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Computer architects estimate that the current generation of 32-bit machines will be obsolete 
by 1997. The R4000 employs a 64-bit architecture. using 64-bit registers and generating 64-bit 
virtual addresses. Superpipelining techniques allow it to process more instructions simulta­
neously than the previous generation of microprocessors. Specmark ratings indicate it per­
forms higher than other single-chip micropnx:essors. 

ii 
he R1000 is a highly integrated, 64-bit 
RISC microprocessor that provides a 
simple solution to the increasing de­
mands on the size of address space, 

while maintaining full compatibility with previ­
ous Mips processors. Its primary features include 

• on-chip CPU, FPU, MMU, primary caches, 
and system interface logic (See Figure 1),' 

• superpipelining techniques, 
• on-chip secondary cache control logic with 

a flexible interface, 

• a programmable system interface for high­
performance multiprocessor servers and low­

cost desktop systems, 

• flexible multiprocessor support, and 
• 1.2 million transistors implemented in CMOS 

technology. 

In addition, the R4000's single-chip implementa­
tion makes it easier to scale the clock as technol­
ogy improves. According to SPEC benchmark 
tests, it achieves the highest perfol1nance of any 
microprocessor chip. 

A 64-bit architecture 
With programs growing by one-half to one bit 

of address sp-dce per year,2 a greater than 32-bit 
address space should be useful by 1993 and re­
quired by 1997. In creating the 64-bit R4000 , de­
signers extended the R3000 architecture by 
increasing the data word size and virtual address 
space. This design entailed widening the machine 

registers and data paths, and sign-extending 32-
bit data when loading into registers. Since certain 
operations work differently on 64-bit data than 
on sign-extended 32-bit data, we added additional 

instruaions for 64-bit data, including integer loads, 
stores, adds, subtracts, shifts, multiplies, divides, 
and coprocessor moves. 

The chip also supports a 64-hit virtual address 
space with wide virtual address data paths. It 
stores 32-bit addresses as 64-bit entities in sign­
extended form and stores the results of address 
computation on these entities in sign-extended 
form. Thus it continues to support the previous 
32-bit architeaure's addressing.' 

The hardware cost of extending the architec­
ture to 64 bits was about 7 percent of the die 
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area. A longer, M-hit ALU stage repre­
sents the cycle time speed penalty. 

CPU pipeline 
The R4000's eight pipeline stages al­

low it to process more instructions at once 
than can the R3000's five-stage pipeline.' 
Superpipelining has split the instruction 

and data memory references across two 
stages. Consequently, we could distrib­
ute the logic more evenly acTOSS pipe­
line stages (See Figure 2.) The 

single-cycle ALU stage takes slightly more 
time than each of the cache access stages. 

Although the superpipeline increases 

the cycles per instruction due to longer 

branch and load delays, it greatly im­
proves the achievahle cycle time. Fu­

ture increases in cache size will not 
require a fundamental redesign of the 
superpipeline. We considered super­
scalar design as another way to increase 
instruction-level parallelism, but our 
studies showed that with current tech­
nology the chip muld perform higher 
with a less complex superpipeline. 

Figure 3 on the next page shows op­
timal pipeline movement, completing 
one instruction every internal clock 
cycle. The internal, or pipeline, clock 
rate of the R4000 is twice the external 
input, or master, clock frequency. 

The processor accesses the instruc­
tion cache during the instruction first 
(IF) and instruction second (IS) stages, 
with a new cache access starting every 
cycle. The MMU translates the instruc­
tion virtual address into a physical ad­
dress during these stages. The 
instruction bits available at the begin­
ning of the register file (RF) stage are 
decoded and used to access the regis­
ter me. Also at this time, the tags read 
from the instruction cache are com­
pared with the physical address to de­
termine whether the instruction cache 
access was a hit. If so, the instruction 
can advance to its execution (EX) stage. 
For nonmemory operations, the 
instruction's result is available by the 
end of the EX stage. 

In the data first (DF) and data sec­
ond (DS) stages, the R4000 accesses 
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Figure 1. R4000 internal block diagram, 
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Figure 3. R4000 pipeline and instruction overlapping. 

the data cache, with a new access starting every cycle. The 
MMU translates the data virtual address into a physical ad­
dress during these stages. In the tag check (TC) stage, the 
R40(){) compares the data tags from the cache tag array with 
the translated address to determine if the data cache access 
was a hit. For stores, if the tag check passes in TC, the data 
travel to the store buffer and enter the data cache the next 
time cache bandwidth is available. Instmctions finally go to 
the write back (WE) stage where the data are written to the 
register file if necessary. 

