) Skew is beneficial when performing partitioning.

iv) Replication and partitioning can be used together.

A) 0

B) 1

C) 2

D) 3

E) 4

Page 26

COSC 404 - Dr. Ramon Lawrence

Interquery Parallelism
Interquery parallelism is when queries execute in parallel with
one another.
Increases throughput but does not improve response time.

Easiest form of parallelism to support particularly in a shared
memory database.

More complicated to implement on shared disk or shared
nothing architectures when dealing with updates:
Locking and logging must be coordinated by passing messages

between processors if system guarantees consistency.
Cache coherency has to be maintained as reads and writes of data in

buffer must find latest version of data.

Sharding can often help as data within a shard (partition) is only
located on one server. (Replication will be an issue though).

Page 27

COSC 404 - Dr. Ramon Lawrence

Intraquery Parallelism
Intraquery parallelism is the execution of a single query in
parallel.
Reduces response time (especially for long-running queries).

Two forms of intraquery parallelism:
Intraoperation Parallelism – parallelize the execution of each

individual operation in the query.

Interoperation Parallelism – execute the different operations in
a query expression in parallel.

Intraoperation parallelism scales better because the number of
tuples processed by each operator is typically more than the
number of query operators.

Page 28

COSC 404 - Dr. Ramon Lawrence

Parallel Processing of
Relational Operations

Our discussion assumes a shared-nothing architecture of n
processors, P0, ..., Pn-1 and n disks D0, ..., Dn-1, where disk Di is
associated with processor Pi.

For all algorithms, we will assume that we have already
partitioned relation R across the n processors uniformly using
either range or hash partitioning.

Implementing parallel selection and projection:
Each processor performs local selection (projection) on its

partition. Result is sent to client.

This also works for duplicate elimination and aggregation.

Page 29

COSC 404 - Dr. Ramon Lawrence

Parallel Sorting
Parallel External Sort-Merge
Assume the relation is partitioned among disks D0, ..., Dn-1.

Each processor Pi locally sorts the data on disk Di.

The sorted runs on each processor are then merged to get the
final sorted output.

Optimizations:
The merge is trivial if the relation was range partitioned on the

sort attribute.

Note that range partitioning can be used after the local sort to
parallelize the merge as well (less of a benefit).

Page 30

COSC 404 - Dr. Ramon Lawrence

Parallel Join
Parallel join algorithms partition the relations across the
processors such that two tuples will join if and only if they are in
the same partition at a single processor.
Range or hash partitioning can be used on the join attributes.

Each processor computes its local join and the final result is the
union of the results of all local joins.

6

Page 31

COSC 404 - Dr. Ramon Lawrence

Interoperation Parallelism
There are two types of interoperation parallelism:
Pipelined parallelism - output tuples of one operation are

consumed as input by another operation. (Iterators)
Avoids writing intermediate results to disk.

With parallel systems, operations can be performed at different
processors. Output of one processor is input for another processor.

Useful for sequences of joins but limited parallelism scaling.

Independent parallelism - operations in a query that do not
depend on each other can be performed in parallel.
Different branches of operator tree.

E.g. Join of four relations can be computed as join of two temporary joins
of relations r1 and r2 and relations r3 and r4.

Page 32

COSC 404 - Dr. Ramon Lawrence

Distributed Query Optimization
Distributed query optimization is even more complex than
with a centralized system.

Issues:
Query cost estimation – must consider processing capabilities of

each node as well as location of data and transfer cost

Query decomposition – how to divide query across nodes

Data localization – goal is to move query to data

Global optimization – optimize query overall

Local optimization – optimize part of query on particular node

Distributed operations – parallelizing and distributing work of
joins/sorts over multiple nodes

Page 33

COSC 404 - Dr. Ramon Lawrence

Semijoin
The semijoin of r1 with r2, is denoted by r1 r2.

Semijoin is computed by:

r1 (r1 r2)

r1 r2 selects tuples of r1 that are present in the join of r1 and r2.

The semijoin operation is used to reduce the number of tuples in
a relation before transferring it to another site.
The basic idea is that one site sends all the values of the join key

to the other site which then knows which tuples will participate in
the join (and will only send those tuples back).

