

Carbon-aware
computing
Measuring and reducing the carbon intensity
associated with software in execution

Will Buchanan a,d, John Foxon b, Daniel Cooke b, Sangeeta Iyer a,
Elizabeth Graham a, Bill DeRusha a, Christian Binder a, Kin Chiu b, Laura
Corso c, Henry Richardson c, Vaughan Knight a,d, Asim Hussain d, Avi
Allison a, Nithin Mathews a

a Microsoft, 1 Microsoft Way, Redmond, Washington, USA
b UBS AG, Bahnhofstrasse 45, 8001 Zurich, Switzerland
c WattTime, 490 43rd St, Oakland, California, USA
d Green Software Foundation, 3500 South Dupont Highway
d Suite AA101, Dover, Delaware, USA

2

About this white paper

The Green Software Foundation (GSF) is a cross-industry consortium
that is building a trusted ecosystem of people, standards, tooling, and
best practices for “green software.” The vision of green software is to
build software that has no harmful effect on the environment: this can
be through reducing energy usage, using less hardware, and modifying
computation to take advantage of the lowest-carbon sources of energy
possible. A core design principle of green software is carbon-aware
computing, which has been at the core of the cloud partnership between
two global organizations, Microsoft and UBS.

This white paper describes how Microsoft, UBS, WattTime, and others
partnered through the GSF to develop and release open-source
initiatives that advance the state of carbon-aware computing. First, it
describes a novel carbon emissions measurement methodology known
as the software carbon intensity specification. Next, it presents the GSF’s
open-source software development kit named the carbon-aware-sdk,
which enables any person or organization to implement carbon-aware
computing. Finally, it presents business context and architectural
guidance around the implementation of an enterprise-grade carbon-
aware application: the UBS core risk platform named Advanced
Compute Quantum Analytics (ACQA).

All readers of this white paper should be able to identify the underlying
challenges, decisions, and opportunities that arise from implementing
carbon-aware capabilities. Business decision makers and product
managers should find this white paper valuable to understand and
explain the use-cases and principles of carbon-aware computing to key
stakeholders. Developers and architects should be able to leverage
practical architectural guidance. This whitepaper is intended to help all
readers understand the methodology and find the resources necessary
to reduce the carbon intensity of their organizations’ software stack.

Revision history

Version Date Comments

1.0 January, 2023 Time-shifting MVP spotlighting UBS ACQA application

https://greensoftware.foundation/
https://www.ubs.com/global/en/media/display-page-ndp/en-20221020-cloud-partnership.html
https://www.ubs.com/global/en/media/display-page-ndp/en-20221020-cloud-partnership.html
https://www.watttime.org/
https://github.com/Green-Software-Foundation/software_carbon_intensity/blob/dev/Software_Carbon_Intensity/Software_Carbon_Intensity_Specification.md
https://github.com/Green-Software-Foundation/carbon-aware-sdk

3

Problem statement

Environmental sustainability has become a major focus for corporate governance.
Regulators from around the globe are increasingly demanding that corporations
record, report, and reduce their emissions. Climate governance has already begun to
impact supply chains and businesses around the globe.

Software has the potential to accelerate progress towards climate goals. For example,
software can be used to drive digital transformation that helps reduce physical
movement of people or goods, or to support decarbonization efforts across industries.
However, rapid growth in software technologies and democratization through cloud
services has provided organizations with unprecedented access to computational
power, which could incur high energy usage and associated emissions costs. Hence, to
accelerate our technological progress in a sustainable manner, software itself needs
the ability to measure and reduce its impact on carbon emissions.

Moving to the cloud is a key part of many organizations' decarbonization efforts
through centralized management, consolidation of resources, and efficiency
improvements. However, datacenters and data transmission networks currently
account for nearly 1% of energy-related global greenhouse gas emissions, and will
very likely increase in the near future. As organizations increasingly migrate to the
cloud, this usage of datacenters will represent a meaningful portion of their carbon
footprint. Therefore, datacenters - and the software running on them - can play a
meaningful part in decarbonization efforts.

