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Abstract—Modern mobile platforms like Android enable ap-
plications to read aggregate power usage on the phone. This
information is considered harmless and reading it requiresno
user permission or notification. We show that by simply reading
the phone’s aggregate power consumption over a period of a few
minutes an application can learn information about the user’s
location. Aggregate phone power consumption data is extremely
noisy due to the multitude of components and applications
simultaneously consuming power. Nevertheless, we show that by
using machine learning techniques, the phone’s location can be
inferred. We discuss several ways in which this privacy leakcan
be remedied.

I. I NTRODUCTION

Our smartphones are always within reach and their location
is mostly the same as our location. In effect, tracking the
location of a smartphone is practically the same as trackingthe
location of its owner. Since users generally prefer that their
location not be tracked by arbitrary 3rd parties, all mobile
platforms consider the device’s location as sensitive informa-
tion and go to considerable lengths to protect it: applications
need explicit user permission to access the phone’s GPS and
even reading coarse location data based on cellular and WiFi
connectivity requires explicit user permission.

In this work we show that applications that want access
to location data can bypass all these restrictions and covertly
learn the phone’s location. They can do so by analyzing the
phone’s power consumption over a period of time. Our work is
based on the observation that the phone’s location significantly
affects the power consumed by the phone’s cellular radio. The
power consumption is affected both by the distance to the
cellular base station to which the phone is currently attached
(free-space path loss) and by obstacles, such as buildings and
trees, between them (shadowing). The closer the phone is
to the base station and the fewer obstacles between them,
the less power the phone will consume. The strength of the
cellular signal is a major factor affecting the power used by
the cellular radio [1]. Moreover, the cellular radio is one of
the most dominant power consumers on the phone [2].

Suppose an attacker measures in advance the power profile
consumed by a phone as it moves along a set of known routes
or in a predetermined area such as a city. We show that this
enables the attacker to infer the target phone’s location over
those routes or areas by simply analyzing the target phone’s
power consumption over a period of time. This can be done

with no knowledge of the base stations to which the phone
is attached, as long as the attacker knows the general area in
which the victim moves.

A major obstacle to our approach is that power is consumed
simultaneously by many components and applications on the
phone in addition to the cellular radio. A user may launch
applications, listen to music, turn the screen on and off, receive
a phone call, and so on. All this activity affects the phone’s
power consumption and results in a very noisy approximation
of the cellular radio’s power usage. Moreover, the cellularra-
dio’s power consumption itself depends on the phone’s activity,
as well as the distance to the base-station: during a voice call or
data transmission the cellular radio consumes more power than
when it is idle. All of these factors contribute to the phone’s
power consumption variability and add noise to the attacker’s
view of the power consumption (note that the attacker cannot
tell the level of activity on the cellular radio). Nevertheless,
using machine learning, we show that measuring the phone’s
aggregate power consumption over time completely reveals
the phone’s location and movement. Intuitively, the reason
why all this noise does not mislead our algorithms is that the
noise is not correlated with the phone’s location. Therefore, a
sufficiently long power measurement (several minutes) enables
the learning algorithm to “see” through the noise.

In this work we use a machine learning based approach to
identify the routes taken by the victim based on previously
collected power consumption data. We study three types of
user tracking goals:

1) Route distinguishability: Can an attacker tell which out
of several possible routes the user is taking?

2) Real-time motion tracking: Assuming the user is tak-
ing a certain known route, can an attacker identify her
location along the route and track the device’s position
on the route in real-time?

3) New route inference: Can an attacker identify an
arbitrary (long) route taken by the user in a given
area, assuming the attacker has previously measured the
power profile of every short road segment in the area?

We emphasize that our approach is based on measuring the
phone’s aggregate power consumption and nothing else. We do
not read the phone’s signal strength since that data is protected
on Android and iOS devices and reading it requires user per-
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mission. In contrast, reading the phone’s power consumption
requires no special permissions and we therefore focus all our
efforts on what can be learned from this data. On Android
devices reading the phone’s aggregate power consumption is
done by repeatedly reading the following two files:
/sys/class/power_supply/battery/voltage_now

/sys/class/power_supply/battery/current_now

Over a hundred applications in the Play Store access these
files. While most of these simply monitor battery usage, our
work shows that all of them can also easily track the user’s
location.

The rest of the paper is organized as follows: We start
with defining the threat model. Then we provide technical
background about signal strength and power consumption, and
relate it to our method. We follow with stating the underlying
assumptions behind our research. The technical details of our
algorithms are presented in sections V,VI and VII, followed
up by presenting the results of their evaluation. We discuss
future research directions related to our work, suggest possible
defenses against our attack, and finally discuss related work.

II. T HREAT MODELS

We assume a malicious application has been installed on the
victim’s device and runs in the background while the victim is
tracked. The malicious application has neither permissionto
access the GPS, nor other location providers (e.g. cellularor
WiFi network). The application has no permission to access
the identity of the currently attached or visible cellular base
stations or SSID of the WiFi networks.

We only assume permission for network connectivity and
access to the power data1. These are very common permissions
for an application and are unlikely to raise suspicion on
the part of the victim. To date there are 179 applications
submitted to the Google Play application market that access
voltage and current data. We assume most of them are either
providing diagnostics or using it to profile the application’s
power consumption. We do not assume the application can
measure the power consumed by the cellular radio, but only
the total power consumed by phone. The attacker needs the
network connectivity to leak out the power measurements2,
as well as to generate low rate traffic in order to prevent
the cellular radio from going into low power state, thereby
accentuating the power consumption profile3.