Page 34

COSC 404 - Dr. Ramon Lawrence

Semijoin Example
Let Emp(ssn, name, deptName) be at site S1 and Dept (name,
mgrssn) be at S2. Compute Emp ssn=mgrssn Dept.

Algorithm:
Compute temp1 mgrssn (Dept) at S2. Send temp1 to S1.

At S1 compute temp2 Emp temp1 and send back to S2.

Compute Dept temp2 at S1. This is the result of Emp Dept.

In this operation sequence, temp2 = Emp Dept.

Performance question:
T(Emp)=100,000 and T(Dept)=500. Size of ssn and mgrssn = 9

bytes. The size of name and deptName is 50 bytes.

Compute the network cost of this algorithm.

Page 35

COSC 404 - Dr. Ramon Lawrence

Parallel Operators
Question: How many of the following statements are true?
i) A parallel sort can perform sorting on each node and then send

the sorted sublists to a single node to be merged.

ii) A semijoin gets its efficiency by only sending tuples that
participate in the join.

iii) The #1 rule for optimization is move the data to the query.

iv) Intraquery parallelism is the execution of a single query in
parallel.

A) 0

B) 1

C) 2

D) 3

E) 4
Page 36

COSC 404 - Dr. Ramon Lawrence

Distributed Transaction Model
Features of a distributed transaction model:
Transactions may access data at several sites.
A local transaction accesses data in the single site at which the

transaction was initiated.

A global transaction either accesses data in a site different from the one
at which the transaction was initiated or accesses data in several sites.

Each site has a local transaction manager responsible for:
Maintaining a log for recovery purposes.

Participating in coordinating the concurrent execution of the transactions
executing at that site.

Each site has a transaction coordinator responsible for:
Starting the execution of transactions that originate at the site.

Distributing subtransactions at appropriate sites for execution.

Coordinating the termination of each transaction that originates at the site,
which may result in the transaction being committed or aborted at all sites.

7

Page 37

COSC 404 - Dr. Ramon Lawrence

Distributed Concurrency Control
Concurrency control protocols must be modified to handle
distributed databases.
Locking protocols may have to determine how to share lock

information.

Propagating updates may be eager (immediate) or lazy
(delayed).

Deadlock detection using wait-for graphs must handle detecting
deadlocks across multiple servers.

Page 38

COSC 404 - Dr. Ramon Lawrence

Commit Protocols
Commit protocols are used to ensure atomicity across all sites:
A transaction which executes at multiple sites must either be

committed at all the sites or aborted at all the sites.

It is not acceptable to have a transaction committed at one site
and aborted at another.

The two-phase commit (2PC) protocol is widely used.

The three-phase commit (3PC) allows for faster recovery than
2PC as no site must wait. However, the protocol is more
complicated/costly and does not handle network partitioning.

Page 39

COSC 404 - Dr. Ramon Lawrence

Two-Phase Commit Protocol (2PC)
The two-phase commit (2PC) protocol is widely used to ensure
atomicity across all sites.

The two-phase commit protocol assumes a fail-stop model.
Failed sites simply stop working and do not cause any other

harm, such as sending incorrect messages to other sites.

Execution of the protocol is initiated by the coordinator after the
last step of the transaction has been reached.

The protocol involves all the local sites at which the transaction
executed.

Page 40

COSC 404 - Dr. Ramon Lawrence

Phase 1: Obtaining a Decision
After all processing of a transaction is complete, the coordinator
asks all participants to prepare to commit transaction T:
"Prepare" Request: Coordinator sends (prepare T) messages

to all sites at which T executed.
Coordinator adds the record <prepare T> to the log and forces log to

stable storage. Will wait for response with a timeout.

Upon receiving "Prepare" message, transaction manager at site
determines if it can commit the transaction.
"Abort" Response: send (abort T) message to coordinator
Write <abort T> to the log and send (abort T) message to coordinator

"Ready" Response: send (ready T) message to coordinator if
the transaction can be committed.
Write <ready T> to the log

force all records for T to stable storage

send (ready T) message to coordinator

Page 41

COSC 404 - Dr. Ramon Lawrence

Phase 2: Recording the Decision
T can be committed if coordinator received a (ready T) message
from all the participating sites, otherwise T is aborted.