Load interlocks and branch instmctions dismpt the normal 
flow of the pipeline. For loads, the data are not ready until 
the end of the cache access in the DS stage. If any of the two 
instructions after a load use the result of the load in their EX 
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Figure 4. Load interlock/slip cycle. 
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stages, the hardware interlocks and slips. As shown in Figure 
4, during the slip the DF, DS, TC, WB stages of the pipeline 
advance while the IF, IS, RF, EX stages do not. For the load 
interlock, this permits the load instmction to advance and 
complete its cache access, while the instruction that depends 
on the load remains in the EX stage. 

The result of a branch condition check and a branch target 
address calculation are not known until the end of the EX 
stage. (See Figure 5.) By that time, up to three subsequent 
instructions have entered the pipeline. If the branch is not 
taken, the processor can continue to execute all instructions 
that have entered the pipeline with no penalty. If the branch is 
taken, the processor accesses instructions at the branch target 
address. For taken branches, the Mips architecture allows one 

A 
B 

C 
D 
E 
F 

instruction after the branch to complete before execut­
ing the branch target instruction. The other two instmc­
tions that have already entered the pipeline are nullified. 

We considered a branch target scheme that prefetches 
instmctions from both paths of a branch, producing a 
smaller hranch penalty. However, implemcntation con­

straints required the simpler approach without a 
prefetching scheme. 

Results of insrmcrions that have completcd their ex­
ecution, but have not yet written their results into the 

register file, may be bypassed as operanill; for subse-
quent instmctions. 

Integer data path 
The R4000's M-hit execution unit includes a 64-bit 

register file, load aligner, ALU, shifter, multiplier, and 
divider. The 64-hit data path supports extended ad-



dressing without the use of long pointers or segment 
registers.' 

The AiU stage, EX, was a speed-critical path. To shorten 
the cycle time, the AiU comprises an adder and a logical 
unit. The 64-bit, carry-select adder manipulates all 32-bit op­
erands as sign-extended, 64-bit operands. It also performs 
address calculations for loads, stores, and branches, and is 
used in integer multiply and divide. 

R4000 provides hardware support for integer multi­
ply and divide. It  uses a 2-bit Booth algorithm for inte­
ger multiplication and breaks each iteration into four 
stages: Booth decoding, multiplicand selection, partial 
product generation, and product accumulation. The 
carry-save adder (CSA) adds intermediate partial prod­
ucts, and two separate 64-bit registers Hi and Lo store 
the final product. 

The multiplier cycles at twice the pipeline clock frequency 
to produce two sums for each pipeline cycle. Since the R4000 
uses a CSA, the multiply results are in a sum-and-carry form 
and must be combined through full carry propagation. The 
integer AiU performs this operation when the result moves 
to the general registers. Integer multiply latency is 10 pipe­
line cycles for 32-bit operations and 20 pipeline cycles for 64-
bit operations. 

Divides use a 1-bit-per-iteration, nonrestoring algorithm. 
This algorithm leaves the quotient in a signed-digit form 
that must be converted back to a binary representation and 
possibly corrected at the end of the divide. Divides use the 
main integer adder for the remainder add or subtract opera­
tions, thus preventing the instructions from entering the pipe­
line during a divide. The implementation takes two pipeline 
cycles per iteration; each iteration resolves 1 bit of divi­
dend. The latencies are 69 pipeline cycles for a 32-bit di­
vide and 133 pipeline cycles for a 64-bit divide operation. 
We found this performance suffiCient, due to the infrequent 
occurrence of the integer divide operations. 

The integer shifter performs immediate or variable shifts from 
zero to 63 places. We designed the shifter to shift up to 32 bits in 
one cycle, making it half the size of a 64-bit shifter. To accom­
plish shifts greater than 32 bits, the pipeline slips for one cycle 
while forcing a 32-bit shift in the EX cycle. In the next cycle, the 
shifter performs the remainder of the shift. A trade-off between 
area and performance led to this decision. 

The register file is a 32-entry by 64-bit array with two read 
ports and one write port. It can read and write in the same 
cycle. In the case of reading and writing the same location in 
the same cycle, the R4000 provides local bypassing of the 
write data into the read bus. 

Floating-point unit 
The FPU implements the IEEE Std 754-1985.6 Its three 

functional units--multiplier, adder, and divider-operate on 
single- and double-precision operands. While the FPU ex-
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Delay 2 IF IS FR 

Delay 3 IF IS 

Target IF 

Figure 5. Branch delay. 

ecutes a multicycle operation, the CPU pipeline can con­
tinue in parallel until the FPU detects a data or resource 
dependency. It can transfer data directly to or from the CPU 
or cache memory. The FPU executes up to three instruc­
tions concurrently, one per functional unit. It retires only 
one instruction per cycle7 

The floating-point multiplier (see Figure 6 on next page) 
uses a modified Booth algorithm that scans four overlapping 
groups of 3 bil.'; at once. Thus 8 bits of the multiplier operand 
can retire with each iteration. The mantissa portion of the 
multiply array uses four CSAs in a pipeline fashion. The mul­
tiplier pipeline includes four stages: 

• Booth encoding and multiplicand selection, 
• partial sum-and-carry generation of selected multipli­

cands, 
• partial product summation of the previous stage result 

with the previous iteration result, and 
• guard, round, and sticky-bit generation. 

