Computer underground Digest Wed May 29, 1997 Volume 9 : Issue 40 ISSN 1004-042X Editor: Jim Thomas (cudigest@sun.soci.niu.edu) News Editor: Gordon Meyer (gmeyer@sun.soci.niu.edu) Archivist: Brendan Kehoe Shadow Master: Stanton McCandlish Shadow-Archivists: Dan Carosone / Paul Southworth Ralph Sims / Jyrki Kuoppala Ian Dickinson Field Agent Extraordinaire: David Smith Cu Digest Homepage: http://www.soci.niu.edu/~cudigest CONTENTS, #9.40 (Wed, May 29, 1997) File 1--Fiber Keeps Its Promise - George Gilder Essay File 2--FBI arrests alleged hacker-for-profit File 3--HACK - Texas Driver's License database on the web File 4--Cu Digest Header Info (unchanged since 7 May, 1997) CuD ADMINISTRATIVE, EDITORIAL, AND SUBSCRIPTION INFORMATION APPEARS IN THE CONCLUDING FILE AT THE END OF EACH ISSUE. --------------------------------------------------------------------- Date: Thu, 22 May 1997 01:04:32 -0400 (EDT) From: ptownson@MASSIS.LCS.MIT.EDU(TELECOM Digest Editor) Subject: File 1--Fiber Keeps Its Promise - George Gilder Essay ((MODERATORS' NOTE: For those not familiar with Pat Townson's TELECOM DIGEST, it's a an exceptional resource. From the header of TcD: "TELECOM Digest is an electronic journal devoted mostly but not exclusively to telecommunications topics. It is circulated anywhere there is email, in addition to various telecom forums on a variety of public service systems and networks including Compuserve and America On Line. It is also gatewayed to Usenet where it appears as the moderated newsgroup 'comp.dcom.telecom'. Subscriptions are available to qualified organizations and individual readers. Write and tell us how you qualify: * ptownson@massis.lcs.mit.edu * ======" )) ============= For a few years now, the Telecom Archives has been a repository for the several fine articles by George Gilder which have appeared in {Forbes}. You can review the entire series by pulling them from the archives -- http://telecom-digest.org in the subdirectory devoted to Gilder. As in the past, Gordon Jacobson will introduce the latest in the series. PAT Date--Mon, 19 May 1997 19:24:01 -0400 From--Gordon Jacobson <gaj@portman.com> The Telecosm series of articles by George Gilder provides some interesting technological and cultural background that helps prepare readers to better understand and place in proper perspective the events relative to the National Data Super Highway, which are unfolding almost daily in the national press. I contacted the author and Forbes and as the preface below indicates obtained permission to post on the Internet. Please note that the preface to this article and all footnotes must be included when cross posting or uploading this article. The following article, FIBER KEEPS ITS PROMISE, was adapted from the February, 1997 Gilder Technology Report and was published in Forbes ASAP, April 7, 1997. The article was prepared by the author as a review and update of important events relating to the bandwidth paradigm Gilder has advocatated from the onset of the Telecosm series in December of 1993. The author has been kind enough to restate his "vision" as a preface to this article for those on-line readers who are unfamiliar with the series. This article may be included in George Gilder's book, Telecosm, which will be published in 1997 by Simon & Schuster, as a sequel to Microcosm, published in 1989 and Life After Television published by Norton in 1992. Subsequent chapters of Telecosm will be serialized in Forbes ASAP. THE GILDER VISION: Today, communications technologies are unleashing the Internet as the definitive force of a new industrial era, rendering the CPU peripheral and the net central. This "paradigm shift" is fundamental to comprehending the advent of the Telecosm. Technological paradigms are neither artificial nor arbitrary: they are the governing force in the practical life of human societies and economies. Apprehended by scientists, applied and tested by engineers, they reflect the profound - and permanent - truths of the universe. Accordingly, the laws of the microcosm do not simply give way to the laws of the telecosm. The microcosm is a crucial foundation of the telecosm, and my work defines and enshrines both. Mead's Law and Moore's Law - the laws of the microcosm - no longer suffice to predict the future of information technology. Thus these laws alone no longer define the future configurations of technology and wealth in the new world economy. The microcosmic paradigm is giving way to the telecosmic paradigm; the law of the microcosm is giving up its supremacy to the law of the telecosm. The law of the telecosm ordains that the total communications frequencies rise and wavelengths drop, digital performance improves exponentially. Bandwidth rises, power usage sinks, antenna size shrinks, interference collapses, and error rates plummet. This powerful new paradigm is just beginning to be felt. The vision of my work, is to anticipate and explain necessary breakthroughs and in the process to offer a business, investment, and career "survival map" for a new century that is approaching all of us at the speed of light. George Gilder - 5/16/97 FIBER KEEPS ITS PROMISE By George Gilder "Today, I await the death of television, telephony, VCRs, and analog cameras with utter confidence as Moore's law