Coordinator adds a decision record <commit T> or <abort T> to
the log and forces record onto stable storage.

Coordinator sends a message to each participant informing it of
the decision (commit or abort).

Participants take appropriate action locally.

Page 42

COSC 404 - Dr. Ramon Lawrence

Two-Phase Commit (2PC) Protocol
Question: How many of the following statements are true?
i) The protocol uses two phases of message passing.

ii) The first phase sends a prepare to commit message to each
site involved in the transaction.

iii) A site can respond to the prepare to commit message by
sending either "ready" or "abort".

iv) If all sites respond with "ready" the coordinator, sends out a
"commit" message to all participating sites.

A) 0

B) 1

C) 2

D) 3

E) 4

8

Page 43

COSC 404 - Dr. Ramon Lawrence

Handling Failures during 2PC
There are various possible failures during 2PC such as site
failure, coordinator failure, and network partitioning.

Handling Site Failure:
When site Si recovers after failure, it examines its log to

determine the fate of transactions active at the time of failure.

If log contains <commit T> record, site executes redo(T).

If log contains <abort T> record, site executes undo(T).

If log contains <ready T> record, site must consult coordinator to
determine the fate of T:
If T committed, redo (T) otherwise if T aborted, undo (T).

If the log contains no control records concerning T means that
site failed before responding to the <prepare T> message.
Since the failure of the site precludes the sending of such a response to

the coordinator, site must abort T and executes undo (T).
Page 44

COSC 404 - Dr. Ramon Lawrence

Handling Failures during 2PC (2)
Handling Coordinator Failure:
If coordinator fails while the commit protocol for T is executing

then participating sites must decide on T’s fate.
If an active site contains a <commit T> record in its log, then T must be

committed.

If an active site contains an <abort T> record in its log, then T must be
aborted.

If some active site does not contain a <ready T> record in its log, then the
failed coordinator cannot have decided to commit T. Therefore abort T.

If none of the above cases holds, then all active sites must have a <ready
T> record in their logs, but no additional control records (such as <abort
T> of <commit T>). In this case active sites must wait for coordinator to
recover, to find decision.

Blocking problem: Active sites may have to wait for failed
coordinator to recover.

Page 45

COSC 404 - Dr. Ramon Lawrence

Handling Failures during 2PC (3)
Handling Network Partitioning:
If the coordinator and all its participants remain in one partition,

the failure has no effect on the commit protocol.

If the coordinator and its participants belong to several partitions:
Sites that are not in the partition containing the coordinator think the

coordinator has failed, and execute the protocol to deal with failure of the
coordinator.
 No harm results, but sites may still have to wait for decision from coordinator.

The coordinator and the sites are in the same partition as the
coordinator think that the sites in the other partition have failed,
and follow the usual commit protocol.
Again, no harm results

Page 46

COSC 404 - Dr. Ramon Lawrence

Recovery and Concurrency Control
Recovery system must handle in-doubt transactions.
Transactions that have a <ready T>, but neither a

<commit T> nor an <abort T> log record.

The recovering site must determine the commit-abort status of
such transactions by contacting other sites.
This can be slow and potentially block recovery.

Thus, recovery algorithms note lock info in the log:
Instead of <ready T>, write out <ready T, L> where L = list of

write locks held by T when the log is written.
For every in-doubt transaction T, all the locks noted in the

<ready T, L> log record are reacquired.
After re-acquiring locks, processing can resume.
The commit/abort of in-doubt transactions is performed

concurrently with execution of new transactions.
Note that new transactions may still have to wait on locks.

Page 47

COSC 404 - Dr. Ramon Lawrence

Handling Failures with 2PC
Question: How many of the following statements are true?
i) If a site fails in 2PC, the transaction is always aborted.

ii) If a coordinator fails in 2PC, the transaction is always aborted.

iii) If a site fails and in recovery sees a "commit" entry in its log
for a transaction, it performs "redo" as transaction is committed.

iv) If a site is in a different network partition than the transaction
coordinator, it always must wait for communication to coordinator
to be fixed.