As noted above, we assume the attacker has prior knowledge
of the area or routes through which the victim travels. This
knowledge allows the attacker to learn in advance the power
consumption profiles of these routes or area. We assume the
victim moves by some means of transportation, like a car or
a bus, while she is tracked. Our scheme is of no use to locate
a victim that stands still.

1Available without special permissions on Android.
2Network connectivity is necessary for reporting measurements back to

the attacker for real-time tracking, but not necessary for inference of past
activities. If the data can be leaked in another way, the attacker can learn
about routes taken by the device owner in the past.

3Although the attack might work even without it.

The focus of this work is on location identification tech-
niques for a limited number of routes or a predetermined area,
and it remains to be seen whether it can scale for an attack
using a database with a large number of routes, and having
no prior knowledge about the victim. We focus on the case
of tracking certain users with some sort of daily routine. For
example, a mobile device holder can drive to the same place
via several possible routes and we want to know which one
has she taken. Or there might be several locations the person
visits as part of her daily routine, forming several possible
routes. This approach could be further scaled if we could use
additional information to somewhat limit the pool of possible
routes prior to applying our method4.

III. B ACKGROUND

In this section we provide technical background on the
relation between a phone’s location and its cellular power
consumption. We start with a description of how location hasis
related to signal strength, then we describe how signal strength
is related to power consumption. Finally, we present examples
of this phenomenon, and we demonstrate how obtaining access
to power measurements could leak information about a phone’s
location.

A. Location affects signal strength and power consumption

Distance to the base station is the primary factor that
determines a phone’s signal strength. The reason for this is,
for signals propagating in free space, the signal’s power loss
is proportional to the square of the distance it travels over[3].
Signal strength is not only determined by path loss, it is
also affected by objects in the signal path, such as trees and
buildings, that attenuate the signal. Finally, signal strength
also depends on multi-path interference caused by objects that
reflect the radio signal back to the phone through various paths
having different lengths.

In wireless communication theory signal strength is often
modeled as random variation (e.g., log-normal shadowing [3])
to simulate many different environments5. However, in one lo-
cation signal strength can be fairly consistent as base stations,
attenuators, and reflectors are mostly stationary.

A phone’s received signal strength to its base station af-
fects its cellular modem power consumption. Namely, phone
cellular modems consume less instantaneous power when
transmitting and receiving at high signal strength compared
to low signal strength. Schulman et. al. [1] observed this
phenomenon on several different cellular devices operating on
different cellular protocols. They showed that communication
at a poor signal location can result in a device power draw
that is 50% higher than at a good signal location.

The primary reason for this phenomenon is the phone’s
power amplifier used for transmission which increases its

4For instance, we could use the last WiFi access point the userwas
connected to prior to driving to understand which are the routes that could
be possibly taken.

5Parameters of the model can be calibrated to better match a specific
environment of interest.
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Fig. 2: For two phones of the same model, power variations
on the same drive are similar.

gain as signal strength drops [3]. This effect also occurs
when a phone is only receiving packets. The reason for this
is cellular protocols which require constant transmissionof
channel quality and acknowledgments to base stations.

B. Power consumption can reveal location

The following results from driving experiments demonstrate
the potential of leaking location from power measurements.

We first demonstrate that signal strength in each location
on a drive can be static over the course of several days. We
collected signal strength measurements from a smartphone
once, and again several days later. In Figure 1 we plot the
signal strength observed on these two drives. In this figure
it is apparent that (1) the segments of the drive where signal
strength is high (green) and low (red) are in the same locations
across both days, and (2) that the progression of signal strength
along the drive appears to be a unique irregular pattern.

Next, we demonstrate that just like signal strength, power
measurements of a smartphone, while it communicates, can
reveal a stable, unique pattern for a particular drive. Unlike
signal strength, power measurements are less likely to be
stable across drives because power depends on how the cellular
modem reacts to changing signal strength: a small difference in
signal strength between two drives may put the cellular modem
in a mode that has a large difference in power consumption.
For example, a small difference in signal strength may causea
phone to hand-off to a different cellular base station and stay
attached to it for some time (Section III-C).

Figure 2 shows power measurements for two Nexus 4
phones in the same vehicle, transmitting packets over their
cellular link, while driving on the same path. The power
consumption variations of the Nexus 4 phones are similar,
indicating that power measurements can be mostly stable
across devices.

Finally, we demonstrate that power measurements could be
stable across different models of smartphones. This stability
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Fig. 3: For two different phone models, power variations on
the same drive are similar.

would allow an attacker to obtain a reference power measure-
ment for a drive without using the same phone as the victim’s.
We recorded power measurements, while transmitting packets
over cellular, using two different smartphone models (Nexus 4
and Nexus 5) during the same ride, and we aligned the power
samples, according to absolute time.

The results presented in Figure 3 indicate that there is
similarity between different models that could allow one model
to be used as a reference for another. This experiment serves
as a proof of concept: we leave further evaluation of such an
attack scenario, where the attacker and victim use different
phone models, to future work. In this paper, we assume that
the attacker can obtain reference power measurements using
the same phone model as the victim.