To address this as part of their net zero and carbon negative pledges, major cloud
providers, including Microsoft, are already matching their cloud energy consumption
with carbon-free energy through market-based neutralization measures such as Power
Purchase Agreements (PPAs). PPAs are a powerful tool because they enable the
development of new renewable energy projects that help decarbonize the grid.
However, purchasing clean energy is not the same as physically consuming clean
energy. Due to the interconnected nature of the electric grid, there is no way to
physically allocate generator-specific electricity to a specific energy consumer.

The emissions impact of electricity consumption is thus a function of the overall mix of
electricity generation resources on a grid, rather than just those resources from which
a consumer purchases electricity. Factoring in the mix of resources on the grid
provides additional opportunities for decarbonization. For example, organizations
have the opportunity to reduce emissions by not only investing in market-based
neutralization measures that increase carbon-free supply, but also managing loads in
ways that reduce emissions. One way that this can be accomplished is by shaping the
demand that software itself makes on the grid: this is a core focus of the Green
Software Foundation.

The GSF defines carbon-awareness as modifying computation to take advantage of the
lowest-carbon sources of energy possible to have minimal environmental impact.
More specifically, there are opportunities to shift software workloads that require
heavy compute power to times and places where the carbon intensity of the grid will
result in the lowest possible carbon emissions.

https://www.iea.org/reports/data-centres-and-data-transmission-networks
https://news.microsoft.com/europe/2021/11/16/microsoft-opens-its-sustainable-datacenter-region-in-sweden-creating-new-opportunities-for-a-cloud-first-sweden/
https://learn.greensoftware.foundation/carbon-awareness/

4

Every electricity grid incorporates a mix of energy sources that respond to changes as
demand (electricity load) varies over time, as illustrated in Figure 1. At certain times
and places, increased electricity demand will be met by carbon-free resources such as
solar and wind. In other circumstances, increased demand will be met by carbon
emitting resources such as coal and natural gas.

Figure 1 Visualization of supply and demand over time for a grid with a mixed generation stack.
In this example, by shifting load to mid-day, lower carbon resources can respond. For example,
there are times in California where there is an oversupply of solar power, and clean electricity is

being discarded (or ‘curtailed’;) consuming more electricity at these times would cause no
additional emissions.

When making decisions to decarbonize software, it is therefore imperative to factor in
the “carbon intensity” of a grid, defined as the amount of emissions of carbon dioxide
(CO₂eq) released per unit of another variable. Modeling the impact of a decision to
consume electricity at a given moment or location requires “marginal carbon intensity”
data, which is a measure of the additional carbon emissions that would be created by
placing additional demand on a particular electric grid at a specific point in time.

“The way we design and build our applications has a
direct relationship to how much carbon they emit.
With a better understanding of the impact our
application designs have on the environment, we
can make choices which have a more positive
impact on the planet.”
— Paul McEwen, Global Head of Technology Services for UBS

https://www.ipcc.ch/sr15/chapter/glossary/

5

These marginal carbon intensity emissions factors must be spatially and temporally
specific, requiring granular information about what generating resource is responding
to a change in load so that the cleanest times and locations can be selected. Better
marginal emissions data is essential for identifying the exact times and locations to
enable carbon-aware software to cause the least emissions possible.

Cloud providers and their customers can partner to reduce emissions: there are certain
carbon-aware decisions that only customers or end users can implement to make their
workloads less carbon-intensive, such as choosing a geographic region, or deciding
when to run a workload. To make informed choices, users require transparency from
cloud providers to understand what actions are available, and accurately assess the
impact of their decisions.

“At Microsoft, we are committed to helping
organizations reach their sustainability goals.
Carbon-aware computing advances the
measurement and reduction of carbon emissions
associated with software technology estates at a
global scale.”
 — Elisabeth Brinton, Microsoft Corporate Vice President, Sustainability

To make software carbon-aware, organizations must have ready access to the
information and tooling required to drive implementation. While major software
platforms such as Windows 11, Xbox, Google Cloud Platform, and Apple iOS have
already implemented proprietary carbon-aware functionalities that reach billions of
devices and users, open-source standards and tools were not yet available to the
software industry. The impacts of a carbon-aware decision – both forecasted and
actual – need to be measured and reported. This requires sufficient telemetry and
reporting protocols.