A) 0

B) 1

C) 2

D) 3

E) 4
Page 48

COSC 404 - Dr. Ramon Lawrence

2PC Question
Assume that a transaction T executes at 3 sites (S1,S2,S3) and
was started at S2. The transaction completed its execution and
the controller at S2 sent out prepare to commit message to all
sites.

What happens if?
1) Site S3 replies with (abort T) message?

2) All sites reply with (ready T) messages but the coordinator S2
fails before it can make a decision?

3) All sites reply with (ready T) messages, the coordinator locally
commits T and sends out commit messages but S1 fails before it
gets the commit message.

9

Page 49

COSC 404 - Dr. Ramon Lawrence

Two-Phase Commit (2PC) Exercise
In groups of at least 3, act out the possible failure modes and
how they are handled:
1) Failure of a site

2) Failure of coordinator
One site has <commit> in log

One site has <abort> in log

All sites have <ready> in log but no <commit> or <abort>

3) Network partitioned
All participants in same partition

Coordinator and one participant in a partition and another participant in the
other partition

Page 50

COSC 404 - Dr. Ramon Lawrence

What is Integration/Virtualization?
Database integration and virtualization is combining the data
in more than one database to have a consistent, global view.
Typically, databases were developed independently and

organization needs to combine data for reporting/analysis.

Alternative to data warehousing which would involving moving
data into a new system.

Database integration/virtualization systems must handle different
operating systems, database systems, database schema
designs, and query languages.

Other integration challenges:
data model differences, naming conflicts, different database

capabilities, no control over systems (autonomous)

Page 51

COSC 404 - Dr. Ramon Lawrence

Integration/Virtualization using
Mediators/Wrappers

Unlike integration using a data warehouse, integration
architectures that use wrappers and mediators provide online
access to operational systems.

Wrappers are software that converts global level queries into
queries that the local database can handle. A mediator is
global-level software that receives global queries and divides
them into subqueries for execution by wrappers.

Unlike data warehouses, these systems are not suitable for very
large decision-support queries because the data must be
dynamically extracted from operational systems. They are
useful for integrating operational systems without creating a
single, unified database.

Query-Driven Dynamic Approach

Invoice
Database

Cust(id,name,addr,city,state,cty)
Order(oid,cid,odate)
OrdProd(oid,pid,amt,pr)
Prod(id,name,pr,desc)

Order
Database

Shipment
Database

Cust(id,name,addr,city,state,cty)
Invoice(invId,custId,shipId,iDate)
InvProd(invId,prodId,amt,pr)
Prod(id,name,pr,desc)

Cust(id,name,addr,city,state,cty)
Shipment(shipid,oid,cid,shipdate)
ShipProd(shipid,prodid,amt)
Prod(id,name,pr,desc, inv)

Wrapper Wrapper Wrapper

mediator

Features:
- view dynamically built
- data is extracted at
query-time

- still typically read-only

Page 53

COSC 404 - Dr. Ramon Lawrence

Database Integration/Virtualization vs.
Distributed Database Systems

Integrated database systems are similar to distributed database
systems as they consist of a set of databases distributed over
the network.

The major difference is that all databases in an integrated
database system are autonomous.
They have their own unique schema, database administrator,

transaction protocols, structures, and unique function.

This autonomy introduces complexities in determining an
integrated view of the data, processing local and global
transactions and concurrency control, and handling database
system and model heterogeneity.

Key point: Nodes in a distributed database system work together
while those in a multidatabase (virtualized) system do not.

Page 54

COSC 404 - Dr. Ramon Lawrence

Integration/Virtualization Challenges
Database integration is an active area of research. Common
problems include:
1) Schema matching and merging - How can we create a

single, global schema for users to query? Can this be done
automatically?

2) Global Query Optimization - How do we optimize the
execution of queries over independent data sources?

3) Global Transactions and Updates - Is it possible to
efficiently support transactions over autonomous databases?

10

Page 55

COSC 404 - Dr. Ramon Lawrence

Using a Global View
Once a global view has been constructed, it can be used to
query the entire system:
A user writes a query on the global view.

The mediator converts the query into queries on the local
sources (views).

The queries are executed on the local sources and the answers
integrated at the mediator before presentation to the user.