C. Hysteresis

A phone attaches to the base station having the strongest
signal. Therefore, one might expect that the base station to
which a phone is attached and the signal strength will be the
same in one location. Nonetheless, it is shown in [1] that signal
strength can be significantly different at a location based on
how the device arrived there, for example, the direction of
arrival. This is due to the hysteresis algorithm used to decide
when to hand-off to a new base station. A phone hands-off
from its base station only when its received signal strength
dips below the signal strength from the next base station by
more than a given threshold [4]. Thus, two phones that reside
in the same location can be attached to two different base
stations.

Hysteresis has two implications for determining a victim’s
location from power measurements: (1) an attacker can only
use the same direction of travel as a reference power mea-
surement, and (2) it will complicate inferring new routes from
power measurements collected from individual road segments
(Section VII).



Fig. 1: Signal strength profiles measured on two different days are stable (The maps were smudged to prevent unblinding and
will be put with full details in the final version).

IV. A SSUMPTIONS AND LIMITATIONS

Exploring the limits of our attack, i.e. establishing the
minimal necessary conditions for it to work, is beyond the
scope of this work. For this reason, we state the assumptions
on which we rely in our methods.

We assume there is enough variability in power consump-
tion along a route to exhibit unique features. Lack of vari-
ability may be due to high density of cellular antennas that
flatten the signal strength profile. We also assume that enough
communication is occurring for the signal strength to have an
effect on power consumption. This is a reasonable assumption,
since background synchronization of data happens frequently
in smartphone devices. Moreover, the driver might be using
navigation software or streaming music. However, at this stage,
it is difficult to determine how inconsistent phone usage across
different rides will affect our attacks.

Identifying which route the user has taken involves under-
standing which power measurements collected from her mo-
bile device are associated with driving activity. Other works,
such as [5], address this question by using data from other
sensors that require no permissions to access them (gyroscopes
and accelerometers). We do not deal with the details of it in
this paper, and assume we are capable of identifying driving
activity.

There might be events occurring while driving, such as an
incoming phone call, that have a significant effect on power
consumption. Figure 4 shows the power profile of a device at
rest with a phone call occurring between 50-90 seconds (the
part marked in red). The peak immediately after the phone call
is caused by using the mobile device to terminate the phone
call and turn off the display. We can see that this event appears
prominently in the power profile and can develop techniques to
cope with such transient effects by identifying and truncating
peaks that stand out in the profile. In addition, smoothing the
profile by a moving average should mitigate these transient
effects.
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Fig. 4: Power profile with a phone call occurring between 50-
90 seconds. Profile region during phone call is marked in red.

V. ROUTE DISTINGUISHABILITY

The first problem is one of classification. We have collected
power profiles associated with known routes and want to
classify new samples based on this training set. Each power
profile is basically a time series which needs to be compared
to other time series. A score is assigned after each comparison,
and based on these scores we select the most likely matching
route. Because different rides along the same route can vary
in speed at different locations along the ride, and because
routes having the same label can vary slightly at certain points
(especially before getting to a highway and after exiting it),
we need to compare profile features that can vary in time
and length and allow for a certain amount of difference.
We also have to compensate for different baselines in power
consumption due to constant components that depend on the
running applications and on differences in device models.



We use a classification method based on Dynamic Time
Warping (DTW) [6], an algorithm for measuring similarity
between temporal sequences that are misaligned and vary
in time or speed. We compute the DTW distance6 between
the new power profile and all reference profiles associated
with known routes, selecting the known route that yields the
minimal distance. More formally, if the reference profiles are
given by sequences{X}ni=1, and the unclassified profile is
given by sequenceY , we choose the routei such that

i = argmin
i

DTW(Y,Xi)

which is equivalent to 1-NN classification given DTW metric.
Because the profiles might have different baselines and

variability, we perform the following normalization for each
profile prior to computing the DTW distance: we calculate the
mean and subtract it, and divide the result by the standard
deviation. We also apply some preprocessing in the form
of smoothing the profiles using a moving average (MA)
filter in order to reduce noise and obtain the general power
consumption trend, and we downsample by a factor of 10 to
reduce computational complexity.

VI. M OBILE DEVICE TRACKING

In this setting we assume we know that a mobile user
is taking a certain route and our objective is to track the
mobile device while it is moving. There is no assumption of
the starting point along the route, meaning, in probabilistic
terms, that our prior on the initial location is uniform. We
have reference power profiles collected in advance for that
route, and we constantly receive new power measurements
from an application installed on the mobile device. Our goal
is to localize the device along the route, and continue tracking
it as it moves using the real-time observations and training
profiles.

A. Tracking using Dynamic Time Warping

This approach is similar to that of route distinguishability,
but we use only the measurements collected up to this point,
which comprise a sub-sequence of the entire route profile.
We use theSubsequenceDTW algorithm [6], rather than the
classic DTW, to search a sub-sequence in a larger sequence,
and return a distance measure as well as the corresponding
start and end offsets.

We search for the sequence of measurements we have accu-
mulated since the beginning of the drive in all our reference
profiles and select the profile that yields the minimal DTW
distance. The location estimate corresponds to the location
associated with the end offset returned by the algorithm.

