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Abstract—Modern mobile platforms like Android enable ap- with no knowledge of the base stations to which the phone

plications to read aggregate power usage on the phone. Thisjs attached, as long as the attacker knows the general area in
information is considered harmless and reading it requiresno which the victim moves.

user permission or notification. We show that by simply readng . . .

the phone’s aggregate power consumption over a period of ave A major obstacle to our approach is that power is consumed
minutes an application can learn information about the usels simultaneously by many components and applications on the
location. Aggregate phone power consumption data is exireety phone in addition to the cellular radio. A user may launch
noisy due to the multitude of components and applications applications, listen to music, turn the screen on and ofgire

simultaneously consuming power. Nevertheless, we show thiay . . ,
using machine learning techniques, the phone’s location cabe a phone call, and so on. All this activity affects the phone's

inferred. We discuss several ways in which this privacy lealcan POWer consumptiqn and results in a very noisy approximation
be remedied. of the cellular radio’s power usage. Moreover, the celluéar

dio’s power consumption itself depends on the phone’s iagtiv
as well as the distance to the base-station: during a volterca
Our smartphones are always within reach and their locatigata transmission the cellular radio consumes more power th
is mostly the same as our location. In effect, tracking thghen it is idle. All of these factors contribute to the phane’
location of a smartphone is practically the same as tradkieg power consumption variability and add noise to the attdsker
location of its owner. Since users generally prefer thairthejiew of the power consumption (note that the attacker cannot
location not be tracked by arbitrary 3rd parties, all mobilg|l the level of activity on the cellular radio). Neverthss,
platforms consider the device’s location as sensitivermi®  using machine learning, we show that measuring the phone’s
tion and go to considerable lengths to protect it: applac®ti aggregate power consumption over time completely reveals
need explicit user permission to access the phone’s GPS &g phone’s location and movement. Intuitively, the reason
even reading coarse location data based on cellular and Wiy all this noise does not mislead our algorithms is that the
connectivity requires explicit user permission. noise is not correlated with the phone’s location. Therfar
In this work we show that applications that want accessifficiently long power measurement (several minutes) lesab
to location data can bypass all these restrictions and tgvethe learning algorithm to “see” through the noise.
learn the phone’s location. They can do so by analyzing the|n this work we use a machine learning based approach to
phone’s power consumption over a period of time. Our work jgentify the routes taken by the victim based on previously

based on the observation that the phone’s location signtfica collected power consumption data. We study three types of
affects the power consumed by the phone’s cellular radie. Thser tracking goals:

power consumption is affected both by the distance to the
cellular base station to which the phone is currently agdch 1)
(free-space path loss) and by obstacles, such as buildimys a
trees, between them (shadowing). The closer the phone i )
to the base station and the fewer obstacles between them,
the less power the phone will consume. The strength of the
cellular signal is a major factor affecting the power used by
the cellular radiol[]. Moreover, the cellular radio is one o
the most dominant power consumers on the phbhe [2].
Suppose an attacker measures in advance the power profile
consumed by a phone as it moves along a set of known routes
or in a predetermined area such as a city. We show that thli® emphasize that our approach is based on measuring the
enables the attacker to infer the target phone’s locatia@r oyphone’s aggregate power consumption and nothing else. We do
those routes or areas by simply analyzing the target phone&t read the phone’s signal strength since that data isqieate
power consumption over a period of time. This can be dom& Android and iOS devices and reading it requires user per-

I. INTRODUCTION

Route distinguishability: Can an attacker tell which out

of several possible routes the user is taking?

Real-time motion tracking: Assuming the user is tak-

ing a certain known route, can an attacker identify her
location along the route and track the device’s position
on the route in real-time?

3) New route inference: Can an attacker identify an
arbitrary (long) route taken by the user in a given
area, assuming the attacker has previously measured the
power profile of every short road segment in the area?
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mission. In contrast, reading the phone’s power consumptio The focus of this work is on location identification tech-
requires no special permissions and we therefore focusuall miques for a limited number of routes or a predetermined,area
efforts on what can be learned from this data. On Andro&hd it remains to be seen whether it can scale for an attack
devices reading the phone’s aggregate power consumptionusing a database with a large number of routes, and having
done by repeatedly reading the following two files: no prior knowledge about the victim. We focus on the case

/ sys/ cl ass/ power _suppl y/ battery/vol t age_now of tracking certain users with some sort of daily routiner Fo

/ sys/ cl ass/ power _suppl y/ battery/current_now example, a mobile device holder can drive to the same place
Over a hundred applications in the Play Store access these several possible routes and we want to know which one
files. While most of these simply monitor battery usage, otmas she taken. Or there might be several locations the person
work shows that all of them can also easily track the userssits as part of her daily routine, forming several possibl
location. routes. This approach could be further scaled if we could use

. . ) additional information to somewhat limit the pool of podsib
The rest of the paper is organized as follows: We Staﬁutes prior to applying our metHad

with defining the threat model. Then we provide technica
background about signal strength and power consumptiah, an I1l. BACKGROUND
relate it to our method. We follow with stating the underlyin

assumptions behind our research. The technical detailsirof 0
algorithms are presented in sectign VW,VI and] VII, followelf
up by presenting the results of their evaluation. We discu%%

In this section we provide technical background on the
lation between a phone’s location and its cellular power
nsumption. We start with a description of how locationikas

re

future research directions related to our work, suggesiples . ated to signal strength, then we describe how signaigtre

defenses against our attack, and finally discuss related. wor™, re!ated to power consumption. Finally, we present gxampl
of this phenomenon, and we demonstrate how obtaining access
[I. THREAT MODELS to power measurements could leak information about a psone’