unfolds." Rupert Murdoch, Ted Turner, John Malone, are you listening?" Get ready. Bandwidth will triple each year for the next 25, creating trillions in new wealth. Editor's note: Four years ago, Forbes ASAP published its first issue with a stunning prophecy by contributing editor George Gilder. Fiber optics, said George, had the potential to carry 25 trillion bits per second down a single strand. This represented a ten-thousandfold leap in carrying capacity over the 2.5 billion bits "barrier" long assumed by most experts in the field. What did George see that others had missed? One, a little-recognized (at the time) breakthrough called an erbium-doped amplifier, which keeps optical signals pure and strong over long distances. The other was a deep technical shift, with roots in the 1940s-era work of information theory pioneer Claude Shannon. If you believed Shannon, his logic dictated a new messaging scheme called wave division multiplexing. Though scorned by the experts four years ago, WDM now is emerging as the winner George had prophesied. The real winners will be all of us, as the coming world of cheap, unlimited bandwidth unfolds and at last fulfills the true potential of the information age. Here is George with an update. ----------- IMAGINE THAT IN 1975 YOU KNEW that Moore's law--the Intel chairman's projection of the doubling of the number of transistors on a microchip every 18 months--would hold for the rest of your lifetime. What if you knew that these transistors would run cooler, faster, better, and cheaper as they got smaller and were crammed more closely together? Suppose you knew the law of the microcosm: that the cost-effectiveness of any number of "n" transistors on a single silicon sliver would rise by the square of the increase in "n." As an investor knowing this Moore's law trajectory, you would have been able to predict and exploit a long series of developments: the emergence of the PC; its dominance over all other computer form factors; the success of companies making chips, disk drives, peripherals, and software for this machine. With a slight effort of intellect, you could have extended the insight and prophesied the digitization of watches, records (CDs), cellular phones, cameras, TVs, broadcast satellites, and other devices that can use miniaturized computer power. If you did not know precisely when each of these benisons would flourish, you would have known that each one was essentially inevitable. To calculate approximate dates, you had only to guess the product's optimal price of popularization and then match its need for mips (millions of instructions per second) of computer power with the cost of those mips as defined by Moore's law. Merely by using this technique of Moore's law matching--and holding to it with unshakable conviction for nearly 20 years--I became known as a "futurist." Today I await the death of television, telephony, VCRs, and analog cameras with utter confidence as Moore's law unfolds. You can tell me about the 98% penetration of TVs in American homes, the continuing popularity of couch-potato entertainments, the effectiveness of broadcast advertising, and the profound and unbridgeable chasm between the office appliance and the living-room tube. But I will pay no attention. Just you wait--Jack Welch, Ted Turner, Rupert Murdoch, John Malone, and David Jennings--the TV will die and you may be too late for the Net. It is now 1997, and a stream of dramatic events certifies that another law, as powerful and fateful and inexorable as Moore's, is gaining a similar sway over the future of technology. It is what I have termed the law of the telecosm. Its physical base lies in the same quantum realm of eigenstates and band gaps that governs the performance of transistors and also makes photons leap and lase. But the telecosm reaches beyond components to systems, combining the science of the electromagnetic spectrum with Claude Shannon's information theory. In essence, as frequencies rise and wavelengths drop, digital performance improves exponentially. Bandwidth rises, power usage sinks, antenna size shrinks, interference collapses, error rates plummet. The law of the telecosm ordains that the total bandwidth of communications systems will triple every year for the next 25 years. As communicators move up-spectrum, they can use bandwidth as a substitute for power, memory, and switching. This results in far cheaper and more efficient systems. In 1996, the new fiber paradigm emerged in full force. Parallel communications in all-optical networks became the dominant source of new bandwidth in telecom. Like Moore's law, the law of the telecosm will reshape the entire world of information technology. It defines the direction of technological advance, the vectors of growth, the sweet spots for finance. AMERICA'S DARK SECRET FOR MORE THAN A DECADE, American companies have been laying optical fiber strands at a pace of some 4,000 miles a day, for a total of more than 25 million strand miles. Five years ago, the top 10% of U.S. homes and businesses were, on average, a thousand households away from a fiber node; now they are a hundred households away. However, the imperial advance of this technology conceals a dark secret, which has led to a pervasive underestimation of the long-term