B. Improved tracking using a motion model

While the previous approach alone may yield mistakes in
location estimation due to a match of the measurements to an
incorrect location, we can further improve the estimation by

6In fact we compute a normalized DTW distance, as we have to compensate
for difference in lengths of different routes - a longer route might yield larger
DTW distance despite being more similar to the tested sequence.

imposing rules based on a sensible motion model. We first
need to know when we are “locked” on the target. For this
purpose we define a similarity threshold so that if the minimal
DTW distance is above this threshold, we are in alockedstate.
Once we are locked on the target, we perform a simple sanity
check at each iteration: “Has the target displaced by more than
X?”

If the sanity check does not pass we consider the estimation
unlikely to be accurate, and simply output the previous esti-
mate as the new estimate location. If the similarity is belowthe
threshold, we switch to anunlockedstate, and stop performing
this sanity check until we are “locked” again. Algorithm 1
presents this logic as pseudocode.

Algorithm 1 Improved tracking using a simple motion model
locked← false ⊲ Are we locked on the target?
while target movingdo

loc[i], score← estimateLocation()
d← getDistance(loc[i], loc[i− 1])
if locked andd > MAX DISP then

loc[i]← loc[i− 1] ⊲ Reuse previous estimate
end if
if score > THRESHOLD then

locked← true
end if

end while

VII. I NFERENCE OF NEW ROUTES

In Section V we addressed the problem of identifying the
route traversed by the phone, assuming the potential routesare
known in advance. This assumption allowed us to train our
algorithm specifically for the potential routes. As previously
mentioned, there are indeed many real-world scenarios where
it is applicable. Nevertheless, we set out to tackle a broader
tracking problem in this section, where the future potential
routes are not explicitly known. We assume that the area in
which the mobile device owner moves is known, however the
number of all possible routes in that area may be too large
to practically pre-record each one. Such an area can be, for
instance, a university campus, a neighborhood, a small town
or a highway network.

We address this problem by pre-recording the power profiles
of all the road segments within the given area. Each possible
route a mobile device may take is a concatenation of some
subset of these road segments. Given a power profile of
the tracked device, we will reconstruct the unknown route
using the reference power profiles corresponding to the road
segments. Note that, due to the hysteresis of hand-offs between
cellular base stations, a power consumption is not only depen-
dent on the traveled road segment, but also on the previous
road segment the device came from.

In the following section we formalize this problem and
present our algorithm for solving it.



A. Formal Model

We formalize the problem described above as a hidden
Markov model (HMM) [7]. LetI denote the set of intersec-
tions in an area in which we wish to track a mobile device.
A road segment is given by an ordered pair of intersections
(x, y), defined to be a continuous road between intersectionx
and intersectiony. We denote the set of road segments asR.

We assume that once a device starts to traverse a road
segment it does not change the direction of its movement until
it reaches the end of the segment. We define a state for each
road segment. We say that the tracked device is in statesxy
if the device is currently traversing a road segment(x, y),
wherex, y ∈ I. We denote the route of the tracked device as
a (Q, T ), where

Q = {q1 = sx1x2
, q2 = sx2x3

, ...}

T = {t1, t2, ...}

For such a route the device has traversed fromxi to xi+1

during time interval[ti−1, ti] (t0 = 0, ti−1 < ti ∀i > 0).
Let A = {axyz|∀x, y, z ∈ I} be the state transition proba-

bility distribution, where

axyz = p {qi+1 = syz|qi = sxy} (1)

Note thataxyz = 0 if there is no road between intersectionsx
andy or no road between intersectionsy andz. A traversal of
the device over a road segment yields a power consumption
profile of length equal to the duration of that movement. We
denote a power consumption profile as an observationo. Let
B be the probability distribution of yielding a given power
profile while the device traversed a given segment. As noted
above, due to the hysteresis of hand-offs between cellular base
stations, this probability depends on the previous segment
the device traversed. Finally, letΠ = {πxy} be the initial
state distribution, whereπxy is the probability that the device
initially traversed segment(x, y). If there is no road segment
between intersectionsx and y, thenπxy = 0. In our model
we treat this initial state as the state of the devicebeforethe
start of the observed power profile. We need to take this state
into account due to the hysteresis effect. Note that an HMM
is characterized byA, B, andΠ.

The route inference problem is defined as follows. Given an
observation of a power profileO over time interval[0, tmax],
and given a modelA, B and Π, we need to find a route
(Q, T ) such thatp {(Q, T )|O} is maximized. In the following
we denote the part ofO which begins at timet′ and ends at
time t′′ by O[t′,t′′]. Note thatO = O[0,tmax]. We consider the
time interval[0, tmax] as having a discrete resolution ofτ .

In the following we describe a method to solve the above
problem based on a particle filter. The performance of the
algorithm will be examined in the next section.

B. Particle Filter

A particle filter [8] is a method that estimates the state of
a HMM at each step based on observations up to that step.
The estimation is done using a Monte Carlo approximation

where a set of samples (particles) is generated at each step
that approximate the probability distribution of the states at
the corresponding steps. A comprehensive introduction to
particle filters and their relation to general state-space models
is provided in [9].