In the cycle following the last iteration of the multiply, the 
sum and carry from the multiplier array travel to the float­
ing-point adder to produce the final rounded product. 

The multiplier cycles at twice the pipeline clock frequency, 
so each iteration through the multiplier takes only half a pipe­
line cycle. R4000's high-speed operation demands that the 
multiplier array use a two-phase design approach. To reduce 
the clock skew in this region, the multiplier uses stronger 
clock drivers (with lower fanout). These drivers allow more 
aggressive latch designs with improved set-up times, and thus 
reduce overhead. All CSA and Booth multiplexers use dy­
namic logic design due to speed criticality. 

The floating-point multiply latency is seven pipeline cycles 
for single-precision and eight for double-precision operations. 
The repe-at rate i� three pipeline cycles for single precision and 
four for double precision. 
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We hased the floating-point divide 

operation on the SRT divide algorithm," 

which scle<.1S thc quotient digit based 
on an estimation of the partial remain-
der. This technique has the advantage 
of no t requiring a full-precision adder 

to add or subtract the partial remainder 
with a divisor multiple. Therefore it nJns 
faster. The latency and repeat rates for 
floating-point divide operations are 23 

and 22 cycles for single-precision op­
erations and 36 and 35 cycles for double­

precision operations. (See Table 1.) 
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Figure 6. Block diagram of the floating-point multiplier. 

111e floating-po int adder (Figure 7) processes one add or sub­

tract in four pipeline cycles and starts a new operation every 
three pipeline cycles for both single- and double-precision op­
erations. The adder also assists dIe multiplier and divider for 
cleanup operations, such as rounding , and final result 
computation. 

To provide necessary bandwidth to support a two-staged, 
pipelined multiplier (as seen hy the adder), we designed the 
adder to process a pair of double-precision, multiply-and­
add instructions every four cycles. 

The adder comprises four stages: 

• unpack, 
• mantissa add, 
• resu lt rounding, and 

• mantissa shift (alignment/normalize). 

The adder has two data entry paths. One accommodates the 
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tions, no new computational instruc­

tio n may start while it calcula tes a 

square root. The square-root latency 

is 54 and 112 cycles fur single- and 
double-precision operations. 

Designers equipped the floating-point divider and the multi­
plier units with features that allow d1e circuit to power down at 
the end of every operation by recirculating zeros in the unit. 

The floating-point register me is a 32-entry by 64--bit array 

with two read ports and two write ports. We dedicated one of 
dIe write ports for FP computational result writebacks and the 
other for FP load, store, and move instructions. In the case of 

reading and writ ing the same location in the same cycle, dIe 
register me locally bypasses the write data onto the read huses. 

Stalls, slips, and exceptions 
Pipeline hazards interrupt sm(xlth pipe line flow (Figure 

2), causing stalls, slips, or exceptiOns. In stall cycles, the pipe­

line does not advance. When the R4000 processes the stall, it 

restarts the pipeline and reissues several instructions to gen­
erate correCT results . 

For slips. such as the load interlocks detailed earlier, only 



the DF, DS, TC, and WE stages advance 
while the IF, IS, RF, and EX stages do 
not. When the slip condition is resolved, 
the instructions in the pipeline resume 
from whatever stage they are in. For ex­
ceptions, the processor suspends the nor­
mal sequence of instruction execution 
and transfers control to an exception 
handler, detailed later. 

Figure 8 on the next page shows how 
the entire pipeline stalls for a data cache 
miss on load instruction L Since the load 
miss processing takes several cycles, the 
pipeline stalls until the secondary cache 

and main memory access completes. Note 
that before we got into the stall , instruc­
tion 4 may have used erroneous data in 
its EX stage that was bypassed from the 
load instruction. During the restart se­
quence, the processor repeats the EX stage 
for instruction 4 to obtain the correct data 
from the LOAD operation. The different 
stall types include 

• Data cache miss, detected by the 
data tag check 

• Data first stage stalls, which can oc­
cur for three mutually exclusive 
groups of instruc.tions. 1) The pipe­
line stalls to resolve whether the FP 
instruction will cause an exception 
before moving on to guarantee pre­
cise exceptions. 2) The pipeline stalls 
to let the instruction sign extend the 
result. 3IThe pipeline stalls to let the 
store buffer entries retire to memory 
because control logic has detected a 
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• lnstrnction translation look-aside 

buffer stalls, for instruction TIB 
misses (explained in detail later) 

• Multiprocessor, generated by requests from other 
processors 

Table 1. Integer and floating-point operation 

Slips occur when the result of an instruction is not avail­
. able until the DS stage of an instruction, as occurs with loads. 
Floating-point instructions interlocked for resources also cause 
slips, as do integer instructions waiting for an integer multi­
ply or divide operation to complete. Variable shifts and shifts 
greater than 32 bits also use slips since these operations take 
two cycles to complete. 

latencies and repeat rates in pipeline cycles. 