impact of photonics. Sixty percent of the fiber remains "dark" (unused for communications) and even the leading-edge "lit" fiber is being used at less than one ten-thousandth of its intrinsic capacity. This problem has prompted leaders in the industry, from Bill Gates and Andy Grove to Bob Metcalfe and Mitch Kapor, to underrate drastically the impact of fiber optics. Restricting the speed and cost-effectiveness of fiber has been an electronic bottleneck and a regulatory noose. In order for the signal to be amplified, regenerated, or switched, the light pulses had to be transformed into electronic pulses by optoelectronic converters. For all the talk of the speed of light, fiber-optic systems therefore could pass bits no faster than the switching speed of transistors, which tops out at a cycle time of between 2.5 and 10 gigahertz. Meanwhile, telecom companies could not deploy new low-cost fiber products any faster than the switching speed of politicians and regulators, which tops out roughly at a cycle time of between 2.5 years and a rate of evolution measurable only by means of carbon 14. Nonetheless, the intrinsic capacity of every fiber line is not 2.5 gigahertz. Nor is it even 25 gigahertz, which is roughly the capacity of all the frequencies commonly used in the air, from AM radio to kA band satellite. The intrinsic capacity of every fiber thread, as thin as a human hair, is at the least one thousand times the capacity of what we call the "air." One thread could carry all the calls in America on the peak moment of Mother's Day. One fiber thread could carry 25 times more bits than last year's average traffic load of all the world's communications networks put together: an estimated terabit (trillion bits) a second. Over the last five years, technological breakthroughs and legislative loopholes have begun to open up this immense capacity to possible use. Following concepts pioneered and patented by David Payne at the University of Southampton in England, a Bell Laboratories group led by Emmanuel Desurvire and Randy Giles developed a workable all-optical device. They showed that a short stretch of fiber doped with erbium, a rare earth mineral, and excited by a cheap laser diode can function as a powerful amplifier over fully 4,500 gigahertz of the 25,000 gigahertz span. Introduced by Pirelli of Italy and popularized by Ciena Corporation of Savage, Maryland, and by Lucent and Alcatel, today such photonic amplifiers are a practical reality. Put in packages between two and three cubic inches in size, the erbium-doped fiber amplifiers (EDFAs) fit anywhere in an optical network for enhancing signals without electronics. This invention overcame the most fundamental disadvantage of optical networks compared to electronic networks. You can tap into an electronic network as often as desired without eroding the voltage signal. Although resistance and capacitance will leach away the current, there are no splitting losses in a voltage divider. Photonic signals, by contrast, suffer splitting losses every time they are tapped; they lose photons until eventually there are none left. The cheap and compact all-optical amplifier solves this problem. It is an invention comparable in importance to the integrated circuit. Just as the integrated circuit made it possible to put an entire computer system on a single sliver of silicon, the all-optical amplifier makes it possible to put an entire system on a seamless seine of silica--glass. Unleashing the law of the telecosm, it makes possible a new global economy of bandwidth abundance. Five years ago when I first celebrated the radical implications of erbium-doped amplifiers, skepticism reigned. I was summoned to Bellcore, where the first optical networks had been built and then abandoned, to learn the acute limits of the technology from Charles Brackett and his team. I had offered the vision of a broadband fibersphere--a worldwide web of glass and light--where computer users could tune into favored frequencies as readily as radios tune into frequencies in the atmosphere today. But Brackett and other Bellcore experts told me that my basic assumption was false. It was no simpler, they said, to tune into one of scores of frequencies on a fiber than to select time slots in a time-division-multiplexed (TDM) bitstream. Indeed, electronic switching technology was moving faster than optical technology. In the face of the momentum and installed base of electronic switching and multiplexing, the fibersphere with hundreds of tunable frequencies would remain a fantasy, like Ted Nelson's Xanadu. In 1997 the fantasy is coming true around the world. Xanadu has become the World Wide Web. The erbium-doped fiber amplifier is an explosively growing $250 million business. Electronic TDM seems to have topped out at 2.5 gigabits a second. TDM gear has suffered a series of delays and nagging defects and so far has failed in the market. Electronic TDM failed not only because it pushed the envelope of electronics but also because it violated the new paradigm. In single-mode fiber, the two key impediments are nonlinearities in the glass and chromatic dispersion (the blurring of bit pulses because even in a single band different frequencies move at different speeds). Chromatic dispersion increases by