We implement the particle filter as follows. We denote
Or =

{

orxyz
}

, whereorxyz is a power profile prerecorded over
segment(y, z) while the segment(x, y) had been traversed just
before it. We use a discrete time resolutionτ = 3 seconds.
We denote∆yz

min and∆yz
max to be the minimum and maximum

time durations to traverse road segment(y, z), respectively.
We assume these bounds can be derived from prerecordings
of the segments. At each iterationi we have a sample set
of N routesPi = {(Q, T )}. The initial set of routesP0 are
chosen according toΠ. At each step, we execute the following
algorithm:

Algorithm 2 Particle filter for new routes estimation
for all routep in P do

tend← end time ofp
(x, y)← last segment ofp
z ← next intersection to traverse (distributed byA)

Wp ← min
t∈[∆yz

min
,∆yz

max
]

or
xyz

∈Or

xyz

{

DTW(O[tend,tend+t], o
r
xyz)

}

p← p||(y, z)
Update the end time ofp

end for
ResampleP according to the weightsWp

At each iteration, we append a new segment, chosen accord-
ing to the priorA, to each possible route (represented by a
particle). Then, the traversal time of the new segment is chosen
so that it will have a minimal DTW distance to the respective
time interval of the tracked power profile. We take this minimal
distance as the weight of the new route. After normalizing
the weights of all routes, a resampling phase takes place.N
routes are chosen from the existing set of routes according to
the particle weights distribution7. The new resampled set of
routes is the input to the next iteration of the particle filter.
The total number of iterations should not exceed an upper
bound on the number of segments that the tracked device can
traverse. Note however that a route may exhaust the examined
power profile before the last iteration (namely, the end timeof
that route reachedtmax). In such a case we do not update the
route in all subsequent iterations (this case is not described in
Algorithm 2 to facilitate fluency of exposition).

Before calculating the DTW distance of a pair of power
profiles the profiles are preprocessed to remove as much noise
as possible. We first normalize the power profile by subtracting
its mean and dividing by the standard deviation of all values
included in that profile. Then, we zeroed out all power values
below a threshold percentile. This last step allowed us to

7Note that the resampling of the new routes can have repetitions. Namely,
the same route can be chosen more than one time



focus only on the peaks in power consumption where the
radio’s power consumption is dominant while ignoring the
lower power values for which the radio’s power has a lesser
effect. The percentile threshold we use in this paper is 90%.

C. Choosing the best route

Upon its completion, the particle filter outputs a set ofN
routes of various lengths. Let us denote this set byPfinal.
This set exhibit an estimate of the distribution of routes given
the power profile of the tracked device. To select the best
estimate route the simple approach is to choose the route that
appears the most number of times inPfinal as it has the highest
probability to occur. Nonetheless, since a route is composed
of multiple segments chosen at separate steps, at each step
the weight of a route is determined solely based on the last
segment added to the route. Therefore, inPfinal there is a
bias in favor of routes ending with segments that were given
higher weights, while the weights of the initial segments have
a diminishing effect on the route distribution with every new
iteration.

To counter this bias, we choose another estimate route using
a procedure we calliterative majority vote. This procedure
ranks the routes based on the prevalence of their prefixes. At
each iterationi the procedure calculates – Prefix[i] – a list
of prefixes of lengthi ranked by their prevalence out of the
all routes that has a prefix in Prefix[i-1]. Prefix[i][n] denotes
the prefix of rankn. The operationp||j – wherep is a route
andj is an intersection – denotes the appendage ofj to p. At
each iterationi the procedure detailed in Algorithm 3. In the
following we denote RoutePrefixed(R, p) to be the subset of
routes out of the setR havingp as their prefix.

Algorithm 3 Iterative majority vote

I ′ ← I
while not all prefixes founddo

Prf← next prefix from Prefix[i].
Find j ∈ I ′ that maximizes

RoutePrefixed(RoutePrefixed(Pfinal,Prf),Prf||j)
if no suchj is found then

I ′ = I
continue loop

end if
Prefix[i+ 1]← Prefix[i+ 1] ∪ {Prf||j}
I ′ = I ′ − {j}

end while

At each iterationi we rank the prefixes based on the ranks
of prefixes of the previous iteration. Namely, prefixes which
are extensions of a shorter prefix having a higher rank in a
previous iteration will always get higher ranking over prefixes
which are extensions of a lower rank prefix. At each iteration
the procedure first finds the most common prefixes of length
i + 1 which start with the most common prefix of length
i found in the previous iteration and ranks them according
to their prevalence. Then the procedure looks for common
prefixes of lengthi+1 that start with the second most common

prefix of lengthi found in the previous iteration, and so on
until all prefixes of lengthi + 1 are found. The intuition of
this procedure is as follows. The procedure gives preference
to routes traversing segments that commonly traversed by
other routes. Such segments received a high score during the
steps that they were chosen. Since we can not pick the most
common segments separately from each step (a continuous
route probably will not emerge), we iteratively pick the most
common segment out of the routes that are prefixed with the
segments that were already chosen.

VIII. E XPERIMENTS

A. Data collection

Our experiments required collecting real power consump-
tion data from smartphone devices along different routes. We
developed the PowerSpy android application8 that collects var-
ious measurements including signal strength, voltage, current,
GPS coordinates, temperature, state of discharge (batterylevel)
and cell identifier. The recordings were performed using Nexus
4 mobile devices.

B. Route distinguishability

To evaluate the first algorithm for distinguishing routes we
recorded reference profiles for several different routes. We
used a dataset of 43 profiles for 4 different routes9 about
19 kilometers each. Driving in different directions along the
same roads (from point A to B vs. from point B to A) is
considered two different routes. We perform a leave-one-out
cross validation, each time using one of the profiles for testing.
Figure 5 is a confusion matrix, which shows a high success rate
in classifying the routes. The achieved successful classification
rate in this case was 93%. Adding another three distinct routes
to the set (now having 7 distinct routes and 51 power profiles
in total) resulted in 90.2% correct classification (Figure 6).