We assume a malicious application has been installed on {H(éa'uon.

victim’s device and runs in the background while the victsn ia | gcation affects signal strength and power consumption
tracked. The malicious application has neither permission
access the GPS, nor other location providers (e.g. celarslar

WiFi network). The application has no permission to acce . 7 . )
or signals propagating in free space, the signal’'s powss lo

the identity of the currently attached or visible cellulask . . . .
stations or SSID of the WiFi networks. is proportional to the square of the distance it travels @r
%Iignal strength is not only determined by path loss, it is

We only assume permission for network connectivity an . . )
access to the power ddtahese are very common permission so affected by objects in the signal path, such as trees and
uildings, that attenuate the signal. Finally, signal regth

for an application and are unlikely to raise suspicion o . )
the part of the victim. To date there are 179 applicatior?éso depends on multi-path interference caused by objests t

submitted to the Google Play application market that acc gglect the radio signal back to the phone through variousspat

voltage and current data. We assume most of them are eit glylng_dnl‘ferent Iengths_. tion th ianal st th is oft
providing diagnostics or using it to profile the application N WIreless communication theory signal strengin is otten

power consumption. We do not assume the application c%)qeled as ra“dom variation (e.g., log-normal sh_adowi@g [3
measure the power consumed by the cellular radio, but ol s_lmulgte many different enqunme[ﬁlts-_lowever, in one lo-
the total power consumed by phone. The attacker needs jon signal strength can be fairly consstgnt as basesst
network connectivity to leak out the power measuren%nt?ttenuators’ and rgflecto_rs are mostly stat_lonary. .

as well as to generate low rate traffic in order to preventA phone’s received signal strength to its base station af-

the cellular radio from going into low power state, thereb{f}?ltsl IS cellc;JIar modem powler CO_nSl:m'it'on' Namely, phorr:e
accentuating the power consumption préfile cellular modems consume less instantaneous power when

As noted above, we assume the attacker has prior knowle(?gé"smitti.ng and receiving at high signal strength comqtar(_e
of the area or routes through which the victim travels. Th low signal strength.l S%hulman I?t'l al(.j [1.] observed_ this
knowledge allows the attacker to learn in advance the powg&enomeml)ln Ion several ! _ﬁ:ent che u ac; r?wces Op@.ﬂf‘m
consumption profiles of these routes or area. We assume prent ce u arlrirotogo - 1hey's lovye tdat _communm:(ajt
victim moves by some means of transportation, like a car } & poor signal location can result in a device power draw

a bus, while she is tracked. Our scheme is of no use to loc gtis SO_A’ higher than at a 900d signal Iocat|.on. ,
a victim that stands still. The primary reason for this phenomenon is the phone’s

power amplifier used for transmission which increases its

Distance to the base station is the primary factor that
gtermines a phone’s signal strength. The reason for this is

1Available without special permissions on Android.

2Network connectivity is necessary for reporting measurgméack to 4For instance, we could use the last WiFi access point the wsar
the attacker for real-time tracking, but not necessary fderence of past connected to prior to driving to understand which are thee®uhat could
activities. If the data can be leaked in another way, theckdtacan learn be possibly taken.
about routes taken by the device owner in the past. Sparameters of the model can be calibrated to better matcheifisp

3Although the attack might work even without it. environment of interest.
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Fig. 2: For two phones of the same model, power variatiofsg. 3: For two different phone models, power variations on
on the same drive are similar. the same drive are similar.

gain as signal strength dropsl [3]. This effect also occujguld allow an attacker to obtain a reference power measure-
when a phone is only receiving packets. The reason for thigent for a drive without using the same phone as the victim’s.
is cellular protocols which require constant transmissién \ve recorded power measurements, while transmitting packet
channel quality and acknowledgments to base stations.  gver cellular, using two different smartphone models (Nefu

B. Power consumption can reveal location and Nexus 5) during the same ride, and we aligned the power

The following results from driving experiments demonsiratsamples’ according to absolute time.
9 g exp The results presented in Figuré 3 indicate that there is

the pot_enual of leaking Ioca‘uo_n from power measurements.similariw between different models that could allow onedab
We first demonstrate that signal strength in each locati

n . .
. : 59 be used as a reference for another. This experiment serves
on a drive can be static over the course of several days. We

) as a proof of concept: we leave further evaluation of such an
collected signal strength measurements from a smartphone

once, and again several days later. In Figdre 1 we plot tﬁttack scenario, where the attacker and victim use differen

signal strength observed on these two drives. In this figuFr)Eone models, to future work. In this paper, we assume that

it is apparent that (1) the segments of the drive where sigrﬁ%ﬁ :‘:r?:;k;]gﬁg r?]%tjlerll ;iffgzn\;itiffwer measurements using

strength is high (green) and low (red) are in the same logatio
across both days, and (2) that the progression of signalgttre
along the drive appears to be a unique irregular pattern.
Next, we demonstrate that just like signal strength, powerA phone attaches to the base station having the strongest
measurements of a smartphone, while it communicates, cgnal. Therefore, one might expect that the base station to
reveal a stable, unique pattern for a particular drive. kénli which a phone is attached and the signal strength will be the
signal strength, power measurements are less likely to $@me in one location. Nonetheless, it is showi in [1] thatadig
stable across drives because power depends on how thecellsirength can be significantly different at a location based o
modem reacts to changing signal strength: a small differ@nc how the device arrived there, for example, the direction of
signal strength between two drives may put the cellular modearrival. This is due to the hysteresis algorithm used toakeci
in a mode that has a large difference in power consumptioshen to hand-off to a new base station. A phone hands-off
For example, a small difference in signal strength may causérom its base station only when its received signal strength
phone to hand-off to a different cellular base station aag stdips below the signal strength from the next base station by
attached to it for some time (Sectibn 1II-C). more than a given threshold! [4]. Thus, two phones that reside
Figure [2 shows power measurements for two Nexus i@ the same location can be attached to two different base
phones in the same vehicle, transmitting packets over theiations.
cellular link, while driving on the same path. The power Hysteresis has two implications for determining a victim’s
consumption variations of the Nexus 4 phones are simildocation from power measurements: (1) an attacker can only
indicating that power measurements can be mostly stabigse the same direction of travel as a reference power mea-
across devices. surement, and (2) it will complicate inferring new routesnr
Finally, we demonstrate that power measurements could fx@ver measurements collected from individual road segsnent
stable across different models of smartphones. This #abil(Section V).