the square of the bit rate, and the impact of nonlinearities rises with the power of the signal. High-powered, high-bit-rate TDM flunked both telecosm tests. By contrast, wavelength-division multiplexing (WDM) follows the laws of the telecosm; it succeeds by wasting bandwidth and stinting on power. WDM takes some 33% more bandwidth per bit than TDM, but it reduces power to combat nonlinearity and divides the bitstream into multiple frequencies in order to combat dispersion. Thus it can extend the distance or increase capacity by a factor of four or more today and can lay the foundations for the fibersphere tomorrow. In 1996 the new fiber paradigm emerged in full force. Parallel communications in all-optical networks, long depicted as a broadband pipe dream, crushed all competitors and became the dominant source of new bandwidth in the world telecom network. The year began with a trifold explosion at the Conference on Optical Fiber Communication in San Jose when three companies--Lucent Technologies' Bell Labs, NTT Labs, and Fujitsu--all announced terabit-per-second WDM transmissions down a single fiber. Sprint confirmed the significance of the laboratory breakthroughs by announcing deployment of Ciena's MultiWave 1600 WDM system, so called because it can increase the capacity of a single fiber thread by 1,600%. The revolution continues in 1997. At the beginning of January, NEC declared that by increasing the number of bits per hertz from one to three, it had raised the laboratory WDM record to three terabits per second. During 1996, MCI had increased the speed of its Internet backbone by a factor of 25, from 45 megabits a second to 1.2 gigabits. On January 6, Fred Briggs, chief engineering officer at MCI, announced that his company is in the process of installing new WDM equipment from Hitachi and Pirelli that increases the speed of its phone network backbone to 40 gigabits per second. Accelerating MCI's previous plans by some two years, the new system will use a more limited form of wavelength-division multiplexing to put four 10-gigabit in-cause formation streams on a single fiber thread. The first deployment will use existing facilities on a 275-mile route between Chicago and St. Louis, but the technology will be extended to the entire network. This move will consummate a nearly thousandfold upgrade of the MCI backbone, from 45 megabits per second to 40 gigabits, within some 36 months. Ciena, meanwhile, has announced technology that allows transmission of 100 gigabits per second. Its February IPO was the most important since Netscape (market cap at the end of the first trading day: $3.4 billion). Why? Ciena is the industry leader in open standard WDM gear. During the first six months the MultiWave 1600 was available, through October 1996, the firm achieved $54.8 million in sales and $15 million in net income. (Lucent is believed to be the overall leader with more than $100 million of mostly proprietary AT&T systems.) At the same time, the trans-Pacific consortium announced that it would deploy 100-gigabit-per-second fiber in its new link between the United States and Asia. A powerful new player in these markets will be Tellabs, currently the fastest-growing supplier of electronic digital cross-connect switches and other optical switching gear. In a further coup, following its purchase of broadband digital radio pioneer Steinbrecher, Tellabs has signed up all 12 principals in IBM's all-optical team. Headed by Paul Green, recent chairman of the IEEE Communications Society and author of the leading text on fiber networks, and by Rajiv Ramaswami, coauthor of a new 1997 text on the subject, the IBM group built the world's first fully functioning all-optical networks (AONs), the Rainbow series. Tellabs now owns the 11 AON patents and 100 listed technology disclosures of the group. The implications of the WDM paradigm go beyond simple data pipes. The greatest impact of all-optical technology will likely come in consumer markets. A portent is Artel Video Systems of Marlborough, Massachusetts, which recently introduced a fiber-based WDM system that can transmit 48 digital video channels, 288 CD-quality audio bitstreams, and 64 data channels on one fiber line. Aggregating contributions from a variety of content sources--each on different fiber wavelengths--and delivering them to consumers who tune into favored frequencies on conventional cable, the Artel system represents a key step into the fibersphere. It can be used for new services by either cable TV companies or telcos. The deeper significance of the Artel product, however, is its use of bandwidth as a replacement for transistors and switches. The Artel system works on dark fiber without compression. The video uses 200-megabit-per-second bitstreams (compare MPEG2 at 4 to 6 megabytes per second) that permit lossless transmissions suitable for medical imaging, and obviate dedicated processing of compression codes at the two ends. A move to massively parallel communications analogous to the move to parallel computers, all-optical networks promise nearly boundless bandwidth in fiber. According to Ewart Lowe of British Telecom, whose labs at Martlesham Heath in Ipswich have been a fount of all-optical technology, the new paradigm will reduce the cost of transport