Integer Floating point 
!.i!ten�� � 

32 bits 64 bits SP DP SP DP 

Add/su btract 1 1 4 4 3 3 
Multiply 10 20 7 8 3 4 
Divide 69 133 23 36 22 35 
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Figure 9. Circuit pipelining. 

The R4000 processes many stalls and slips simultaneously. 

By slipping on instructions that need the same resources as a 
multicycle floating-point instruction, it can simultaneously 
accept other stall conditions from instructions that continue 

to advance further down the pipeline. Also, multiprocessor­
initiated stalls, which can stall the pipeline to examine the 
cache, occur simultaneously with ocr, OFT', and ICf stalls 
described above. 

stall and slip implementation. The state machines that 

control pipeline flow (run, slip, and restart machines) oper­

ate in a pipelined fashion. When logic detects a stall or slip 
condition in a given cycle, the soonest the R4000 can process 

this condition is the end of the next cycle. 
Figure 9 shows a sample timing diagram. In the first phase, 
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Resolve Distribute 

Generate Resolve Distribute 

the pipeline control unit evaluates logic that may generate a stall 
or slip condition. In phase 2 and the second phase 1, the state 

machines are resolved. Finally, the pipeline control signals are 
distributed throughout the chip during the second phase 2. 

After processing a stall, the R4000 initiates a two-cycle re­
start sequence before the pipeline can run again. During this 
sequence, it reevaluates portions of the pipeline with cor­

rected information hefore normal pipeline flow resumes. A:; 
shown in Figure 8, it repeats three activities: data memory 
access, execution, and instruction issuance. 

Exception handling. The R4000 processes exceptions 

from sources in different pipeline stages. It prioritizes incom­

ing exceptions and gives highest priority to the faulting in­
struction furthest along the pipeline. Table 2 lists different 



exceptions and the stages where they are signaled. 
During normal processing, the R4000 nullifies pipeline 

stages for three reasons. 

• When an exception occurs, it nullifies instructions after 
the faulting instruction. 

• It nullifies certain instructions in branch delay slots when 
a branch is taken. 

• When the pipeline slips, it creates a nullified instruction 
"bubble," as the back end of the pipeline advances and 
the front end does not. 

After being nullified, the instruction does not commit to 
any state. For performance, the processor inhibits any stalls 
signalled by the instruction. For example, if an instruction 
will cause a data translation exception, which is detected at 
the end of the DS stage, the processor will not allow it to 
signal a cache miss in the TC stage. 

Memory management unit 
The MMU translates virtual addresses into physical addresses 

using an on-chip translation look-aside buffer (TLB). It man­
ages exceptions, controls the cache subsystem, and provides 
diagnostic and error recovery facilities. Compared to the R3OOO, 
the R4000 MMU provides enhanced operating system sup­
port including increased TI.B entries, variable page sizes, 64-
bit architecture support, supervisor privilege level, timer 
interrupts, and a physical address trap. 

We wanted to increase the number of entries in the TLB 
over the 64 entries available in the R3000 since this boosts 
performance in a wide range of applications. Using 128 entries 
required too much area for the fuJly associative lookup circuit. 
Therefore, we implemented a 48-entry TLB with each entry 
mapping two consecutive pages and producing 96 effective 
entries. The TLB superpipelines in the R4000 (across the DF/ 
DS pipeline stages) and runs in parallel with the cache access. 

The instruction translation look-aside buffer (ITI.B) is a 
two-entry, fully associative translation buffer that is a subset 
of the main TI.B. This mB supports only a 4-Kbyte page 
size, to reduce complexity with minimum performance im­
pact. When an instruction miss occurs in the instruction buffer, 
the pipeline stalls and the main TI.B refills the ITLB. When a 
branch is taken into a different page, the branch target in­
struction address translation uses the TLB bandwidth avail­
able during the data first and data second stages of the branch 
instruction. Since the instruction first and instruction second 
stages of the branch target line up with the data first and data 
second stages of the branch instruction, the target address 
translation refills the ITI.B without stalling the pipeline. 

The R4000 implements variable page sizes on a per-page 
basis, varying from 4 Kbytes to 16 Mbytes. TIlis helps to re­
duce thrashing of the TI.B in some cases, such as in the use 
of a frame buffer which uses large data blocks. It implements 

Table 2. Exceptions. 