C. Hysteresis



Fig. 1: Signal strength profiles measured on two differerysdare stable (The maps were smudged to prevent unblindithg an
will be put with full details in the final version).

IV. ASSUMPTIONS AND LIMITATIONS

281

Exploring the limits of our attack, i.e. establishing the
minimal necessary conditions for it to work, is beyond th 26f
scope of this work. For this reason, we state the assumptic
on which we rely in our methods.

We assume there is enough variability in power consum
tion along a route to exhibit unique features. Lack of var
ability may be due to high density of cellular antennas th
flatten the signal strength profile. We also assume that dnot 18
communication is occurring for the signal strength to have :
effect on power consumption. This is a reasonable assumpti 16
since background synchronization of data happens fretyuer
in smartphone devices. Moreover, the driver might be usi
navigation software or streaming music. However, at tlagest - o = -
it is difficult to determine how inconsistent phone usag®ssr Time [sec]
different rides will affect our attacks. ) ] ] .

Identifying which route the user has taken involves undefi9- 4: Power profile with a phone call occurring between 50-
standing which power measurements collected from her my seconds. Profile region during phone call is marked in red.
bile device are associated with driving activity. Other k&yr
such asl[b], address this question by using data from other
sensors that require no permissions to access them (gp®sco V. ROUTE DISTINGUISHABILITY
and accelerometers). We do not deal with the details of it in The first problem is one of classification. We have collected
this paper, and assume we are capable of identifying drivipgwer profiles associated with known routes and want to
activity. classify new samples based on this training set. Each power

There might be events occurring while driving, such as aofile is basically a time series which needs to be compared
incoming phone call, that have a significant effect on powéws other time series. A score is assigned after each congparis
consumption. Figurgl4 shows the power profile of a device and based on these scores we select the most likely matching
rest with a phone call occurring between 50-90 seconds (tlmite. Because different rides along the same route can vary
part marked in red). The peak immediately after the phorle cal speed at different locations along the ride, and because
is caused by using the mobile device to terminate the phormutes having the same label can vary slightly at certaintpoi
call and turn off the display. We can see that this event agpeéespecially before getting to a highway and after exiting it
prominently in the power profile and can develop techniqaeswe need to compare profile features that can vary in time
cope with such transient effects by identifying and trumzat and length and allow for a certain amount of difference.
peaks that stand out in the profile. In addition, smoothirgg thWe also have to compensate for different baselines in power
profile by a moving average should mitigate these transiesinsumption due to constant components that depend on the
effects. running applications and on differences in device models.
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We use a classification method based on Dynamic Tinmaposing rules based on a sensible motion model. We first
Warping (DTW) [6], an algorithm for measuring similarityneed to know when we are “locked” on the target. For this
between temporal sequences that are misaligned and vawypose we define a similarity threshold so that if the mihima
in time or speed. We compute the DTW distdhdetween DTW distance is above this threshold, we are loakedstate.
the new power profile and all reference profiles associaté€thce we are locked on the target, we perform a simple sanity
with known routes, selecting the known route that yields theheck at each iteration: “Has the target displaced by mame th
minimal distance. More formally, if the reference profiles a X?”

given by sequence$X}; ;, and the unclassified profile is If the sanity check does not pass we consider the estimation

given by sequenc’, we choose the routesuch that unlikely to be accurate, and simply output the previous- esti
i — argminDTW(Y, X,) mate as the new _estlmate location. If the similarity is beﬁlm_zv
f threshold, we switch to annlockedstate, and stop performing

which is equivalent to 1-NN classification given DTW metricthis sanity _checl§ until we are “locked” again. Algorithim 1
Because the profiles might have different baselines aREesents this logic as pseudocode.

variability, we perform the following normalization for ela
profile prior to computing the DTW distance: we calculate thalgorithm 1 Improved tracking using a simple motion model
mean and subtract it, and divide the result by the standardocked « false > Are we locked on the target?
deviation. We also apply some preprocessing in the formwhile target movingdo

of smoothing the profiles using a moving average (MA) locli], score < estimateLocation()

filter in order to reduce noise and obtain the general power d < getDistance(locli],loc[i — 1])

consumption trend, and we downsample by a factor of 10 to  if locked andd > M AX_DISP then

reduce computational complexity. loc[i] < loc[i — 1] > Reuse previous estimate
end if
VI. M OBILE DEVICE TRACKING it score > THRESHOLD then
In this setting we assume we know that a mobile user locked + true

is taking a certain route and our objective is to track the  end if
mobile device while it is moving. There is no assumption of end while
the starting point along the route, meaning, in probalmlist
terms, that our prior on the initial location is uniform. We

have reference power profiles collected in advance for that

route, and we constantly receive new power measurements VII. I NFERENCE OF NEW ROUTES
from an application installed on the mobile device. Our goal
is to localize the device along the route, and continue track

it as it moves using the real-time observations and trainit)