by a factor of 10. For example, the optoelectronic amplifiers previously used in fiber networks entailed nine power-hungry bipolar microchips for each wavelength, rather than a simple loop of doped silica that covers scores of wavelengths. As these systems move down through the network hierarchy, the growth of network bandwidth and cost-effectiveness will not only outpace Moore's law, it will also excel the rise in bandwidth within computers--their internal "buses" connecting their microprocessors to memory and input-output. While MCI and Sprint move to deploy technology that functions at 40 gigabits a second, current computers and workstations command buses that run at a rate of close to 1 gigabit a second. This change in the relationship between the bandwidth of networks and the bandwidth of computers will transform the architecture of information technology. As Robert Lucky of Bellcore puts it, "Perhaps we should transmit signals thousands of miles to avoid even the simplest processing function." Lucky implies that the law of the telecosm eclipses the law of the microcosm. Actually, the law of the microcosm makes distributed computers (smart terminals) more efficient regardless of the cost of linking them together. The law of the telecosm makes broadband networks more efficient regardless of how numerous and smart are the terminals. Working together, however, these two laws of wires and switches impel ever more widely distributed information systems, with processing and memory in the optimal locations. WHAT SHOULD THE MAJOR PLAYERS DO NOW? FOR THE TELEPHONE COMPANIES, the age of ever smarter terminals mandates the emergence of ever dumber networks. Telephone companies may complain of the large costs of the transformation of their system, but they command capital budgets as large as the total revenues of the cable industry. Telcos may recoil in horror at the idea of dark fiber, but they command webs of the stuff 10 times larger than any other industry. Dumb and dark networks may not fit the phone company self-image or advertising posture. But they promise larger markets than the current phone company plan to choke off their own future in the labyrinthine nets of an "intelligent switching fabric" always behind schedule and full of software bugs. Telephone switches (now 80% software) are already too complex to keep pace with the efflorescence of the Internet. While computers become ever more lean and mean, turning to reduced instruction-set processors and Java stations, networks need to adopt reduced instruction-set architectures. The ultimate in dumb and dark is the fibersphere now incubating in their magnificent laboratories. The entrepreneurial folk in the computer industry may view this wrenching phone company adjustment with some satisfaction. But computer firms must also adjust. Now addicted to the use of transistors to solve the problems of limited bandwidth, the computer industry must use transistors to exploit the nearly unlimited bandwidth. When home-based machines are optimized for manipulating high-resolution digital video at high speeds, they will necessarily command what are now called supercomputer powers. This will mean that the dominant computer technology will first emerge not in the office market but in the consumer market. The major challenge for the computer industry is to change its focus from a few hundred million offices already full of computer technology to a billion living rooms now nearly devoid of it. Cable companies possess the advantage of already owning dumb networks based on the essentials of the all-optical model of broadcast and select--of customers seeking wavelengths or frequencies rather than switching circuits. Cable companies already provide all the programs to all the terminals and allow them to tune in to the desired messages. But the cable industry cannot become a full-service supplier of telecommunications unless the regulators give up their ridiculous two-wire dream in which everyone competes with cable and no one makes any money. Cash-poor and bandwidth-rich, cable companies need to collaborate with telcos--which are cash-rich and bandwidth-poor--in a joint effort to create broadband systems in their own regions. In all eras, companies tend to prevail by maximizing the use of the cheapest resources. In the age of the fibersphere, they will use the huge intrinsic bandwidth of fiber, all 25,000 gigahertz or more, to simplify everything else. This means replacing nearly all the hundreds of billions of dollars' worth of switches, bridges, routers, converters, codecs, compressors, error correctors, and other devices, together with the trillions of lines of software code, that pervade the intelligent switching fabric of both telephone and computer networks. The makers of all this equipment will resist mightily. But there is no chance that the old regime can prevail by fighting cheap and simple optics with costly and complex electronics and software. The all-optical network will triumph for the same reason that the integrated circuit triumphed: It is incomparably cheaper than the competition. Today, measured by the admittedly rough metric of mips per dollar, a personal computer is more than 2,000 times more cost-effective than a mainframe. Within 10 years, the all-optical