Cycles Exceptions 

IF -

IS -

RF Instruction translation 
EX Interrupt 

Bus error instruction 
Illegal instruction 

Breakpoint 
Syscall 
Coprocessor unusable 
ECC instruction 
Virtual coherency instruction 

DF -

DS Overflow 
Floating point 

TC TLB modified 
Data translation 

WB Bus error data 
Virtual coherency data 
Watch 

NMI 
Reset 

variable page sizes by having a mask associated with each 
TLB entry. When addresses approach the TI.B for translation, 
the corresponding mask bits in the TLB specify which virtual 
address bits participate in the comparison and translation. 

The R4000 instruction set architecture supports 64-bit ad­
dressing. The current revision of the R4000 uses 40 bits of the 
64-bit virtual address space. Increasing the effective virtual 
address size above 40 bits would have made the TI.B wider 
than the data path and difficult to fit into the layout. Hard­

ware explicitly checks the unused upper bits (bits 61:40) of 
the virtual address to make sure they are zero, ensuring a 
smooth transition for software as the size of the virtual ad­
dress grows in future revisions. The R4000 supports a physi­
cal address of 36 bits. 

The unit includes a supervisor privilege level of operation, 
in addition to the kernel and user levels present in previous 
company designs. This mode improves operating system sup­
port with more privilege levels. 

A CACHE instruction provides a set of operationS allowing 
the implementation of both a high-performance, symmetric, 
multiprocessing operating system and a high-performance 
workstation operating system. This instruction makes some 
tasks more efficient, including block copy, page zeroing, cache 
initialization, page flushing, and cache testing. 

The CACHE instruction supports a number of operations 
including 
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• load and store of cache tags, 
• selective invalidation of cache lines, 
• create dirty exclusive data cache lines, and 
• forced writeback of lines. 

'Ine J{4000 provides a physical address trap feature for debug­
ging software. TIlls takes an exception on a reference to a se­
lected physical address, which is specified in the Watch register. 

The Count and Compare registers implement a timer inter­

rupt service. The Count register acts as a timer, incrementing at 
half the pipeline clock rate. When the value in the Count regis­

ter equals the value in the Compare register an interrupt occurs. 

Memory hierarchy 
The R4000 fits a range of system configurations . A pro­

grammable system interface permits tuning to different sys­
tem specifications and exploiting future improvements in 

DRAM and SRAM design. The R4000 supports a two-level 

cache hierarchy that configures to run with different line sizes. 
Multiple cache coherency protocols available on the R4000 
support several multiprocessor systems9.!O 

The limited available primary cache size necessitated sup­
port for a closely coupled off-chip secondary cache required 
by high-end systems. We estimated the cache control section 
required 10 percent extra logic to support systems both with 
and without secondary cache. The R4000 manages its primary 
and secondary caches using a write-back method, in which 
stores send data into the caches, but the data do not write 
back to memory until the cache line is replaced or flushed. 

The processor maintains its primary caches as a subset of the 

secondary cache contents. TIlls prevents the occurrence of vir­
tual aliases, which could lead to incorrect operation. A virtual 
alias occurs when multiple virtual addresses in the primary cache 
map to the same physical address in the secondary cache. 

The p rimary caches are virtually indexed, so the second­
ary cache stores 3 bits of the virtual address (bits 14 to 12) 
needed to locate the primary cache lines that may contain 

data from a particular secondary cache line. (This virtual ad­

dress infollnation will support primary caches up to 32 Koytes 
each). Because only one copy of the secondary cache line 
can reside in the primary cache, no two virtual addresses in 
the primary cache can map to the same physical location. 

Without this capability, R4000 would have to flush the large 

secondary cache to prevent aliasing . This is time consuming, 

especially for aliases caused by reusing pages for I/O. 
Primary cache. While the initial version of R1000 uses an 

on-chip primary cache size of 8 Kbytes of instruction and 8 
Kbytes of data, we can easily increase these sizes. 'Ine cur­
rent revision supports primary caches up to 32 Kbytes each 
of instmction and data. 

The primary cache is a direct-mapped, Virtually indexed, 
physically tagged cache. Direct mapping makes it easy to find 
the location of a particular line in the cache and to manage 
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Cache consistency between the primary and secondary caches. 
As the primary cache is virtually indexed, the virtual ad­

dress generated by R4000's address unit looks up the cache 
line, while the address translation occurs in parallel. The ad­
dress translation produces the physical address of the access, 
and the comparator compares it with the physical address 
read from the tag of the cache lines. The processor uses data 

coming out of the cache before it checks the tag, reducing 
the delay before load data can be used by one cycle. 

Direct-mapped caches access faster than associative caches, 
but their hit rate is not as high as for set-associative caches. 
This penalty decreases as we increase the size of the primary 
caches. The primary caches support two software-program­
mable line sizes (16 and 32 bytes) that users can change 
independently for the instmction and data caches. 