In Section[\¥ we addressed the problem of identifying the
ute traversed by the phone, assuming the potential raunges

; own in advance. This assumption allowed us to train our
profiles. ) o . :
algorithm specifically for the potential routes. As predtu
A. Tracking using Dynamic Time Warping mentioned, there are indeed many real-world scenariosevher

This approach is similar to that of route distinguishagilit it is applicable. Nevertheless, we set out to tackle a broade
but we use only the measurements collected up to this poitiicking problem in this section, where the future poténtia
which comprise a sub-sequence of the entire route profif@utes are not explicitly known. We assume that the area in
We use theSubsequencBTW algorithm [6], rather than the which the mobile device owner moves is known, however the
classic DTW, to search a sub-sequence in a larger sequerténber of all possible routes in that area may be too large
and return a distance measure as well as the correspondm@ractically pre-record each one. Such an area can be, for
start and end offsets. instance, a university campus, a neighborhood, a small town

We search for the sequence of measurements we have a2 highway network.
mulated since the beginning of the drive in all our reference We address this problem by pre-recording the power profiles
profiles and select the profile that yields the minimal DTVef all the road segments within the given area. Each possible
distance. The location estimate corresponds to the latati®ute a mobile device may take is a concatenation of some
associated with the end offset returned by the algorithm. subset of these road segments. Given a power profile of
the tracked device, we will reconstruct the unknown route
using the reference power profiles corresponding to the road

While the previous approach alone may yield mistakes gegments. Note that, due to the hysteresis of hand-offssestw
location estimation due to a match of the measurements to@illular base stations, a power consumption is not only mepe
incorrect location, we can further improve the estimatign kdent on the traveled road segment, but also on the previous

_ _ road segment the device came from.
61n fact we compute a normalized DTW distance, as we have tgpeasate In the followi . f l hi bl d
for difference in lengths of different routes - a longer mutight yield larger n the following section we formalize this problem an

DTW distance despite being more similar to the tested seguen present our algorithm for solving it.

B. Improved tracking using a motion model



A. Formal Model where a set of samples (particles) is generated at each step

We formalize the problem described above as a hidddift @pproximate the probability distribution of the sttt
Markov model (HMM) [7]. Let] denote the set of intersec-the .corr(.espondlng steps. A comprehensive introduction to
tions in an area in which we wish to track a mobile devicé’.art'de_ f||ter_s and their relation to general state-spaoeets
A road segment is given by an ordered pair of intersectioffsProvided in [9]. _ _

(z,y), defined to be a continuous road between interseation We implement the pqmcle filter as_follows. We denote
and intersectiony. We denote the set of road segmentsias 0" = {OQyz}- whereoy, . is a power profile prerecorded over

We assume that once a device starts to traverse a rg&gmenty, 2) while the segmentz, y) had been traversed just
segment it does not change the direction of its movemenit urRffore it. We use a discrete time resolution= 3 seconds.
it reaches the end of the segment. We define a state for e denoted 5, andAxS, to be the minimum and maximum
road segment. We say that the tracked device is in state M€ durations to traverse road segm(_égllz), respectively.
if the device is currently traversing a road segménty), We assume these bounds can be derived from prerecordings
wherez,y € I. We denote the route of the tracked device & the segments. At each iteratignwe have a sample set

a(Q,T), where of N routesP, = {(Q,T)}. The initial set of routes?, are
’ chosen according ti. At each step, we execute the following
Q ={q1 = 52122, 92 = Szoa5, -} algorithm:
T = {tl,tg, }

Algorithm 2 Particle filter for new routes estimation
for all routep in P do
tend < €nd time ofp
(z,y) + last segment op
z < next intersection to traverse (distributed Hy

For such a route the device has traversed franto x;
during time interval[t;_1,¢;] (to = 0,t;—1 < t; Vi > 0).

Let A = {ayy.|Vz,y,z € I} be the state transition proba-
bility distribution, where

ay: = P{Gi+1 = 5y:|¢ = say} (1) Wy te[A,ng-,nAﬁfaxJ {DTW(Oltang tenst 1) Oy2) }
Note thata,,. = 0 if there is no road between intersections 05y2€00y2
andy or no road between intersectiopgnd z. A traversal of p < pll(y,2)

the device over a road segment yields a power consumption Update the end time qf

profile of length equal to the duration of that movement. We end for

denote a power consumption profile as an observatidret ResampleP according to the weights/,
B be the probability distribution of yielding a given power
profile while the device traversed a given segment. As notedA
above, due to the hysteresis of hand-offs between cellalse bi

t each iteration, we append a new segment, chosen accord-
ng to the prior A, to each possible route (represented by a
EH?;\ ticle). Then, the traversal time of the new segment iseho
LT ; e ~_so that it will have a minimal DTW distance to the respective
.stg_te distribution, where,, is the probaplllty that the device time interval of the tracked power profile. We take this miaim
initially trgversed §egmer(tr,y). If there is no road Segment jistance as the weight of the new route. After normalizing
between m_tersgptmns andy, thenmyy = 0. In our model the weights of all routes, a resampling phase takes place.
we treat this initial state as the state of the dewieforethe ) \toq are chosen from the existing set of routes according t

§tart of the ol?jserved r? ovr\]/er profll_e. V]Yfe neeNd to tﬁke th'SHT\;%Fe particle weights distributifin The new resampled set of
Into account due to the hysteresis effect. Note that an Mutes is the input to the next iteration of the particle filte