network will be thousands of times more cost-effective than electronic networks. Just as the electron rules in computers, the photon will rule the waves of communication. ------------- The article above, was adapted by Forbes ASAP from the Gilder Technology Report, February 1997. Until recently, George Gilder's provocative and insightful analyses of technology were only available through guest appearances and magazine articles. With the publication of the "Gilder Technology Report," the Gilder Technology Group now makes Geroge Gilder's vision available to subscribers on a regular and timely basis. The Report is written by George Gilder and is published monthly. Find out what companies possess the technology to fulfill the Gilder Paradigm of "Nothing But Net". The Gilder Technology Report is designed to assist investors and corporate decision makers in formulating strategy and tactics for the exciting new era of technology. For additional information, please contact the Gilder Technology Group by calling toll-free (888) 484-2727. Regards, Gordon Jacobson Portman Communication Services (212) 988-6288 gaj@portman.com MCI Mail ID: 385-1533 Home Page: http://www.seas.upenn.edu/~gaj1/home.html --------------------- [TELECOM Digest Editor's Note: Thank you very much Gordon for passing along this latest essay from George Gilder, who has in fact been a regular reader and contributor to TELECOM Digest on several occassions. The quality of Gilder's contributions and that of several other of the regular correspondents to the Digest is what has kept the Digest one of the better mailing lists on the internet. Please remember that TELECOM Digest is brought to you by you ... it is reader financial support which makes it possible. An annual donation of twenty dollars is suggested if you enjoy this publication and wish to see it continue. Financial support and editorial content in the Digest are completely independent of each other. No one is obligated to give anything, however your gifts are extremely important to me as I labor in preparing each issue. Patrick Townson TELECOM Digest Post Office Box 4621 Skokie, IL 60076 ------------------------------ Date: Fri, 23 May 1997 11:18:34 -0800 From: "--Todd Lappin-->" <telstar@wired.com> Subject: File 2--FBI arrests alleged hacker-for-profit Source - fight-censorship@vorlon.mit.edu FBI arrests alleged hacker-for-profit -------------------------------------------------------------------- SAN FRANCISCO (May 23, 1997 00:19 a.m. EDT) -- Federal agents arrested a 36-year-old man who allegedly stole information from the credit card accounts of 100,000 people by hacking into the database of an undisclosed major business, the FBI said. Carlos Felipe Salgado Jr., of Daly City, Calif., was arrested Wednesday as he was trying to sell information related to more than 100,000 accounts that contained names, card numbers and other personal information about the card holders, said FBI spokesman George Grotz. "We believe that he had access to at least 100,000 in terms of credit card numbers -- perhaps even more," Grotz said. "He was trying to sell it" to an undercover agent, Grotz said. "We had determined that he was in the market to sell this information, and we were able to contact him via the Internet and set up a meeting to discuss terms of the sale. ... Based on those negotiations, he was placed under arrest." Salgado was scheduled to be arraigned in federal court in San Francisco on at least one charge of unlawfully intruding into a computer network database for the purpose of theft and a separate charge of selling confidential credit card information via the Internet. If convicted of both charges, Salgado could face a maximum of 15 years in federal prison and a fine of up to $250,000 on each count, according to the FBI. Under federal law, Salgado could be charged with separate felony counts for information theft of each of the 100,000 accounts that were illegally obtained. But so far, Grotz said, authorities plan to file only one count. The investigation remains ongoing and more charges could be added later. The FBI still does not know how he allegedly obtained the information. Agents contacted Salgado on-line and "did some business with him," Grotz said. But investigators were unable to find out his identity until they set up the in-person meeting at the airport. "We believe that he has been hacking into various protected computers for at least five years," Grotz said. "We don't know the extent of the damage that he has done. He has gotten these credit card numbers via the Internet and he has tried to sell them via the Internet. ... But we still don't know the extent of his activities." Authorities said that the Salgado case does not appear to be linked to the recent theft of information on about 20,000 employees of Levi Strauss, when a hard drive was taken from the firm's San Francisco headquarters last month. Grotz said that after Salgado's arrest, agents were planning to search his residence and his personal computer for evidence related to the information theft. Agents did not have any information about Salgado's employment or where he developed his hacking skills, Grotz said. "The guy obviously has knowledge," he said. Grotz said federal agents have seen young males try to gain