Current corporate reporting standards and practices, however, do not adequately
incentivize usage of carbon-aware design patterns. The most broadly adopted
standard is the Greenhouse Gas Protocol (GHGP); under current GHGP reporting
practices electricity emissions are generally calculated using broad (regional, annual)
average emission rates. Such emissions rates are insufficiently granular on a spatial
and temporal basis and do not empower green software decisions. Carbon reporting
tools such as Microsoft’s Emissions Impact Dashboard align with the GHGP, and
therefore will not yet reflect carbon-aware decisions implemented by their customers.

There is an opportunity for protocols such as the GHGP to be updated to better reflect
the emissions impact of carbon-aware computing, renewable energy procurement,
and other electric-sector decisions. In the interim, cloud providers and organizations
can immediately take actions to measure and reduce their software’s carbon intensity.

https://blogs.windows.com/windows-insider/2022/03/02/announcing-windows-11-insider-preview-build-22567/
https://news.xbox.com/en-us/2023/01/11/xbox-carbon-aware-console-sustainability/
https://blog.google/inside-google/infrastructure/data-centers-work-harder-sun-shines-wind-blows/
https://support.apple.com/en-us/HT213323
https://www.microsoft.com/en-us/sustainability/emissions-impact-dashboard

6

Solution statement

A core principle of carbon awareness is commonly referred to as time-shifting and is
illustrated in Figure 2 as the focus of this white paper. An enterprise-grade carbon-
aware minimum viable product (MVP) is presented that solely relies on open-source
tooling co-developed and made available to the public by multiple organizations
under the GSF umbrella. The MVP focuses on the UBS owned core risk platform
named Advanced Compute Quantum Analytics (or ACQA -- pronounced aqua or
/ˈɑː.kwə/) on which Azure Batch based workloads are shifted to times with lower
marginal carbon intensity within a 24 hour window.

Figure 2 Visualization of time-shifting a workload from an “on-demand” time of high carbon

intensity to a later time with lower carbon intensity.

A previous publication by Microsoft identified an average potential of 15% reduction
in software carbon intensity (SCI) across 16 different regions for time-shifting. As the
study showed, the highest carbon-aware reductions are to be gained from time-
shifting computationally-intensive workloads with short durations and high volumes
that reside in regions with high renewable energy intermittency. Therefore, key MVP
selection criteria for a UBS carbon-aware application were computational intensity,
short durations (30 minutes or less), high-volumes, and deferrable start times. The
expected SCI reductions based on Microsoft’s previous study were corroborated
through empirical observations of ACQA’s historical data and a European grid mix.
When deployed at scale, carbon-aware ACQA can lead to the avoidance of many
metric tons of CO₂eq emissions per annum.

To address the problem of insufficient measurement and reporting standards,
Microsoft, UBS, WattTime, and other GSF members contributed to the development
and release of the GSF’s Software Carbon Intensity specification. This specification
factors in the marginal carbon intensity of the grid, the energy consumed by the
software, and the embodied carbon of the devices themselves. The SCI is a rate of
carbon emissions per unit of ‘R’, which is a functional unit of scale relevant to the
software being measured. For some systems, R might be the number of users; for
others it might be per workload. The SCI is based on the carbon intensity of the grid

https://learn.microsoft.com/en-us/azure/batch/
https://arxiv.org/abs/2206.05229
https://github.com/Green-Software-Foundation/software_carbon_intensity/blob/main/Software_Carbon_Intensity/Software_Carbon_Intensity_Specification.md

7

itself, and is therefore not possible to neutralize a SCI score through market-based
mechanisms.

The equation used to calculate the SCI value of a software system is:

SCI = ((E * I) + M) per R

where,

E = Energy consumed by a software system
I = Location-based marginal carbon emissions
M = Embodied emissions of a software system
R = Functional unit (e.g., carbon per additional user).