IS characterl_zed by, B, andH._ ! . The total number of iterations should not exceed an upper
The route inference proble_m IS defl_ned as follows. Given gy ,nq on the number of segments that the tracked device can
obser\{atlon of a power profil® over time mtervgl[O, tina], traverse. Note however that a route may exhaust the examined
and given a modeld, B a”‘?' 11, we need to find a rqute power profile before the last iteration (namely, the end tohe
(@, T) such thatp{(Q,T)|Q} Is maximized. In/ the following 44t route reachetl,.x). In such a case we do not update the
we de”note the part ob which begins at time” and ends at , ¢ iy 4 subsequent iterations (this case is not desdriiy
time ¢” by Of: . Note thatO = O, We consider the Algorithm[2 to facilitate fluency of exposition).
time interval [O’.tmax] as haw_ng a discrete resolution of Before calculating the DTW distance of a pair of power
In the following we desc_:rlbe a method to solve the aboy ofiles the profiles are preprocessed to remove as much noise
problgm ba_sed on a partlclle filter. The pe_rformance of the possible. We first normalize the power profile by subtngcti
algorithm will be examined in the next section. its mean and dividing by the standard deviation of all values
B. Particle Filter included in that profile. Then, we zeroed out all power values

. . : . below a threshold percentile. This last step allowed us to
A particle filter [8] is a method that estimates the state ofe P P

a HMM _at e.aCh_ step baseq on observations up to that S.tepNote that the resampling of the new routes can have reptitidamely,
The estimation is done using a Monte Carlo approximatiaime same route can be chosen more than one time

the device traversed. Finally, 16l = {r,,} be the initial



focus only on the peaks in power consumption where thpeefix of lengthi found in the previous iteration, and so on
radio’s power consumption is dominant while ignoring thentil all prefixes of lengthi + 1 are found. The intuition of
lower power values for which the radio’s power has a lessthis procedure is as follows. The procedure gives preferenc
effect. The percentile threshold we use in this paper is 90%0 routes traversing segments that commonly traversed by
other routes. Such segments received a high score during the
steps that they were chosen. Since we can not pick the most
Upon its completion, the particle filter outputs a set’f ~ommon segments separately from each step (a continuous
routes of various lengths. Let us denote this set/ya. route probably will not emerge), we iteratively pick the mos

the power profile of the tracked device. To select the bestgments that were already chosen.

estimate route the simple approach is to choose the route tha

appears the most number of timesP. as it has the highest VIII. EXPERIMENTS
probability to occur. Nonetheless, since a route is cOmpoSg. Data collection

of multiple segments chosen at separate steps, at each StetBur experiments required collecting real power consump-
the weight of a route is determined solely based on the Ia[\st

segment added to the route. Therefore. A there is a jon data from smartphone devices alor£ different routes. W

bias in favor of routes ending with segments that were givéjr?veIOpEd the PowerSpy android applicalitmat collects var-

higher weights, while the weights of the initial segment\rzehaIOUS measqrements including signal stre_ngth, voltageeotyr
L o . GPS coordinates, temperature, state of discharge (béstety

a diminishing effect on the route distribution with everywne : o . .

iteration and cell identifier. The recordings were performed usingudex

To counter this bias, we choose another estimate route usﬂn{}mb”e devices.

a procedure we caliterative majority vote This procedure B. Route distinguishability
ranl;s _ihe :_outg tshbased 03 the prlev?lttence o;th]?w_preﬂxel_s. Atl'o evaluate the first algorithm for distinguishing routes we
cach teration the procedure caicuiates — Fre x[i] - a 'Stecorded reference profiles for several different routes. W
of prefixes of lengthi ranked by their prevalence out of theuseOI a dataset of 43 profiles for 4 different roBtesout

all routes that has a prefix in Prefix[i-1]. Prefix[i][n] deest

. . : 19 kilometers each. Driving in different directions alorge t
the prefix of rankn. The operatiorp||; — wherep is a route g g2

. ; . _ same roads (from point A to B vs. from point B to A) is
and; IS an_mtgrsechon — denotes _the gppenda_lgptofp. At considered two different routes. We perform a leave-orte-ou
each !teratlon the procedure d_eta|led in Algorithid 3. In thecross validation, each time using one of the profiles foirgst
following we denote Rout.ePreflxed(F\?, P) t(.) be the subset ETgureB is a confusion matrix, which shows a high success rat
routes out of the sekt havingp as their prefix. in classifying the routes. The achieved successful claasifin
rate in this case was 93%. Adding another three distincesout
to the set (now having 7 distinct routes and 51 power profiles
in total) resulted in 90.2% correct classification (Figu)e 6

For another dataset of 13 profiles we got perfect classifi-
cation, distinguishing two different directions along theame
road.

We also evaluated the algorithm on a dataset of 18 profiles

for 2 different routes of about 20 kilometers, collected in

C. Choosing the best route

Algorithm 3 Iterative majority vote
I'+~1
while not all prefixes foundlo
Prf « next prefix from Prefix[i].
Find j € I’ that maximizes
RoutePrefixeRoutePrefixe@Psinal, Prf), Prf||5)
if no suchj is foundthen

I :_I a completely different arBd with higher cell density and
dc_(;ntmue loop obtained somewhat lower correct classification rate of 66,78
end i

o o , which is nevertheless significantly better than a randonsgjue
Prefixi + 1] « Prefixi + 1] U {Prfl[j} We attribute the decrease in correct classification to ligak

! ! - . . . .
I —_I -{} density, resulting in more monotonous power profiles.
end while

C. Mobile device tracking

At each iterationi we rank the prefixes based on the ranks We evaluate the algorithm for mobile device tracking using
of prefixes of the previous iteration. Namely, prefixes which set of 10 training profiles and an additional test profilee Th
are extensions of a shorter prefix having a higher rank inegaluation simulates the conditions of real-time tracking
previous iteration will always get higher ranking over prefi  serially feeding samples to the algorithm as if they areivece

which are extensions of a lower rank prefix. At each iteratiofiom an application installed on the device. We calculate
the procedure first finds the most common prefixes of length

1 + 1 which start with the most common prefix of length ‘:)Todbe released on the Google Play market and as open souese aft
. . . . . : inding.