access to credit databases more as a lark, but this is believed to be one of the first cases where someone hacked into an encrypted business database expressly for the purpose of robbing for a profit. "We found out about it from some vigilant technicians doing routine maintenance" on an Internet service provider, Grotz said. That tip prompted an FBI probe on the Internet that led to Salgado on Wednesday, he said. -- By JIM HERRON ZAMORA, the San Francisco Examiner. ------------------------------ Date: Sun, 25 May 1997 17:23:12 EDT From: Martin Kaminer <iguana@MIT.EDU> Subject: File 3--HACK - Texas Driver's License database on the web ------- Forwarded Message Date--Sun, 25 May 1997 11:15:33 From--FringeWare News Network <email@Fringeware.COM> Sent from: Paco Xander Nathan <pacoid@fringeware.com> URGENT NEWS RELEASE - Regarding the release and use of personal information from Texas motor vehicle records, i.e. our recent news about the "www.publiclink.com" web site, the Texas legislature will vote on the floor TOMORROW over SB1069, which would attach a criminal penalty to such information use, except for "permitted disclosures". Note that these criminal penalities and their exceptions have been substituted onto a proposed bill which was already in play (SB1069) in the Texas Senate, one which had already been passed in the Texas House. The bill and its history are available online at: http://www.capitol.state.tx.us/ Search for "SB1069" under the bill search link. The Texas legislature is currently in session, which only happens once every two years, and only a matter of days remain in the current session for introducing any legislation. After "www.publiclink.com" went online, a lawsuit was filed against the site's publisher, the site was taken down, and the story earned widespread headlines. Governor George Bush Jr., et al., expressed concerns over protecting the privacy of Texas citizens vis-a-vis Internet services such as Public Link, while failing to mention that Texas State offices have and will continue to receive revenue from the bulk sales of this same data. For example, if another driver cuts you off in traffic, you take down their license plate number, then go home, check the Public Link web site to find out: the name of the car's owner, where that person lives, with whom that person lives, their race/height/weight/birthdate, a list of their neighbors, how they have voted in recent elections, what criminal convictions they have, etc. My own comments on KVUE-24 news and the CNN Headline News trailer, along with similar comments online by Mike Godwin, et al., of EFF, have shown the "double-edged sword" effect of regulating such information. Certainly the issue of protecting privacy vs. freedom of information (since this information is and will remain public record in Texas) comes to mind, as has the most prevalent argument coming from women's groups in Texas, that such information, even though it has been available for years, now placed on the Internet can pose a public threat in terms of assisting stalkers. But the real issues run much deeper. On one hand, the information is available (and has been for years) to anybody with enough means to hire an attorney or investigator: "Please give me a list of all the women over age 65, widowed, living alone in a particularly wealthy block of Dallas". That one *might* cost you $75, but think of the potential return-on-investment for b&e specialists, televangelists, and other social vultures. Public Link has merely made this same data, derived from public record, available to all who have Internet access. Restrictions from the Texas legislation on who/what can be listed on the Internet would be pointless because servers could easily move to Louisiana, Mexico, or even somewhere out in the Indian Ocean.... One the other hand, look at the trade-off of who's agenda will be served by making this data only available to those parties authorized for the "permitted disclosures". Consider that investigative journalists have used this kind of data to breach stories in the public interest which the wealthy and powerful might otherwise attempt to keep quiet. Consider on the flip side that this kind of information is regularly used by the personnel staff at large corporations, who need to make decisions on hiring new employees and therefore buy computer-based records about private individuals: voting records, criminal records, worker's comp, any available medical data, etc. Here's the scenario: a personnel director needs to choose between two applicants for a position, let's say one is a woman from a racial minority who has had a previous C-section birth and voted Democrat in the past four elections; then the other applicant is a white male who voted Republican in the past elections on record. Now really, given the cost of medical insurance and employee relations these days, whom are they going to pick for the job? This exact data is at question. It is commericially available and in widespread use throughout "human resource departments" and "security" firms. Moreover, an older issue of workplace drug testing brings in related concerns. Random drug testing used in corporate America is at best 60% accurate, i.e. practically meaningless, BUT those tests provide employers and