For another dataset of 13 profiles we got perfect classifi-
cation, distinguishing two different directions along thesame
road.

We also evaluated the algorithm on a dataset of 18 profiles
for 2 different routes of about 20 kilometers, collected in
a completely different area10 with higher cell density and
obtained somewhat lower correct classification rate of of 78%,
which is nevertheless significantly better than a random guess.
We attribute the decrease in correct classification to higher cell
density, resulting in more monotonous power profiles.

C. Mobile device tracking

We evaluate the algorithm for mobile device tracking using
a set of 10 training profiles and an additional test profile. The
evaluation simulates the conditions of real-time trackingby
serially feeding samples to the algorithm as if they are received
from an application installed on the device. We calculate

8To be released on the Google Play market and as open source after
unblinding.

9While there might be some differences in the routes, we wouldstill label
them the same if they are similar enough (taking the same highway).

10Different country and a different cellular provider.
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Fig. 5: Confusion matrix for classification with 4 possible
routes of 19 kilometers each.
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Fig. 6: Confusion matrix for classification with 7 possible
routes.
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Fig. 8: Area for route inference. It is depicted schematically
to serve the anonymity of this submission. The area in full
detail will be included in the final version.

the estimation error, i.e. the distance between the estimated
coordinates and the true location of the mobile device at each
step of the simulation. We are interested in theconvergence
time, i.e. the number of samples it takes until the location
estimation is close enough to the true location, as well as in
the distribution of the estimation errors given by a histogram
of the absolute values of the distances.

Figure 7 illustrates the performance of our tracking algo-
rithm for one of the routes, which was about 19 kilometers
long. At the beginning, when there are very few power
samples, the location estimation is extremely inaccurate,but
after two minutes we lock on the true location. We have a quite
precise estimation up to some point after 20 minutes, where it
starts to slightly diverge. This part is on a highway and with
increase of velocity we have an increase in the estimation error.
Around 26 minutes (in figure 7a) we have a large estimation
error, but as we mentioned earlier, these kind of errors are
quite easy to prevent by imposing a simple motion model. The
histogram shows that most of the errors are small compared
to the length of the route. 80% of the estimation errors are
less than 1 km.

We also tested the improved tracking algorithm explained in
VI-B. Figure 7d presents the estimation error over time, and
we can see that the big errors towards the end of the route
that appeared in 7a are not present in this case.

D. Inference of new routes

1) Setup:For the evaluation of the particle filter presented
in Section VII we considered an area schematically depicted
in Figure 8. The area has 8 intersections having 23 road
segments11. The average length of a road segment is about 400
meters. The average travel time over the segments is around 90
seconds. The area is located in the center of a medium-sized
city. Traffic congestion in this area varies across segmentsand
time of day. For each power recording, the track traversed at
least one congested segment. Most of the 8 intersections have

11One of the segments is a one way street as depicted in Figure 8.
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Fig. 7: Location estimation error for online tracking

traffic lights, and about a quarter of the segments pass through
them.

We had two pre-recording sessions of all segments. Each
road segment was entered from every possible direction to
account for the hysteresis effects. In total each pre-recording
session produced 42 segments recording.

We set the following parameters of the HMM (as they are
defined in Section VII-A):

1) A – This set defines the transition probabilities between
the road segments. We set these probabilities to be uni-
formly distributed over all possible transitions. Namely,
axyz = {1/|Iy| |Iy = {w|(y, w) ∈ R,w 6= x}}.

2) B – This set defines the distribution of power profile
observations over each state. These probabilities depend
on the road segments and their location relative to
the nearby based stations. We do not need an explicit
formulation of these probabilities to employ the particle
filter. The likelihood of a a power profile to be associated
with a road segment is estimated by the DTW distance
of the power profile to prerecorded power profiles of

that segment.
3) Π – This set defines the initial state distribution. We

assume that the starting intersection of the tracked device
is known. This applies to scenarios where the tracking
begins from well-known locations, such as the user’s
home, office, or another location the attacker knows in
advance.

For testing, we used two Nexus 4 phones (different from the
one used for the prerecordings). Each phone was used to record
the power profile of a different route. The two routes combined
cover almost all of the road segments in the area. Table I
details the routes. The recordings where done on different
days.

As noted, we can only measure the aggregate power con-
sumption which can be significantly affected by applications
that continuously run. To have a better sense of the affects
of these applications the two phones were run with different
number of background applications. Phone #1 has a relatively
modest number of applications which included (beyond the
default Android apps): Email (corporate account), Gmail, and



Phone #1 8-5-6-7-1-2-3-4-5-6-4-3-2-1-7-8
Phone #2 7-1-2-3-4-5-8-7-6-5-4-2-1-7-8

TABLE I: Test Routes

Google Calender. Phone #2 has a much higher number of
application which included on top of the applications of phone
#1: Facebook, Twitter, Skype, Waze, and WhatsApp. All those
applications periodically send and receive traffic.

For each of the two tracks we derived all possible sub-tracks
having 2 to 7 road segments. We estimated each such sub-
track. In total we estimated 88 sub-tracks. For each sub-track
we employed Algorithms 2 and 3 to get two best estimates
for the sub-track.