! foun.d in the previous iteration and ranks them Emcord"JIJ(BQWhiIe there might be some differences in the routes, we watildlabel

to their prevalence. Then the procedure looks for cOmmM@qm the same if they are similar enough (taking the samenigh

prefixes of lengthi+1 that start with the second most common 1Different country and a different cellular provider.
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Fig. 8: Area for route inference. It is depicted schemalycal
to serve the anonymity of this submission. The area in full
detail will be included in the final version.

the estimation error, i.e. the distance between the esinat
coordinates and the true location of the mobile device &t eac
step of the simulation. We are interested in dwnvergence
time, i.e. the number of samples it takes until the location
estimation is close enough to the true location, as well as in
the distribution of the estimation errors given by a histogr

Fig. 5: Confusion matrix for classification with 4 possiblef the absolute values of the distances.
routes of 19 kilometers each.

Output Class

Confusion Matrix

Target Class

Figure[T illustrates the performance of our tracking algo-
rithm for one of the routes, which was about 19 kilometers
long. At the beginning, when there are very few power
samples, the location estimation is extremely inaccufaué,
after two minutes we lock on the true location. We have a quite
precise estimation up to some point after 20 minutes, where i
starts to slightly diverge. This part is on a highway and with
increase of velocity we have an increase in the estimatiam.er
Around 26 minutes (in figure_¥a) we have a large estimation
error, but as we mentioned earlier, these kind of errors are
quite easy to prevent by imposing a simple motion model. The
histogram shows that most of the errors are small compared
to the length of the route. 80% of the estimation errors are
less than 1 km.

We also tested the improved tracking algorithm explained in
VI-B] Figure[7d presents the estimation error over time, and
we can see that the big errors towards the end of the route
that appeared ih_¥a are not present in this case.

D. Inference of new routes

1) Setup:For the evaluation of the particle filter presented
in Section[ VIl we considered an area schematically depicted
in Figure[8. The area has 8 intersections having 23 road
segment@. The average length of a road segment is about 400
meters. The average travel time over the segments is ardund 9
seconds. The area is located in the center of a medium-sized
city. Traffic congestion in this area varies across segmemds

Fig. 6: Confusion matrix for classification with 7 possiblg@ime of day. For each power recording, the track traversed at

routes.

least one congested segment. Most of the 8 intersectiores hav

110ne of the segments is a one way street as depicted in Higure 8.
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traffic lights, and about a quarter of the segments passghrou

that segment.

them. 3) II — This set defines the initial state distribution. We

We had two pre-recording sessions of all segments. Each
road segment was entered from every possible direction to
account for the hysteresis effects. In total each pre-ckogr
session produced 42 segments recording.

We set the following parameters of the HMM (as they are

assume that the starting intersection of the tracked device
is known. This applies to scenarios where the tracking

begins from well-known locations, such as the user’s

home, office, or another location the attacker knows in

advance.

defined in Sectio VII-A): For testing, we used two Nexus 4 phones (different from the

1) A — This set defines the transition probabilities betweeine

used for the prerecordings). Each phone was used tarecor

the road segments. We set these probabilities to be ufie power profile of a different route. The two routes combine

formly distributed over all possible transitions. Namelygover almost all of the road segments in the area. Table |

agy> = {1/|L,] |, = {w|(y,w) € R, w # x}}. details the routes. The recordings where done on different
2) B — This set defines the distribution of power profilglays.

observations over each state. These probabilities depenés noted, we can only measure the aggregate power con-

on the road segments and their location relative sumption which can be significantly affected by application

the nearby based stations. We do not need an explitiat

continuously run. To have a better sense of the affects

formulation of these probabilities to employ the particlef these applications the two phones were run with different
filter. The likelihood of a a power profile to be associatedumber of background applications. Phone #1 has a rehativel
with a road segment is estimated by the DTW distaneaodest number of applications which included (beyond the
of the power profile to prerecorded power profiles aflefault Android apps): Email (corporate account), Gmailj a



Phone #1] 8-5-6-7-1-2-3-4-5-6-4-3-2-1-7-8 30
Phone #2 7-1-2-3-4-5-8-7-6-5-4-2-1-7-8

TABLE [: Test Routes

Count
vy
T

Google Calender. Phone #2 has a much higher number of 10 B
application which included on top of the applications of pko

#1: Facebook, Twitter, Skype, Waze, and WhatsApp. All those 5 i
applications periodically send and receive traffic. 0