With these variables in hand, Microsoft and UBS partnered through the GSF to build a
carbon-aware MVP. For feasibility and impact reasons, time-shifting was identified as
the MVP scope hosted by the GSF’s carbon-aware-sdk (see an overview shown in
Figure 3). Although beyond the MVP scope, the teams have also implemented
location-shifting functionalities into the SDK: Microsoft’s previous research has
demonstrated that choosing an appropriate region can have the largest SCI reduction
impact (almost 75%). The SDK also meets reporting requirements and provides
measured carbon intensity for time periods when batch jobs have already run and
recommends execution times based on marginal carbon intensity data forecasts.

Figure 3 A schematic showing how the carbon-aware-sdk interfaces with carbon intensity (CI)

data providers to offer carbon-aware functionalities to an application.

The carbon-aware-sdk is interoperable with different carbon intensity data providers.
At its core, the carbon-aware-sdk is a Web API and Command Line Interface (CLI), with
identical functionalities. The API can be deployed as a container for easy management,
and can be deployed alongside an application within a cluster or separately.

The API consistently enables informed decisions to be made through
recommendations for both time- and location-shifting, as well as enabling telemetry

https://github.com/Green-Software-Foundation/carbon-aware-sdk
https://arxiv.org/pdf/2206.05229.pdf
https://www.watttime.org/get-the-data/
https://github.com/Green-Software-Foundation/carbon-aware-sdk
https://github.com/Green-Software-Foundation/carbon-aware-sdk#the-webapi

8

capture for reporting. Through WattTime, a temporal resolution of 5-minute intervals
is provided and can allow historical data or forecast within a 24-hour window to be
queried. Currently, it can be queried to provide carbon intensity information for more
than sixty global regions of Microsoft Azure’s cloud computing platform. Locations of
interest can also be provided through a query – all queries are return JSON objects.

The carbon-aware-sdk both reports historical marginal carbon intensity and provides a
forecast. Therefore, the SDK can also be used to model the impact of potential time-
shifting decisions that may result from adapting a time-shifting strategy before
integrating with applications. In summary, the SDK allows applications to consume
more renewable energy and less fossil-fuel-based energy by recommending optimal
times and locations.

“By simply building in the intelligence to know
when and where electricity consumption will have
low — or even zero — carbon impact, carbon-aware
software can become a powerful tool to drive the
energy transition forward.”

— Gavin McCormick, Founder and Executive Director, WattTime

An MVP focusing on time-shifting

Both time- and location-shifting are relevant carbon-aware strategies for deferrable
workloads. There can be, however, additional complexities associated with location-
shifting, such as the ancillary emissions associated with data-transfer and cloud
resource provisioning, as well as region sovereignty and GDPR considerations. For the
MVP, the teams decided to focus on time-shifting workloads. In what follows, a four-
step case study is presented (see Figure 4), illustrating the methodology that UBS and
Microsoft applied to model the carbon-aware-sdk, and to validate the impact of time-
shifting efforts ahead of executing Azure Batch workloads from ACQA.

Step 1: Measure carbon intensity of a past workload
Consider an example where an Azure Batch job ran for 15 minutes at 10:00 am on
September 19, 2022, in the Central US Azure datacenter. These details can be sent to
the carbon-aware-sdk to calculate the mean marginal carbon intensity of that job.

<SDK-API-SERVER>/emissions/mean-marginal-carbon-intensity
 location=centralus
 startTime=2022-09-19T10:00:00+00:00
 endTime=2022-09-19T10:15:00+00:00

For this query, the carbon-aware-sdk returns a mean marginal carbon intensity of 719
gCO2eq/kWh.

https://azure.microsoft.com/en-us/explore/global-infrastructure/geographies/#overview

9

Figure 4 Illustration of potential savings modeled for an example Azure Batch job for an entire

work week. Historical data (red) is compared with both forecasted (grey) and actual (yellow) data
to determine real-world SCI reduction.

Step 2: Determine optimal forecasted carbon intensity
Next, the carbon-aware-sdk is queried for what the 15-minute-average marginal
carbon intensities were forecasted to be on September 19.