Page 56

COSC 404 - Dr. Ramon Lawrence

Schema Matching and
Model Management

One challenging research problem is how do you automatically
construct the global view?

Bernstein et al. have proposed model management and schema
matching algorithms for this problem.

The schema matching problem takes as input two schemas and
uses the names and types to determine matches between them.
A very challenging problem involving semantics, linguistics, and

ontologies.

Page 57

COSC 404 - Dr. Ramon Lawrence

Transaction Management
Transaction management is somewhat similar to distributed
databases with the existence of local and global transactions.

However, global transactions and local transactions are
managed differently:
Local transactions are executed by each local DBMS, outside of

the global system control. (autonomy)

Global transactions are executed under global system control
and appear as regular local transactions at each local database
system.

Page 58

COSC 404 - Dr. Ramon Lawrence

Transaction Management (2)
Respecting local autonomy requires that each LDBS cannot
communicate directly to synchronize global transaction
execution and the MDBS has no control over local transaction
execution.

Thus, the global level mediation software must guarantee global
serializability since each LDBS only guarantees local
serializability.
Local concurrency control scheme needed to ensure that

DBMS’s schedule is serializable and must be able to guard
against local deadlocks.

A schedule is globally serializable if there exists an ordering of
committing global transactions such that all subtransactions of
the global transactions are committed in the same order at all
sites.

Page 59

COSC 404 - Dr. Ramon Lawrence

Approaches to MultiDatabase
Transaction Management

Transaction management in a multidatabase has proceeded in 3
general directions:
Weakening autonomy of local databases

Enforcing serializability by using local conflicts

Relaxing serializability constraints by defining alternative notions
of correctness

Still a great potential to make a contribution in this area!

Page 60

COSC 404 - Dr. Ramon Lawrence

Global Serializability using Tickets
Architecture:
Each site Si has a special data item called a ticket.

Transaction Tj that runs at site Si writes the ticket at site Si.

Before a global transaction is allowed to commit, verify that there
are no cycles based on tickets (optimistic protocol).

Pessimistic protocol allows global transaction manager to decide
serial ordering of global transactions by controlling order in which
tickets are accessed.

Ensures global transactions are serialized at each site,
regardless of local concurrency control method, so long as the
method guarantees local serializability.

Problems include hot spot at ticket and frequent aborts under
heavy transaction loads (optimistic version).

11

Page 61

COSC 404 - Dr. Ramon Lawrence

Global Serialization Graph
A global serialization graph (GSG) is used to determine if a
global transaction can be committed using the tickets.
The nodes of a GSG are “recently” committed transactions.

An edge Gi -> Gj exists if at least one of the subtransactions of Gi
preceded (had a smaller ticket that) one of Gj at any site.

Initially the GSG contains no cycles.

Add a node for the global transaction G to be committed and the
appropriate edges.

If a cycle exists abort G otherwise commit G.

Page 62

COSC 404 - Dr. Ramon Lawrence

My Research
My integration research built a JDBC
driver called UnityJDBC that can query
multiple databases at the same time.
 The system is based on the

virtualization, mediator architecture.

Contains a query parser, optimizer, and
execution engine.

Allows for cross-database joins
(executed client-side).

Previous students have worked on
schema matching, high-level query
languages, and optimization
techniques.

Still opportunities for further work.

Driver is used as basis for MongoDB
JDBC driver that allows querying
MongoDB with SQL.

Page 63

COSC 404 - Dr. Ramon Lawrence

Parallel and distributed databases allow scalability by using
more hardware for data storage and query processing.
Goal is for increased performance, reliability, and availability.

Data may be distributed, partitioned, and replicated.

Queries are distributed across nodes.

Specialized parallel algorithms and 2PC for transactions.

Database integration/virtualization combines data from
multiple databases into a single virtual system.
The global view may be materialized as in data warehouses or

virtual as in mediator/wrapper systems.

Integrated databases must handle issues in concurrency control
and recovery, global view generation and maintenance, and
query execution and optimization.

Summary

Page 64

COSC 404 - Dr. Ramon Lawrence

Major Objectives
The "One Things":
Explain the two phase commit (2PC) protocol and how sites

recover after failure.