For each of the two tracks we derived all possible sub-tracks 0 0.125 0.25 0.375 0.5 0.625 0.75
having 2 to 7 road segments. We estimated each such sub- Average Levenshtein distance

track. In total we estimated 88 sub-tracks. For each Slﬂk—tra}:i 9: Histoaram of the Levenshtein distances for the esti-
we employed Algorithm§]2 anld 3 to get two best estimates?: = g

for the sub-track. Mated routes.
Table[Tl summarizes the results of the route estimations
for each of the two phones. For each route we have two

alternatives for estimated route (1) th? most frequenterowtoute estimates for phone #1. It can be clearly seen that 8t mo
in the particle s.et as output by A'go”‘hm 2; (2) the routg ses we have an exact fit with the true route. When estimation
output by Algorithm[3. For each alternative we calculate rors occur, the distance to the true route is roughly iy

the Levenshtein distance between it and the true route. €tributed indicating that there are some estimates vty
Levenshtein distance is a standard metric for measuring e, distan;:es

difference between two sequences [10]. It equals the mimimu To have a better sense of the distance metric used to evaluate
number of updates required in order to change one sequepg quality of the estimated routes Fig[iré 10 depicts thases:

to the next. In this context, we treat a route as a SEQUENCEePl qtimation errors and their corresponding distanceeslu

intersections. The distance is normalized by the lengtthef tin increasing order. It can be seen that even estimatiorr erro

!Of‘ger route of_the .tWO' For each eSt'mate we alsq note Whetlﬁ%ving relatively high distances can have a significant arhou
it is an exact fit with the true route (i.e., zero dlstance)eTI(’Ff information regarding the true route

average distance and percentage of exact fits are calctdaite
each type of estimated route. We also calculate these metric IX. FUTURE DIRECTIONS

for both estimates combined while taking into account for |, this section we discuss ideas for further research, im-
each track the best of the two estimates. To benchmark
results we note in Tablg]ll the performance of a random
estimation algorithm which simply outputs a random, albef. Power consumption inference

feasible, route. While new (yet very common) smartphone models contain

The results in Tablé&lll show that the performance of thgn internal ampere-meter and provide access to current data
most frequent route output by the particle filter is complrabother models (for instance Galaxy S Ill) supply voltage but
to the performance of the best estimate output by Algorithm got current measurements. Therefore on these models we
However, their combined performance is significantly bett@annot directly calculate the power consumption. V-edd# [1
than either estimates alone. This result tells us thatAdngB proposes using Vo|tage dynamics to model a mobile device’s
extracts significant amount of information from the routesower consumption. That and any other similar technique
output by the particle filter beyond the information gleaneglould extend our method and make it applicable to additional
from the most frequent route. smartphone models.

For Phone #1 the combined route estimates were able t@Ref. [12] presents PowerTutor, an application that esti-
exactly identify the true track for around 2/3 of scenariognates power consumption by different components of the
While the average distance was only 0.15, namely on averaggartphone device based on voltage and state of discharge
only around 1/7 of the estimated route is different than the t measurements. Isolating the power consumed by the cellular
route. For Phone #2 which run many applications the rougennectivity will improve our method by eliminating the sei
estimates are less accurate. Only 1/5 of routes are idehtifiatroduced by other components such as audio/Bluetoofi/Wi
exactly, while on average 2/5 of the estimated route is @iffe etc. that do not directly depend on the route.
than the true route. This shows that the number of running ]
applications can have a significant effect on the accuradyeof B- State of Discharge (SOD)
estimated route. Nonetheless, even in this case the pageent The time derivative of the State-of-Discharge (the battery
of exact fits are considerably better than a random guess (2@3el) is basically a very coarse indicator of power consump
vs. 5%), while the average distance also presents a markaida. While it seemed to be too inaccurate for our purpose,
improvement (0.4 vs. 0.62). there is a chance that extracting better features from it or

Figure[® depicts the histogram of distances of the combined

vements, and additions to our method.



Average distance Exact fits
random| most frequent Alg.[3l | combined|| random| most frequent Alg. 3 | combined
Phone #1 0.35 0.27 0.15 45% 45% 65%

0
Phone #2 0.62 0.52 0.57 0.40 5% 16% 13% 20%

TABLE II: Summary of route inference results

8 8 8
(a) Distance = 0.125 (b) Distance = 0.25 (c) Distance = 0.43

Fig. 10: Examples of estimation errors and their correspandistances. The true route is green and the estimateé isut
red. Schematic graphs are used to serve anonimity of thisisslon. Plots with actual coordinates on top of real map wil
be included in the final version.

having few possible routes may render distinguishing ute X. DEFENSES
based on SOD profiles feasible. Putting it to the test is

even more interesting given the HTML 5 Battery API thaf\. Non-defenses

enables obtaining certain battery statistics from a wejepa

2 JavaScriot. Our findi d trate how future i One might think that by adding noise or limiting the
via Javascript. Dur findings demonstrate how uture In(E'Wﬁ“"ls'sampling rate or the resolution of the voltage and current

Eptlhe sampllngdresolu'uon of”the_ battert))/ statsdmz;\ty tzrn th easurements one could protect location privacy. However,
even more dangerous, aflowing web-based attacks. 4,1 method does not rely on high sampling frequency or

C. LTE resolution. In fact, our method works well with profiles much
Our evaluation was done for a 3G network. Testing ho@oarser than what we can directly get from the raw power data,

our method applies to LTE is important due to its growingnd for the route distinguishing task we actually performed

deployment. While we expect our method to work just themoothing and downsampling of the data yet obtained good

same, it requires confirmation. results. Our method also works well with signal strength,
. which is provided with much lower resoltion and sampling
D. Choice of reference routes frequencé

Successful classification depends among other factors on

good matching between the power profile we want to classi : o
and the reference power profiles. Optimal matching might RiSky combination of power data and network access

be a matter of month, time of day, traffic on the road, and gne way of reporting voltage and current measurements to
more. We can possibly improve our classification if we tag th@e attacker is via a network connection to the attackerigese
reference profiles with those associated conditions amt'selv\/aming the user of this risky combination may somewhat
reference profiles matching the current conditions whein@ry (5ise the bar for this attack. There are of course other ways t
to distinguish a route. That of course requires collecti/n |eak this information. For instance, a malicious applizati
reference profiles. disguised as a diagnostic software can access power data
E. Collecting a massive dataset and log it to a file, without attempting to make a network

Collecting a massive dataset of power profiles associate@nection, while another, seemingly unrelated, apptioat
with GPS coordinates is a feasible task given vendors' c&ads the data from that file and sends it over the network.
pability to legally collect analytics about users’ use oéith
smartphones. Obtaining such big dataset will enable ustto be 2| fact, since it reflects more directly the environmentatditions, signal

d tand ho ell our approach can scale and wheth strettngth data can provide even better route identificatit@hteacking. We did
ter understan W W ur app Wi &lotfocus on signal strength since accessing it requiressaqeermissions and

can be used with much less prior knowledge about the usergs already drawn research attention to it as useful follimatin.