<SDK-API-SERVER>/forecasts/batch
 requestedAt: 2022-09-19T00:00:00+00:00
 location: centralus
 windowSize: 15

In response, the carbon-aware-sdk returns 15-minute-averages for the entire day at 5-
minute increments (00:00 to 00:15, 00:05 to 00:20, 00:10 to 00:25, etc.) and the specific
optimal 15-minute window with the lowest carbon intensity. In this case, it is 659
gCO2eq/kWh at 7:05 to 7:20 AM.

Step 3: Measure carbon intensity of that optimized workload
The optimal carbon intensity value of 659 gCO2eq/kWh is a forecast. To determine the
actual carbon savings this potential time-shift would have captured, the actuals from
7:05 AM need to be acquired (Step 1), but with a new window (7:05 to 7:20 AM.)

<SDK-API-SERVER>/emissions/mean-marginal-carbon-intensity
 location=centralus
 startTime=2022-09-19T07:05:00+00:00
 endTime=2022-09-19T07:20:00+00:00

Step 4: Iterate steps 1 through 3 to identify the potential savings over time
Our query shows the difference between historical (719) forecast (~659) and measured
(~642). For this one day, steps 1 to 3 indicate that the potential impact of time-shifting
a 15-minute Azure batch job to the optimal time could result in a 10% reduction in the
SCI. Repeating the above steps iteratively, the expected impact of time-shifting on the
single job can be calculated as the carbon savings accumulate day to day, week to
week, and month to month. Analysis of 6 months of historical data revealed savings

10

that were closely in alignment with similar workloads previously published research by
Microsoft, providing a strong signal supporting the integration of carbon-aware-sdk
into UBS ACQA risk platform.

The only difference between the modeling exercise above and a live scenario is the
order of operations. ACQA queries the most recent forecast data and optimal time
and schedules the job for that time: after the job completes, ACQA reports on the
measured outcomes.

MVP architecture rendering ACQA carbon-aware

The carbon-aware-sdk has been integrated into the ACQA risk platform. For each job
executed on Azure batch, it is being used to capture both actual and forecast optimal
marginal carbon intensity. Please refer to Figure 5 for a schematic overview.

The ACQA management information system (MIS) service sources information
describing each job from Application Insights’ custom telemetry records and then
queries the carbon-aware-sdk via REST to find the intensity calculations. The intensity
values are then ingested into the Databricks ACQA data lake and made available
alongside other MIS data such as compute cycles. Databricks, when combined with
tools such as Power BI, allow targeted reports to be generated – for example listing
the top 20 jobs with the largest workloads being run at the least optimal times.
Currently marginal carbon intensity data is being used for observation only. The next
phase will be to integrate the optimal forecast into the risk platform scheduling
process to delay the execution of jobs. For non-time sensitive jobs, for example back-

Figure 5 Architecture depicting ACQA‘s integration with the carbon-aware-sdk

https://arxiv.org/abs/2206.05229
https://arxiv.org/abs/2206.05229
https://github.com/Green-Software-Foundation/carbon-aware-sdk

11

testing of risk scenarios, this will be trivial to achieve. When jobs have deadlines, such
as risk reports for a trading desk, any time-shifts will have to ensure that the job is
complete by its required time. Any time-shifting will also need to consider the
maximum capacity of the cloud infrastructure; some jobs will need to run at non-
optimal times to efficiently utilize infrastructure capacity.

Future opportunities

Green Software Engineering is presented with some hard technical challenges. Key
opportunities arise between cloud providers and customers to implement carbon-
aware design patterns and increase accuracy and coverage of emissions data:

Full SCI score
This work aspires toward reporting a full Software Carbon Intensity
score; the journey to carbon-awareness requires a crawl/walk/run
approach to fulfill the SCI equation (SCI = ((E * I) + M) per R).

• Crawl: First, carbon intensity (I) is the required metric to begin time-
shifting workloads. The MVP’s success will be measured as a relative
percentage of reduction in SCI based on the reduction in marginal
carbon intensity. There remains an opportunity for standardization
and improvement in the granularity, accuracy, and transparency of
marginal emissions rate data and methodologies used for carbon-
aware decision making.