R4000 needs two cycles to access data in the primary cache, 
but a new address may enter every cycle. This is possible 
because the processor accesses the cache array in one cycle, 
excluding the address buffering and the data drive time. The 
address does not acces dle array until the begi nning of phase 
2 of the first cycle, when the data from the previous access 

have been latched. 
The primary instruction and data caches have separate data 

and tag arrays. The data cache data array and tag array may be 

addressed separately every cycle. During the data first and 

data second stages of a store instruction, the processor ac­
cesses the tag array for the store, while it may access the data 
array for a previous store that has passed its tag check and has 
data waiting in the store buffer. The two-entry store buffer 

decouples the data to be stored from the rest of the pipeline. 
Since the architecture supports byte stores, the data cache 

array is arranged in eight blocks. Each block has a byte of 
data, a parity bit, and a redundant bit. The primary caches 
access 64 bits of data at a time, with the ability to write se­

lected bytes. Row and column redundancy tenus improve 

the die yidd. To replace a defective row or column in one of 
the cache arrays with a redundant row or column, the manu­

facturer must blow the laser fuses. 
Secondary cache. The secondary cache is direct mapped, 

physica lly indexed, and physically tagged. Manufacturers can 
build it from industry-standard static RAMs of different speeds 
and densities. 'Ine US-bit-wide secondary cache interface 
allows a single access to the secondary cache to fill a four­
word primary cache line. This cache supports a line size of 

four, eight, 16, or 32 words. 
A physically indexed secondary cache makes multiprocessor 

support easy as all addresses on the system bus can be physical, 
eliminating the need for extra address translation information. 

With R4000 supporting a maximum secondary cache size 
of 4 Mbytes, and with several such caches present in a mul­
tiprocessor system, the pr obability of a soft error demands 
support for error checking and correction. This ECC support 
for the secondary cache corrects 1-bit errors and detects 2-bit 



errors. R4000 perfonns on-chip tag correction, but it needs 
external hardware support to correct data errors. 

We chose parity support for the primary cache since the 
on-chip caches are small and less prone to soft-error failure. 

If the operating system finds a parity error in the primary 
cache on a clean line, it can arrange to refill the primary 
cache line. When it detects a cache error, the processor takes 
an exception and jumps to uncached space. There the oper­
ating system examines the cache error control register, which 
specifies the type and location of the cache error. 

One complex operation carried out in the cache logic is the 

write-back of dirty lines to memory. During writebacks, a state 
machine, the zipper, merges dirty (corrupted) lines in the pri­
mary cache with the data from the secondary cache as the line 
transfers to the system interface. The zipper checks tags in the 
primary instruction and data caches. It invalidates both instruc­
tion and data lines while merging any dirty data from the pri­
mary data cache. This operation completes in four pipeline cycles 
to match the maximum speed supported by the secondary cache. 

System interface. The system interface lets the processor 
access external resources required to satisfy cache misses. It 
also allows an external agent access to some of the processor's 
internal resources. For multiprocessor system�, the system in­
terface provides the processor mechanisms necessary to main­

tain cache coherence of shared data. 
R4000 uses a 64-hit-wide system interface to increase main 

memory bandwidth compared with previous 32-bit system 
interfaces. 1ne system interface can receive a double word 
every two pipeline cycles. If R4000 is operating without a 
secondary cache, the system interface can operate at the maxi­
mum system interface data rate, since the primary cache has 
a 64-bit data path that supports this rate. With a secondary 
cache, the maximum data rate the processor can support 
directly relates to the secondary cache access time. If the 

access takes too long, the processor cannot transmit or ac­
cept data at the maximum rate. The sec-
ondary cache only accepts· reads and 
writes occurring in at least four cycles. 
With fast static RAMs that support a four­
cycle access, the secondary cache inter­
face can keep up with data coming in 
from the system interface at the maxi­
mum rate. Designers can program the 
system interface to transmit data in a 
range of rates, to suit different system 
and secondary cache speeds. 

The system interface can be pro­
grammed to be clocked by a divided­
down version (divided by two, three, or 
four) of the internal clock frequency. The 
internal clock runs at twice the 

Multiprocessor 
interconnect 

network 

I 
Almost anything 

Snoopy bus 
Cross-bar switch 
Butterfly switch 
Write-invalidate 
Write-update 

sions of the R4000 to run faster versions. For example, a 
system designed for a 50 MHz R4000 (with the system inter­
face programmed to halve the internal 100 MHz pipeline 
clock) could implement a 75 MHz R4000 with the system 
interface clock divisor changed to divide by three. A 75 MHz 
external clock generates a 150 MHz internal pipeline clock, 
which the divisor divides by three to produce a 50 MHz sys­
tem clock. 

The R4000 supports an overlapped mode of operation on 
the system interface when configured with a secondary cache. 
When a miss occurs in the secondary cache that requires a 
line to be written back to rnain memory, the system interface 
sends out a read request for the miss and then immediately 
send� out a write with the writeback data. 1bis saves the 
R4000 from haVing to buffer up secondary cache lines before 
they are written back, which would usc significant chip area 
to support the largest secondary cache line of 32 words. 