Major Theme:
Distributed/parallel databases allow for increased performance

but complicate concurrency control and recovery.

Objectives:
Define replication and partitioning (horizontal and vertical).

List advantages/disadvantages of partitioning.

Explain how semijoins are used in distributed query processing.

Use the 4 metrics for parallel systems.

List some factors limiting speedup and scaleup.

Define and give an example of skew.

Page 65

COSC 404 - Dr. Ramon Lawrence

Objectives (2)
Objectives:
Be able to explain some challenges in constructing an integrated

database system.

Compare/contrast integrated databases and DDBS.

Discuss and draw the mediator architecture.

Give an example of naming and structural conflicts.

Define the schema matching problem.

Define globally serializable.

Explain the ticket protocol.

1

COSC 404
Database System Implementation

Database Architectures

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Dr. Ramon Lawrence
University of British Columbia Okanagan

ramon.lawrence@ubc.ca

Page 2

COSC 404 - Dr. Ramon Lawrence

Databases Architectures
Not "One Size Fits All"

Relational databases are still the dominant database
architecture and apply to many data management problems.
Over $20 billion annual market in 2014.

However, recent research and commercial systems have
demonstrated that "one size fits all" is not true. There are better
architectures for classes of data management problems:
Transactional systems: In-memory architectures

Data warehousing: Column stores, parallel query processing

Big Data: Massive scale-out with fault tolerance

"NoSQL": simplified query languages/structures for high
performance, consistency relaxation

Page 3

COSC 404 - Dr. Ramon Lawrence

Variety of Database Architectures
A database system provides independence from data storage
and processing challenges. There are many different
architectures/systems which are good for different use cases.
Single (centralized) server database – easy to deploy/use

Parallel database – for large query loads and data sizes

Distributed database – for large-scale deployments (shared-
nothing) with physical/geographical distribution

Virtual (multi-)database – for integrating existing, autonomous
databases

Data warehouses – for decision support queries

NoSQL databases – MongoDB, Cassandra, etc. supporting
different data models

There are also lots of ways for implementing these architectures
with associated algorithms. Page 4

COSC 404 - Dr. Ramon Lawrence

Single (Centralized) Server Database
Single server centralized database systems such as
MySQL, PostgreSQL, Oracle, and SQL Server have fairly
standardized features and properties.

Ideal for: General-purpose databases (low cost/complexity)

Implementation details we studied:
Data storage system, buffer manager

Indexing algorithms and using indexes in practice

Query processing/optimization of SQL

Transactions, concurrency control, recovery

Many systems also support distribution/replication/partitioning.

Often, no parallelism within a query but can execute many
queries simultaneously.

Using JDBC API including PreparedStatements

Page 5

COSC 404 - Dr. Ramon Lawrence

Traditional
Database System Architecture

DBMS

Parser +
Compiler

Database API

Users

DB
Files

End-User
Programs

Direct (SQL)
Users

Database
Administrators

Query
Planner

Optimizer Execution
Engine

Buffer
Manager

File
Manager

Transaction
Manager

Recovery
System

Query
Processor

Result
Formatting

Storage
Manager

Operating
System Page 6

COSC 404 - Dr. Ramon Lawrence

Parallel Database Systems
A parallel database system consists of multiple processors
and storage connected by a fast interconnection network.

Ideal for: processing time-consuming decision-support queries
or providing high throughput for transaction processing within a
single server/data center

Implementation details:
replication and partitioning used for availability/performance

parallel algorithms for relational operators

modified algorithms for concurrency control and transactions

query optimization must consider data location

2

Page 7

COSC 404 - Dr. Ramon Lawrence

Parallel Database Systems
Greenplum

Greenplum is a shared-nothing, massively parallel (MPP)
system where each node runs PostgreSQL.

Implementation:
Cost-based optimizer factors in cost of moving data across

nodes.

Join and sort algorithms implemented in parallel across nodes
and can move data between them.

Utilizes log shipping and segment-level replication for fail-over.

Supports SQL and Map-Reduce.

Developed by Pivotal software (formerly part of EMC).