Table II summarizes the results of the route estimations
for each of the two phones. For each route we have two
alternatives for estimated route (1) the most frequent route
in the particle set as output by Algorithm 2; (2) the route
output by Algorithm 3. For each alternative we calculated
the Levenshtein distance between it and the true route. The
Levenshtein distance is a standard metric for measuring the
difference between two sequences [10]. It equals the minimum
number of updates required in order to change one sequence
to the next. In this context, we treat a route as a sequence of
intersections. The distance is normalized by the length of the
longer route of the two. For each estimate we also note whether
it is an exact fit with the true route (i.e., zero distance). The
average distance and percentage of exact fits are calculatedfor
each type of estimated route. We also calculate these metrics
for both estimates combined while taking into account for
each track the best of the two estimates. To benchmark the
results we note in Table II the performance of a random
estimation algorithm which simply outputs a random, albeit
feasible, route.

The results in Table II show that the performance of the
most frequent route output by the particle filter is comparable
to the performance of the best estimate output by Algorithm 3.
However, their combined performance is significantly better
than either estimates alone. This result tells us that Algorithm 3
extracts significant amount of information from the routes
output by the particle filter beyond the information gleaned
from the most frequent route.

For Phone #1 the combined route estimates were able to
exactly identify the true track for around 2/3 of scenarios.
While the average distance was only 0.15, namely on average
only around 1/7 of the estimated route is different than the true
route. For Phone #2 which run many applications the route
estimates are less accurate. Only 1/5 of routes are identified
exactly, while on average 2/5 of the estimated route is different
than the true route. This shows that the number of running
applications can have a significant effect on the accuracy ofthe
estimated route. Nonetheless, even in this case the percentage
of exact fits are considerably better than a random guess (20%
vs. 5%), while the average distance also presents a markable
improvement (0.4 vs. 0.62).
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Fig. 9: Histogram of the Levenshtein distances for the esti-
mated routes.

Figure 9 depicts the histogram of distances of the combined
route estimates for phone #1. It can be clearly seen that in most
cases we have an exact fit with the true route. When estimation
errors occur, the distance to the true route is roughly uniformly
distributed, indicating that there are some estimates withvery
low distances.

To have a better sense of the distance metric used to evaluate
the quality of the estimated routes Figure 10 depicts three cases
of estimation errors and their corresponding distance values
in increasing order. It can be seen that even estimation error
having relatively high distances can have a significant amount
of information regarding the true route.

IX. FUTURE DIRECTIONS

In this section we discuss ideas for further research, im-
provements, and additions to our method.

A. Power consumption inference

While new (yet very common) smartphone models contain
an internal ampere-meter and provide access to current data,
other models (for instance Galaxy S III) supply voltage but
not current measurements. Therefore on these models we
cannot directly calculate the power consumption. V-edge [11]
proposes using voltage dynamics to model a mobile device’s
power consumption. That and any other similar technique
would extend our method and make it applicable to additional
smartphone models.

Ref. [12] presents PowerTutor, an application that esti-
mates power consumption by different components of the
smartphone device based on voltage and state of discharge
measurements. Isolating the power consumed by the cellular
connectivity will improve our method by eliminating the noise
introduced by other components such as audio/Bluetooth/WiFi
etc. that do not directly depend on the route.

B. State of Discharge (SOD)

The time derivative of the State-of-Discharge (the battery
level) is basically a very coarse indicator of power consump-
tion. While it seemed to be too inaccurate for our purpose,
there is a chance that extracting better features from it or



Average distance Exact fits
random most frequent Alg. 3 combined random most frequent Alg. 3 combined

Phone #1
0.62

0.35 0.27 0.15
5%

45% 45% 65%
Phone #2 0.52 0.57 0.40 16% 13% 20%

TABLE II: Summary of route inference results
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Fig. 10: Examples of estimation errors and their corresponding distances. The true route is green and the estimated route is
red. Schematic graphs are used to serve anonimity of this submission. Plots with actual coordinates on top of real map will
be included in the final version.

having few possible routes may render distinguishing routes
based on SOD profiles feasible. Putting it to the test is
even more interesting given the HTML 5 Battery API that
enables obtaining certain battery statistics from a web-page
via JavaScript. Our findings demonstrate how future increases
in the sampling resolution of the battery stats may turn this
API even more dangerous, allowing web-based attacks.

C. LTE

Our evaluation was done for a 3G network. Testing how
our method applies to LTE is important due to its growing
deployment. While we expect our method to work just the
same, it requires confirmation.

D. Choice of reference routes

Successful classification depends among other factors on
good matching between the power profile we want to classify
and the reference power profiles. Optimal matching might
be a matter of month, time of day, traffic on the road, and
more. We can possibly improve our classification if we tag the
reference profiles with those associated conditions and select
reference profiles matching the current conditions when trying
to distinguish a route. That of course requires collecting many
reference profiles.

E. Collecting a massive dataset

Collecting a massive dataset of power profiles associated
with GPS coordinates is a feasible task given vendors’ ca-
pability to legally collect analytics about users’ use of their
smartphones. Obtaining such big dataset will enable us to bet-
ter understand how well our approach can scale and whether it
can be used with much less prior knowledge about the users.