MultipnK:eSSOr support- The R4000 provides mechanisms 
to implement a variety of cache cohcrency protocols that 
may be snoopy or directory based (see Figure 10). Designers 
closely coupled the multiprocessor logic with the pipeline 
activity to allow access to the primary caches. 

The starting point for R4000's coherency model was the 
MESI (modified, exclusive, shared, invalid) protocol. MESI 
implements a four-state cache coherence protocol (the states 
are invalid, clean exclusive, dirty exclUSive, and shared). R4000 
implements a fifth, the dirty shared state (Figure lIon the 
next page), which allows for efficient implementations of a 
semaphore given the support for update protocol. When a 
processor successfully acquires a semaphore by gaining a 
dirty shared copy of the semaphore, all the other processors 
using that semaphore will be updated with its new value. 

They don't need to generate additional transactions on the 
bus. With the MESI protocol, a request from another proces­
sor (that is, an intervention) can cause writebacks to the sys-

I 
User ASIC 

System 
interface 

� 
Low-jevel. generic interface 

• • 
Read noncoherent 
Read coherent 
Read coherent exclusive 
Write 
Invalidate 
Update 

Read data 
Read data, shared 
Snoop request 
Intervention request 
State change 
Invalidate 
Update 

processor's input, or master, clock. This 
allows systems designed for slower ver- Figure 10. Multiprocessor protocols. 
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Figure 1 1 .  Cache coherency diagram. 

tern memoty. These writehacks place an additional hurden 
on the system design. (The R4000 cannot process three-party 
transactions on interventions.) The processor stores the state 
of a cache line along with the tag amI data for each line in 
the caches. 

When R4000 receives an external snoop, intervention, invali­
date, or update, it checks the secondary cache tag and state bits 
while allowing the processor to operate within the primaty cache 

space in parallel. Misses in the secondary cache require no further 
action because the primaty is a subset of the secondaty. If an 
external event hits in the secondaty c.ache, acee,s to the primaty 
may be required to complete the (r,msaction. To gain access to 
the primary Cache, the processor stalls the CPU pipeline. 

The processor supports write·invalidate and write-update 
protocols, controlled on a per-page basis. The TIB may mark 
pages as uncached, noncoherent, coherent exclUSive, coher­
ent-write exclusive , and coherent-write update . Table 3 shows 
examples of the actions caused by these attributes. 

'lbe R4000 provides a load linked and store conditional 
pair of instructions to provide synchronization between pro­
cessors on the system bus based only on cache coherency. 
An example of this is the fetch-and-add operation. 

LOOp: II TO,O (TI) 
addu TO, TO, 1 
sc TO, ° (TI) 
beq TO, 0, Loop 

;load counter, set load link bit 
;increment 
;store back if load link bit still set 
; retty if store failed 

The store conditional instruction fails if the location has been 
invalidated or updated since the preceding load linked in­
struction. This mechanism can implement semaphores, bit­
locks, fetch-and-add, and other synchronization mechanisms. 
It also guarantees that at least one processor on the bus will 
get the semaphore on the first attempt so deadlocks or long 
stalls will not occur. 

Design methodology 
We chose full-custom data path layout for maximum speed 

and the highest packing density. Designers implemented most 
of the control sections using a logic syntheSiS and optimiza­

tion tool and laid them out using standard cell place-and­
route methodology. However, to achieve our target cycle 
times, we had to custom design and lay out hy hand some of 
the control sections in the critical paths. 

We used a two-phase, zero-overlap clock strategy and dis­
trihuted it throughout the chip with a balanced clock tree, to 
control skew. A phase-locked loop generates four times the 
frequency of the external input (master) clock and distrib­
utes it through the chip . Divide-hy modules at the end of the 
clock tree generate 2x- and Ix clocks. The processor pipe­
line and most logic use the 2x clock, which cycles twice as 

fast as the master clock frequency. The integer multiplier and 
floating-point multiplier use the high-speed 4x clock , four 
times the master clock frequency. 

The chip uses two types of register/latches: stacked and 
pass-gate dynamic. Stacked registers, used extenSively, are 
immune to clock skew as long as there are zero or an even 
number of inversions between the two stacked latches. How­
ever, when a short setup time and fast clock-to-output delay 

were necessaty, we used pass-gate dynamic 
latches. In these cases, a design rule en­

Table 3. Examples of actions caused by coherency attributes. 
forced a delay equivalent to the time needed 
to pass through at least three inverters of a 
fan-out of three between the latches to pre-

Algorithm Load-miss Store-miss 

Word read Word write Uncached 

Noncoherent Block read noncoherent Block read noncoherent 

Coherent exclusive Block read exclusive Block read exclusive 

vent data slip-through. 