Page 8

COSC 404 - Dr. Ramon Lawrence

Distributed Database System
A distributed database system is a database system
distributed across several network nodes that appears to the
user as a single system.

Ideal for: high availability/reliability where large data set can be
partitioned and queried across servers (often geographically)

Implementation details:
Shared-nothing, massively parallel (MPP) architectures

Concurrency control must determine how to handle replication
and partitioning (eager versus lazy consistency)

Scaling requires dividing workload across servers and
intelligent data placement and query processing

Page 9

COSC 404 - Dr. Ramon Lawrence

Master/Slave Replication
Master/slave replication is supported by all major relational
database systems (MySQL, PostgreSQL, Oracle, etc.).

Implementation details:
1) How are updates sent to slaves? Log shipping or real-time.

2) Slave nodes can except read requests but need to indicate
when a transaction is read-only.

3) Slave nodes can take over from master if it fails.

Page 10

COSC 404 - Dr. Ramon Lawrence

Master/Master Replication
Master/master (multi-master) replication allows the data to
be modified at more than one server. This requires coordination
by the masters.

Techniques:
Any update must be "approved" by all (or a majority) of the

master servers. This approval may be done before commit
(online) using a distributed algorithm (e.g. two phase commit).

Updates may be allowed on multiple servers simultaneously,
but there must be some system or user-configured resolution
mechanism to handle conflicts.

Page 11

COSC 404 - Dr. Ramon Lawrence

Oracle
Oracle supports multiple servers with distributed features:
database links between databases for querying other databases

as if the data was local to Oracle (virtualization)

supports remote/distributed transactions that involve one or more
nodes (via database links and 2PC)

does not perform auto-fragmentation/location transparency but
does support user configurable horizontal partitioning

Oracle supports both master/slave and multi-master replication
using either synchronous or asynchronous propagation of
changes between masters.
Different techniques for conflict resolution that user can control.

Parallel execution of single SQL statement (joins, scans, sorts)

Page 12

COSC 404 - Dr. Ramon Lawrence

Oracle Real Application Clusters
Oracle Real Application Clusters (RAC) is a shared-storage
architecture with multiple server nodes.

Provides support for clustering and high availability with multiple
servers having concurrent access to the database and any
server can process a transaction.

3

Page 13

COSC 404 - Dr. Ramon Lawrence

SQL Server
Microsoft SQL Server supports different use cases within its
product including warehousing and in-memory databases.
In-memory tables and query processing for transactional

Data warehousing extensions and algorithms for analytics

Replication using master-slave and multi-master via log shipping,
publish/subscribe, and merge conflict resolution

Linked servers (ODBC) for heterogeneous query processing and
virtualization

Ability to scale from single server to multiple servers with high
availability

Most "reasonably-priced" of the commercial systems

Very active database research laboratory

Page 14

COSC 404 - Dr. Ramon Lawrence

Database Architectures:
NoSQL vs Relational

"NoSQL" databases are useful for several problems not well-
suited for relational databases with some typical features:
Variable data: semi-structured, evolving, or has no schema

Massive data: terabytes or petabytes of data from new
applications (web analysis, sensors, social graphs)

Parallelism: large data requires architectures to handle massive
parallelism, scalability, and reliability

Simpler queries: may not need full SQL expressiveness

Relaxed consistency: more tolerant of errors, delays, or
inconsistent results ("eventual consistency")

Easier/cheaper: less initial cost to get started

NoSQL is not really about SQL but instead developing data
management architectures designed for scale.
NoSQL – "Not Only SQL"

Page 15

COSC 404 - Dr. Ramon Lawrence

Data Warehouse Architectures
A data warehouse is a historical database that summarizes,
integrates, and organizes data from one or more operational
databases in a format that is more efficient for analytical queries.

Ideal for: Large-scale analytic and decision-support queries

Implementation details:
Special storage formats (compressed, column stores)

Special index structures (bitmap indexes)

Optimized for reads over writes

Large query rather than large number of queries/updates so
parallelism within a query is critical

May be relational or multidimensional (cubes).
Page 16

COSC 404 - Dr. Ramon Lawrence

In-Memory Databases
An in-memory database stores its working set of data in
memory for improved response time.