• Walk: Next, to capture the absolute impact, the energy
consumption (E) needs to be incorporated. To start, a heuristic must
be developed to estimate energy consumption for a virtual machine
or docker container. Eventually, this will be replaced with accurate
energy telemetry; Microsoft has already made this available for GPU
energy consumption in Azure Machine Learning.

• Run: Finally, the embodied carbon (‘M’) of the physical resources
required to run the computation will need to be integrated. It is
imperative that cloud providers make this information accessible to
customers.

Location selection
Workloads can be provisioned and/or executed in different regions
(and thus on different electricity grids) based on which one has lower
carbon intensity. Such a decision can have lasting effects over the
lifetime of the resource. The gains are potentially much higher:
Microsoft recently partnered with leading academic researchers to
demonstrate the SCI can be reduced by up to 75% by choosing the
appropriate location. This requires some enhancements to the API to
account for additional carbon emission factors (e.g. data transfer).

Energy telemetry
It is challenging to directly and accurately measure power
consumption for Virtual Machines, especially in the cloud. Heuristic
models can be used to estimate energy consumption based on
proxies such as utilization. Cloud and hardware providers may invest
in increasing accuracy and providing transparency to customers.

https://github.com/Green-Software-Foundation/software_carbon_intensity/blob/main/Software_Carbon_Intensity/Software_Carbon_Intensity_Specification.md
https://github.com/Green-Software-Foundation/software_carbon_intensity/blob/main/Software_Carbon_Intensity/Software_Carbon_Intensity_Specification.md
https://techcommunity.microsoft.com/t5/green-tech-blog/charting-the-path-towards-sustainable-ai-with-azure-machine/ba-p/2866923
https://techcommunity.microsoft.com/t5/green-tech-blog/charting-the-path-towards-sustainable-ai-with-azure-machine/ba-p/2866923
https://arxiv.org/abs/2206.05229

12

Conclusions

There is a clear industry-wide demand for advancements in the "access to" and
"accuracy of" software carbon intensity data. Microsoft, UBS, WattTime, the Green
Software Foundation, and others are driving adoption of standards such as the SCI
and open-source tooling such as the carbon-aware-sdk. This shift towards accessible,
accurate, real-time, and granular software carbon intensity can unlock incredible
opportunities both within the boundaries of software industry and beyond. Carbon-
aware design patterns are relevant in any grid-based application; adoption at a global
scale can expedite our societies’ decarbonization ambitions.

This white paper presented an enterprise-grade implementation of carbon-aware
computing using the SCI specification and carbon-aware-sdk. The artifacts developed
through the MVP can be leveraged by organizations looking to reduce carbon
emissions by time- or location-shifting their workloads. Presently, UBS is in the process
of ramping up adoption of their core risk platform workloads to deploy an automated
carbon-aware job scheduler. This adoption has the potential to decrease ACQA’s SCI
by 15%, as identified by Microsoft’s previous research on similar workloads. At the
scale of ACQA workloads, this single optimization based on the co-developed MVP
would prevent many metric tons of potential CO2eq from entering the atmosphere
every year.

How to get involved

Organizations and software engineers are invited to consider carbon-aware
computing as a viable option when building new software solutions or when
modernizing existing ones. They are therefore invited to contribute to and leverage
the GSF’s carbon-aware-sdk or SCI specification, The GSF organizes an annual
hackathon for carbon-aware computing; read about the great ideas that emerged
from CarbonHack22, and dig deeper into green software principles here.

To find out more about the GSF, its members and ongoing activities and events,
please visit https://greensoftware.foundation/.