X. DEFENSES

A. Non-defenses

One might think that by adding noise or limiting the
sampling rate or the resolution of the voltage and current
measurements one could protect location privacy. However,
our method does not rely on high sampling frequency or
resolution. In fact, our method works well with profiles much
coarser than what we can directly get from the raw power data,
and for the route distinguishing task we actually performed
smoothing and downsampling of the data yet obtained good
results. Our method also works well with signal strength,
which is provided with much lower resoltion and sampling
frequency12.

B. Risky combination of power data and network access

One way of reporting voltage and current measurements to
the attacker is via a network connection to the attacker’s server.
Warning the user of this risky combination may somewhat
raise the bar for this attack. There are of course other ways to
leak this information. For instance, a malicious application
disguised as a diagnostic software can access power data
and log it to a file, without attempting to make a network
connection, while another, seemingly unrelated, application
reads the data from that file and sends it over the network.

12In fact, since it reflects more directly the environmental conditions, signal
strength data can provide even better route identification and tracking. We did
not focus on signal strength since accessing it requires access permissions and
has already drawn research attention to it as useful for localization.



C. Secure hardware design

The problem with access to total power consumption is
that it leaks the power consumed by the transceiver circuitry
and communication related tasks that indicate signal strength.
While power measurements can be useful for profiling appli-
cations, in many cases, examining the power consumed by
the processors executing the software logic might be enough.
We therefore suggest that supplying only measurements of
the power consumed by the processors (excluding the power
consumed by the TX/RX chain) could be a reasonable trade-
off between functionality and privacy.

D. Requiring superuser privileges

A simple yet effective prevention may be requiring supe-
ruser privileges (or being root) to access power supply data
on the phone. Thus, developers and power-users can install
diagnostic software or run a version of their application that
collects power data on a rooted phone, whereas the release
version of the software excludes this functionality. This would
of course prevent the collection of anonymous performance
statistics from the install-base, but as we have shown, such
data can indicate much more than performance.

E. Power consumption as a coarse location indicator

Same as the cell identifier is defined as a coarse location
indicator, and requires appropriate permissions to be accessed,
power consumption data can also be defined as one. The
user will then be aware, when installing applications that
access voltage and current data, of the application’s potential
capabilities, and the risk potentially posed to her privacy.

This defense may actually be the most consistent with the
current security policies of smartphone operating systemslike
Android and iOS, and their current permission schemes.

XI. RELATED WORK

Power analysis has shown to be a powerful tool to leak
information from a system in various contexts. The most
well-known one is the recovery of an encryption key from
a cryptographic system [13].

Prior work has established the relationship between signal
strength and power consumption in smartphones [1], [14].
Further, Bartendr [1] demonstrated that paths of signal strength
measurements are stable across several drives.

Geolocation Techniques[15] covers some of the GSM met-
rics based techniques for localization of a mobile device. Most
works on estimation of location in the absence of GPS readings
focus on two main approaches based on signal strength values
(either for cellular or for WiFi): 1) fingerprinting - where a
pre-recorded radio map of the area of interest is leveraged
to infer locations through best matching. It creates a search
index of radio fingerprints to latitude/longitude coordinates.
This approach is closest to our work. 2) propagation based - in
which signal strength values are used to calculate distances to
base stations (or access points) with known locations through
the computation of the path loss.

All fingerprint localization works (e.g., [16]–[19] require at
least signal strength information and base station ID or WiFi
network name (SSID). Our work does not rely on the signal
strength but rather on power consumption, furthermore it does
not rely on base station (cell) ID, which is acknowledged as
a coarse location indicator for mobile devices.

A. Abusing smartphone sensors

An emerging line of work shows that phone sensors can
be used in unexpected ways that can lead to unintended
consequenes.

SurroundSense[20] demonstrates how ambient sound and
light can be used for mobile phone localization, and although
it focuses on legitimate use-cases, the same methods could be
leveraged for breaching privacy.

AccelPrint [21] is an attempt to fingerprint smartphones by
tracking imperfections in their accelerometer measurements.
Fingerprinting of mobile devices by the charactersitics oftheir
loudspeakers is proposed in [22], [23].

Lukas et. al. [24] proposed a method for digital camera
fingerprinting by pattern noise present in the images. [25]
enhances the method enabling identification of not only the
model but particular cameras. Applied to smartphones it could
give away a particular mobile device.

Bojinov et. al. [26] showed that various sensors on smart-
phones can be used to identify a mobile device by its
unique hardware characteristics. TheGyrophonestudy [27]
demonstrated that gyroscopes on smartphones can be used for
eavesdropping on parts of a conversation in the vicinity of the
phone and identifying the speakers. In this paper we show that
same is true of the phone’s power usage meter: it can be used
in an unintended way to track the phone’s location.

This line of research suggests that providing applications
with unrestriced access to sensors, can potentially resultin a
security breach and compromise sensitive information.

XII. C ONCLUSION

We showed that applications that read the phone’s ampere-
meter can gain information about the location of a mobile
device without accessing the GPS or any other coarse location
indicators. Our approach enables known route identification,
real-time tracking, and identification of a new route by only
analyzing the phone’s power consumption. We evaluated our
methods on real-world data collected from popular smart-
phones that have a significant mobile market share, and
demonstrated their effectiveness. We believe that with more
data our approach can be further improved and be used to
obtain even more information on the phone’s location. We
therefore conclude by suggesting several possible defenses.
More generally, our work suggests that more security modeling
needs to be done before giving 3rd party applications direct
access to sensors.
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