government agencies with a legal "foot-in-the-door" for correlating all of the personal information listed above along with the individual's medical records and SSN. Think about it. Think really hard about the implications, for a long time, and then ask yourself if drug testing really concerns "family values", not to mention the other privacy abuse practices in question. To the point of Texas Senate Bill 1069, an unofficial comment from one Texas capitol legislative analyst responsible for independent research of this issue was that "journalists are going to hate this bill." If you read the text of SB1069, it becomes hauntingly clear that government agencies, employers, insurance companies, private investigators, and even firms which conduct "surveys, marketing, or solicitations", will all keep their bulk access to Texas citizens personal data, BUT that any other use would become a criminal offense. Furthermore, this portion of the bill is what has been added at the last minute, i.e. subsequent to the news reports about Public Link. To wit, it will be fine for a spammer to buy and use the data to tailor "bulk distribution" mailings, but it will become a criminal offense for anybody to place the same exact data up for public use on a web site. Also, it will be fine for personnel managers and insurance agents to use this data in private while deciding about an individual's hiring potential or quoted insurance rates, but it would become a criminal offense for a newspaper journalist (or Internet email list participant) to access the same exact data in public record for the purposes of, say, exposing illegal hiring practices. Note that this bill has been slid through the voting process quietly, as a deliberate act by the legislators. It was substituted onto a bill already passed by the House, and then "recommended for local & uncontested calendar" by the Senate, i.e. so as not to draw public attention. If you live in Texas, we urge you to take action. Flood the legislature. If you are an attorney or expert familiar with Texas State privacy laws, please render a written opinion faxed to your representative. Current estimates project that the SB1069 will pass the Texas Senate tomorrow (i.e. quietly while most of the state is off on holiday). 1984 is only 13 years away... Paco Xander Nathan FringeWare Inc. 25 May 1996 Austin, TX, Earth ------------------------------ ------------------------------ Date: Thu, 7 May 1997 22:51:01 CST From: CuD Moderators <cudigest@sun.soci.niu.edu> Subject: File 4--Cu Digest Header Info (unchanged since 7 May, 1997) Cu-Digest is a weekly electronic journal/newsletter. Subscriptions are available at no cost electronically. CuD is available as a Usenet newsgroup: comp.society.cu-digest Or, to subscribe, send post with this in the "Subject:: line: SUBSCRIBE CU-DIGEST Send the message to: cu-digest-request@weber.ucsd.edu DO NOT SEND SUBSCRIPTIONS TO THE MODERATORS. The editors may be contacted by voice (815-753-6436), fax (815-753-6302) or U.S. mail at: Jim Thomas, Department of Sociology, NIU, DeKalb, IL 60115, USA. To UNSUB, send a one-line message: UNSUB CU-DIGEST Send it to CU-DIGEST-REQUEST@WEBER.UCSD.EDU (NOTE: The address you unsub must correspond to your From: line) Issues of CuD can also be found in the Usenet comp.society.cu-digest news group; on CompuServe in DL0 and DL4 of the IBMBBS SIG, DL1 of LAWSIG, and DL1 of TELECOM; on GEnie in the PF*NPC RT libraries and in the VIRUS/SECURITY library; from America Online in the PC Telecom forum under "computing newsletters;" On Delphi in the General Discussion database of the Internet SIG; on RIPCO BBS (312) 528-5020 (and via Ripco on internet); CuD is also available via Fidonet File Request from 1:11/70; unlisted nodes and points welcome. In ITALY: ZERO! BBS: +39-11-6507540 UNITED STATES: ftp.etext.org (206.252.8.100) in /pub/CuD/CuD Web-accessible from: http://www.etext.org/CuD/CuD/ ftp.eff.org (192.88.144.4) in /pub/Publications/CuD/ aql.gatech.edu (128.61.10.53) in /pub/eff/cud/ world.std.com in /src/wuarchive/doc/EFF/Publications/CuD/ wuarchive.wustl.edu in /doc/EFF/Publications/CuD/ EUROPE: nic.funet.fi in pub/doc/CuD/CuD/ (Finland) ftp.warwick.ac.uk in pub/cud/ (United Kingdom) The most recent issues of CuD can be obtained from the Cu Digest WWW site at: URL: http://www.soci.niu.edu/~cudigest/ COMPUTER UNDERGROUND DIGEST is an open forum dedicated to sharing information among computerists and to the presentation and debate of diverse views. CuD material may be reprinted for non-profit as long as the source is cited. Authors hold a presumptive copyright, and they should be contacted for reprint permission. It is assumed that non-personal mail to the moderators may be reprinted unless otherwise specified. Readers are encouraged to submit reasoned articles relating to computer culture and communication. Articles are preferred to short responses. Please avoid quoting previous posts unless absolutely necessary. DISCLAIMER: The views represented herein do not necessarily represent the views of the moderators. Digest contributors assume all responsibility for ensuring that articles submitted do not violate copyright protections. ------------------------------ End of Computer Underground Digest #9.40 ************************************