There is finally a way for software to be more
energy-responsive based on supply and demand.
Developers and organizations looking towards
sustainability and utilizing clean energy should lean
on the Green Software Foundation and the tools
now available to decarbonize their software and
meet their sustainability targets.
— Asim Hussain, Executive Director & Chairperson, Green Software Foundation

https://arxiv.org/pdf/2206.05229.pdf
https://github.com/Green-Software-Foundation/carbon-aware-sdk
https://github.com/Green-Software-Foundation/software_carbon_intensity
https://greensoftware.foundation/articles/carbonhack22-a-big-leap-in-carbon-aware-computing
https://principles.green/
https://greensoftware.foundation/

13

Key definitions

Carbon-awareness: The Green Software Foundation defines this as doing more when
more energy comes from low carbon sources and doing less when more energy
comes from high carbon sources. Carbon awareness changes the behavior of an
application to take advantage of clean, renewable or low carbon sources of electricity,
with the following principles:

o Time-shifting: Optimize impact by shifting workloads based on the
Location-Based Marginal Carbon Intensity prediction of the
datacenter

o Location-shifting: Optimize impact by shifting workloads based on
the Location-Based Marginal Carbon Intensity prediction of a location

o Demand-shaping: Running software so it does more when electricity
is clean and less when it’s dirty

Carbon-aware-sdk: The Green Software Foundation has created an SDK to enable the
creation of carbon aware applications, applications that do more when the electricity
is clean and do less when the electricity is dirty

Carbon efficiency: Changes the software / architecture of an application so that it is
responsible for emitting less carbon

Energy efficiency: Using less energy to do the same work

Hardware efficiency: Using less hardware to do the same work

Carbon intensity: The amount of emissions of carbon dioxide (CO₂eq) released per
unit of another variable; in our case, energy consumption.

Average carbon intensity: Average carbon emissions are calculated using the total
carbon emissions and total amount of electricity generated. This average is taken
across all generators

Marginal carbon intensity: The carbon intensity of electricity is a measure of how
much carbon (CO₂eq) emissions are produced per kilowatt-hour (kWh) of electricity
consumed; this is based on the grid that provides the electricity. This is a measure of
the emissions intensity of the marginal power plant(s) that will respond to your
change in electricity demand (i.e., scheduling compute load)

SCI equation: The equation used to calculate the SCI value of a software system is SCI
= ((E * I) + M) per R, where:

o E = Energy consumed by a software system

o I= Location-based marginal carbon emissions (WattTime for Azure
Regions)

o M = Embodied emissions of a software system

o R = Functional unit (Azure Compute Job)

Software Carbon Intensity (SCI) specification: The Software Carbon Intensity
technical specification describes how to calculate the carbon intensity of a software
application. It describes the method of calculating the total carbon emissions and the
selection criteria to turn the total into a rate that can be used to achieve real-world,
physical emissions reductions, also known as abatement

https://learn.greensoftware.foundation/carbon-awareness/

14

Acknowledgements

This work is a culmination of ongoing efforts from many individuals across the
software industry who have contributed to the foundational and technical
development, provided inspiration and guidance, or sponsored crucial activities. This
includes, but is not limited to: Abhishek Gupta, Akshara Ramakrishnan, Alex Bitukov,
Bill Johnson, Chandrika Jain, Conor Kelly, Dan Balma, Dan Taylor, Daniel Moth, David
Collier, Dorota Zimnoch, Emma Strubell, Erica Basham, Gavin McCormick, George Lara-
Matthews, Holly Beale, Jason Oppler, Jennifer Madiedo, Jesse Dodge, John Mymryk,
Juan Zuluaga, Kanishk Tantia, Mehrnoosh Sameki, Nabila Babar, Priti Pathak, Ravi
Varma Addala, Remi Tachet des Combes, Robert May, Rose Brennan, Roy Schwartz,
Sasha Luccioni, Scott Chamberlain, Sharon Gillett, Srilatha (Bobbie) Manne, Steve
Sweetman, Tammy McCllellan, Taylor Prewitt, and Terry Beale.

Contributors

Microsoft (NASDAQ “MSFT” @microsoft) enables digital transformation for the era of
an intelligent cloud and an intelligent edge. Its mission is to empower every person
and every organization on the planet to achieve more.