Ideal for: high-volume, low-latency transactional systems

Implementation details:
May be single or multiple server

Data must be in memory. Persistent store used only in failure.
Specialized memory queries (often have user pre-declare
queries/transactions) – VoltDB, SQL Server, SAP HANA

Concurrency control and recovery system optimized for high
throughput and unlikely failures

Page 17

COSC 404 - Dr. Ramon Lawrence

Batch Systems
Map-Reduce

Batch systems like Map-Reduce designed for processing
large-scale queries where the data may not be well-structured
or pre-processed into a database engine.

Implementation Details:
Data often has limited structure (flat files, log files, CSV).
Massive amounts of data that may not be worth loading into a database.

Queries may take a LONG time so query processor must be
resistant to failures with the ability to restart parts of the query
that failed.

Many database vendors have ability to integrate with Hadoop
File System and perform Map-Reduce queries.

Page 18

COSC 404 - Dr. Ramon Lawrence

Cloud Databases
Cloud databases are databases hosted by a service provider
that allow for easy setup, administration and scaling.
Database as a service – databases hosted by provider, provide

monitoring, backup, fail-over, high-availability, and ability to
scale.

Examples: Google BigTable, Amazon RDS, DynamoDB,
Redshift

Ideal for: Quick start without a server, minimal administration,
scaling without expertise

4

Page 19

COSC 404 - Dr. Ramon Lawrence

Multi-Tenancy
Multi-tenancy is the ability to handle multiple customers
(tenants) on the same database infrastructure. Approaches:
Separate server – each tenant has there own physical

hardware, OS, DBMS

Shared server, separate DBMS – shared hardware but have
multiple different DBMS running on hardware (maybe VMs)

Shared database server, separate databases – shared
DBMS but different databases

Shared database, separate schema – same database but
multiple schemas (user collection of objects)

Shared database, shared schema – customer data is
differentiated by tenant id in all tables designed

Page 20

COSC 404 - Dr. Ramon Lawrence

Multi-Tenancy Issues
Multi-tenancy issues to consider:
Hardware and software costs

Efficient use of hardware resources

Isolation and security

Query performance

Ease of backup

Page 21

COSC 404 - Dr. Ramon Lawrence

Bottom Line
Bottom line: No one size fits all.

Select a database system based on your application and use
case.

Understanding how database systems work and their
architectures will help you make informed decisions on
database systems to use and how to deploy them properly.

Page 22

COSC 404 - Dr. Ramon Lawrence

Survey Question:
Lecture Value

Question: On a scale of 1 to 5 with 5 being the highest, how
valuable/useful was the lecture time?

A) 1

B) 2
C) 3

D) 4
E) 5

Page 23

COSC 404 - Dr. Ramon Lawrence

Survey Question:
Lab Value

Question: On a scale of 1 to 5 with 5 being the highest, how
valuable/useful was the lab time and assignments?

A) 1

B) 2
C) 3

D) 4
E) 5

Page 24

COSC 404 - Dr. Ramon Lawrence

Survey Question:
Workload

Question: On a scale of 1 to 5 with 1 being very low and 5
being very high, how was the overall workload compared to
other courses and your expectations?

A) 1

B) 2

C) 3

D) 4
E) 5

5

Page 25

COSC 404 - Dr. Ramon Lawrence

Survey Question:
Clicker Value

Question: On a scale of 1 to 5 with 5 being the highest, how
valuable/useful were the clicker questions used in-class?

A) 1

B) 2
C) 3

D) 4
E) 5

Page 26

COSC 404 - Dr. Ramon Lawrence

Summary of Course
Our course goals were to understand database systems to:

1) Be a better, "expert" user of database systems.

2) Be able to use and compare different database systems.

3) Adapt the techniques when developing your own software.

We opened the database system "black box".
Inside was storage, indexing, query processing/optimization,

transactions, concurrency, recovery, distribution, lots of stuff!

You gained lots of industrial experience using a variety of
databases and became a better, more experienced developer.
MySQL, PostgreSQL, Microsoft SQL Server, MongoDB, JUnit,

VoltDB, Java, JDBC, javacc, JSON, Map-Reduce, SQL

Thank you for a great course!

Good luck on the exam!