C. Secure hardware design All fingerprint localization works (e.g.| [16]=[19] reqeirat
The problem with access to total power consumption |§ast signal strength information and base station ID oriWiF

that it leaks the power consumed by the transceiver cigcuitf€tWwork name (SSID). Our work does not rely on the signal
and communication related tasks that indicate signal gthen strength but rather on power consumption, furthermoreisdo

While power measurements can be useful for profiling appf?-Ot rely on base station (cell) 1D, which is acknowledged as

cations, in many cases, examining the power consumed %§oarse location indicator for mobile devices.

the processors executing the software logic might be enough Abusing smartphone sensors

We therefore suggest that supplying only measurements ofyp, emerging line of work shows that phone sensors can

the power consumed by the processors (excluding the powgr ysed in unexpected ways that can lead to unintended

consumed by the TX/RX chain) could be a reasonable trac&)‘nsequenes.

off between functionality and privacy. SurroundSensf20] demonstrates how ambient sound and

light can be used for mobile phone localization, and altloug

it focuses on legitimate use-cases, the same methods ceuld b
A simple yet effective prevention may be requiring supdeveraged for breaching privacy.

ruser privileges (or being root) to access power supply dataAccelPrint[21] is an attempt to fingerprint smartphones by

on the phone. Thus, developers and power-users can instaltking imperfections in their accelerometer measurdsaen

diagnostic software or run a version of their applicatioatth Fingerprinting of mobile devices by the charactersiticshaiir

collects power data on a rooted phone, whereas the releRsgispeakers is proposed in_[22], [23].

version of the software excludes this functionality. Thisuld Lukas et. al.[[24] proposed a method for digital camera

of course prevent the collection of anonymous performanfirgerprinting by pattern noise present in the imagés] [25]

statistics from the install-base, but as we have shown, sushhances the method enabling identification of not only the

D. Requiring superuser privileges

data can indicate much more than performance. model but particular cameras. Applied to smartphones itccou
] o give away a particular mobile device.
E. Power consumption as a coarse location indicator Bojinov et. al. [26] showed that various sensors on smart-

Same as the cell identifier is defined as a coarse locatiphones can be used to identify a mobile device by its
indicator, and requires appropriate permissions to bessece unique hardware characteristics. T@grophonestudy [27]
power consumption data can also be defined as one. Tdgmonstrated that gyroscopes on smartphones can be used for
user will then be aware, when installing applications th&avesdropping on parts of a conversation in the vicinityhef t
access voltage and current data, of the application’s iatenphone and identifying the speakers. In this paper we shotv tha
capabilities, and the risk potentially posed to her privacy Same is true of the phone’s power usage meter: it can be used

This defense may actually be the most consistent with thean unintended way to track the phone’s location.
current security policies of smartphone operating systiéras ~ This line of research suggests that providing applications

Android and iOS, and their current permission schemes. With unrestriced access to sensors, can potentially résuat
security breach and compromise sensitive information.

XI. RELATED WORK X1l. CONCLUSION

Power analysis has shown to be a powerful tool to leakwe showed that applications that read the phone’s ampere-
information from a system in various contexts. The mogeter can gain information about the location of a mobile
well-known one is the recovery of an encryption key frongevice without accessing the GPS or any other coarse locatio
a cryptographic system [13]. indicators. Our approach enables known route identifinatio

Prior work has established the relationship between sigiahl-time tracking, and identification of a new route by only
strength and power consumption in smartphones [1] [14nalyzing the phone’s power consumption. We evaluated our
Further, Bartendi |1] demonstrated that paths of signehsith  methods on real-world data collected from popular smart-
measurements are stable across several drives. phones that have a significant mobile market share, and

Geolocation Techniqugd5] covers some of the GSM met-demonstrated their effectiveness. We believe that withemor
rics based techniques for localization of a mobile devicesM data our approach can be further improved and be used to
works on estimation of location in the absence of GPS readingbtain even more information on the phone’s location. We
focus on two main approaches based on signal strength valgigsrefore conclude by suggesting several possible defense
(either for cellular or for WiFi): 1) fingerprinting - where aMore generally, our work suggests that more security madeli

pre-recorded radio map of the area of interest is leveraggéeds to be done before giving 3rd party applications direct
to infer locations through best matching. It creates a $eargccess to sensors.
index of radio fingerprints to latitude/longitude coordies

This approach is closest to our work. 2) propagation based - i

which signal strength values are used to calculate distatoce (1) A;acti‘;rl‘“":a”rloac\{]- t';‘avgﬁér a’;‘avars- ceFflﬁgjreeaat;Ba;tgﬁSg;hn a
base stations (or access points) with known locations tfiirou P_.Conferenff on  Mobile g%”. 2010. [Onling].  Available:

the computation of the path loss. http:/www.stanford.edu/aschulm/docs/mobicom10-bartendr.pdfhttp://dl.acgiaat
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