Coherent write exclusive Block read 

Coherent write updat Block read 

Block read exclusive 

Block read/update 

We equipped the output buffers with a 
digitally controlled slew rate to reduce noise 
injected into the system buses. One butTer 
determines the digital control signal values 
for the rest of the buffers. This output buffer 
sends the pad a signal, which in turn feeds 
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back into an input pad. The processor samples the round­
trip delay and references it with the clock cycle. Users can 
progrd.m the desired amount of skew in terms of a fraction of 
a clock cycle. Depending on the control signals generated, 
the strength of the output buffer's pullup and pull downs are 
adjusted. (See Figure 12.) 

We laid out the chip using a generic Mips design rule, so 
all our semiconductor partners can work from a single data­
base. This database is based on a 1 .0-J.lm-dmwo, two-layer 
metal, CMOS technology. Manufacturers are prodUCing the 
R4000 in 0.811 technology. 

Verification 
Mips carried out a functional simulation of a register trans­

fer level model during the development of the R4000. The 
RTI model executes at about 1,000 processor cycles per minute 
on a 20-MIPS, R3000-based Magnum workstation. Designers 
divided the chip into major functional blocks (CPU, FPU, 
MMU, caches, and system interface) and wrote directed diag­
nostic tests to exercise these functional units. Trace compari­
sons of diagnostic tests run on an instruction-level simulator 
and on the R4000 RTI verified compliance with our architec­
ture. To tmce all the required signals and data in the R4000 
superpipeline, we added more verification logic to the R4000 
RTL model so it could capture traces for comparison with the 
instruc.tion-Ievel simulator traces. 

We performed extensive automatically generated random di­
agnostic tests, again using our instruction-level simulator for trace 
comparison. We wrote additional verification diagnostics to en­
sure that all thc arcs of the state machines within the R4000 were 
exercised. Our designers executed R4000 diagnostics within an 
RTI model of a system configurd.ble at runtime to include a sec­
ondary cache and change any of the programmable parameters 
that control the system interface. They booted the Unix operating 
system on the R4000 RTI model about 
six months before Mips gave the design 
to its manufacturing partners. It took a 
5O-MIPS Mips 6280 seven days of pro­
cessing to reach the Unix prompt 

We verified the multiprocessor ca­
pabilities of the R4000 using a number 
of different simulation models. A uni­
processor RTL simulation of the R4000 
checked that the R4000 could gener­
ate and process all the multiprocessor 
requests defined by the R4000 inter­
face specification. We also developed 
a simulation environment that could 
support multiple R4000 processors at 
the RTI level. Under this environment 
we ran directed diagnostic tests and 
self-checking random tests. 

Data 

Tristate ..... ---+-1 
drivers 

implementation of the R4000 matched the RTI description 
by generating a gate-level model from schematics. Obviously, 
this model ran much slower than the RTI model, and so we 
needed a large compute resource to run the diagnostic test 
suite at the gate level. In the final stages of verification we 
used ten 6280 machines and around thirty 20-MIPS Magnum 
workstations. 

Testability and packaging 
The R4000 implements JTAG (IEEE Std. 1149.0 boundary 

scan specifications, intended to provide a test capability for 
the interconnection hetween the R4000 processor, the printed 
circuit board, and other components on the board. 

The chip comes in two package configurations. The 
R4000MC and R4000SC, which have the 1 2S-bit data inter­
face to the secondary cache, are packaged in a 447-pin lead 
or plastic grid array. The R4000MC supports multiprocessor 
systems while the R4000SC supports high-performance uni­
processor systems. The R4000PC, for desktop, low-cnd serv­
ers, and embedded control systems, comes in a 179-pin PGA 
with no secondary cache interface. 

TABLE 4 USTS SPECMARKS FOR SIMillATED RESULTS of a 
realistic memory system. (See next page). We simulated the 
CPU time and most of the important aspects of memory and 
heuristically added the I/O times. Correlation of simulations 
with R4000 systems in the lab show the simulations to be 
pesSimistic. til 
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Table 4. Simulated Specmarks for a 50-MHz 
external-clock R4000. 

S-cache size P-cache 
Benchmark 4 M bytes 5 1 2  Kbytes only 

Gec 46 43 2 7  

Esp resso 54 54 38 

Sp ice2g 6 42 3 8  2 7  

Dodue 49 46 3 3  

Nasa7 56 46 43 

Li 66 65 47 

E q ntott 54 52 50 
Matrix300 2 78 273 1 77 
Fpppp 55 54 29 
Tomcatv 58 59 37 

Simu lated SPEC 63 59 42 
Simu lated SPEC int 55 53 39 
Simul ated SPEC fp 69 64 44 

C PI (si m u l ated SPEC) 1 . 5 1 . 6 2 . 3  

great SUppOt1 from other groups within Mips that had t o  put 
up with our constant demands for SUppOt1. Unfot1unately, 
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