UBS (NYSE: “UBS” @UBS Group AG) convenes the global ecosystem for investing,
where people and ideas are connected and opportunities brought to life, and provides
financial advice and solutions to wealthy, institutional and corporate clients worldwide,
as well as to private clients in Switzerland. UBS offers investment solutions, products
and impactful thought leadership, is the leading global wealth manager, provides
large-scale and diversified asset management, focused investment banking
capabilities, and personal and corporate banking services in Switzerland. The firm
focuses on businesses that have a strong competitive position in their target markets,
are capital efficient and have an attractive long-term structural growth or profitability
outlook. UBS is present in all major financial centers worldwide. It has offices in more
than 50 regions and locations, with about 30% of its employees working in the
Americas, 30% in Switzerland, 19% in the rest of Europe, the Middle East and Africa
and 21% in Asia Pacific. UBS Group AG employs more than 72,000 people around the
world. Its shares are listed on the SIX Swiss Exchange and the New York Stock
Exchange (NYSE).

WattTime is an environmental tech nonprofit that empowers all people, companies,
policymakers, and countries to reduce emissions and choose cleaner energy. Founded
by UC Berkeley researchers, they develop data-driven tools and policies such as
Automated Emissions Reduction (AER), software that allows for computing to run on
cleaner energy and Emissionality, which enables siting new renewables based on the
greatest avoided emissions impact.

The Green Software Foundation is building a trusted ecosystem of people,
standards, tooling and best practices for Green Software. It has been established as
the Joint Development Foundation Projects, LLC, Green Software Foundation Series
(the "Project"). The Joint Development Foundation is a non-profit organization that
provides the corporate and legal infrastructure to enable groups to establish and
operate standards and source code development collaborations. The Joint
Development Foundation is an affiliate of the Linux Foundation.

15

© 2023 Microsoft Corporation. All rights reserved. This document is provided "as-is." Information and views expressed in
this document, including URL and other Internet Web site references, may change without notice. You bear the risk of using
it. Examples herein may be for illustration only and if so are fictitious. No real association is intended or inferred.

This is a preliminary document and may be changed substantially prior to final commercial release of the software
described herein. This document does not provide you with any legal rights to any intellectual property in any Microsoft
product. You may copy and use this document for your internal, reference purposes.

The information contained in this document represents the current view of Microsoft Corporation on the issues discussed
as of the date of publication. Because Microsoft must respond to changing market conditions, it should not be interpreted
to be a commitment on the part of Microsoft, and Microsoft cannot guarantee the accuracy of any information presented
after the date of publication.

This white paper is for informational purposes only. Microsoft makes no warranties, express or implied, in this document.

Complying with all applicable copyright laws is the responsibility of the user. Without limiting the rights under copyright, no
part of this document may be reproduced, stored in, or introduced into a retrieval system, or transmitted in any form or by
any means (electronic, mechanical, photocopying, recording, or otherwise), or for any purpose, without the express written
permission of Microsoft Corporation.

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual property rights covering
subject matter in this document. Except as expressly provided in any written license agreement from Microsoft, the
furnishing of this document does not give you any license to these patents, trademarks, copyrights, or other intellectual
property.

Microsoft is a registered trademark of Microsoft Corporation in the United States and/or other countries. The names of
other companies and products mentioned herein may be the trademarks of their respective owner.

	About this white paper
	Revision history
	Problem statement
	“The way we design and build our applications has a direct relationship to how much carbon they emit. With a better understanding of the impact our application designs have on the environment, we can make choices which have a more positive impact on t...
	Solution statement
	An MVP focusing on time-shifting
	MVP architecture rendering ACQA carbon-aware
	Future opportunities
	Conclusions
	There is a clear industry-wide demand for advancements in the "access to" and "accuracy of" software carbon intensity data. Microsoft, UBS, WattTime, the Green Software Foundation, and others are driving adoption of standards such as the SCI and open-...
	This white paper presented an enterprise-grade implementation of carbon-aware computing using the SCI specification and carbon-aware-sdk. The artifacts developed through the MVP can be leveraged by organizations looking to reduce carbon emissions by t...
	How to get involved
	Key definitions

