
The Mips R4000 Processor

Sunil Mirapuri

Michael Woodacre

Nader Vasseghi

Mips Computer Systems

fO IEEE Micro

Computer architects estimate that the current generation of 32-bit machines will be obsolete
by 1997. The R4000 employs a 64-bit architecture. using 64-bit registers and generating 64-bit
virtual addresses. Superpipelining techniques allow it to process more instructions simulta­
neously than the previous generation of microprocessors. Specmark ratings indicate it per­
forms higher than other single-chip micropnx:essors.

ii
he R1000 is a highly integrated, 64-bit
RISC microprocessor that provides a
simple solution to the increasing de­
mands on the size of address space,

while maintaining full compatibility with previ­
ous Mips processors. Its primary features include

• on-chip CPU, FPU, MMU, primary caches,
and system interface logic (See Figure 1),'

• superpipelining techniques,
• on-chip secondary cache control logic with

a flexible interface,

• a programmable system interface for high­
performance multiprocessor servers and low­

cost desktop systems,

• flexible multiprocessor support, and
• 1.2 million transistors implemented in CMOS

technology.

In addition, the R4000's single-chip implementa­
tion makes it easier to scale the clock as technol­
ogy improves. According to SPEC benchmark
tests, it achieves the highest perfol1nance of any
microprocessor chip.

A 64-bit architecture
With programs growing by one-half to one bit

of address sp-dce per year,2 a greater than 32-bit
address space should be useful by 1993 and re­
quired by 1997. In creating the 64-bit R4000 , de­
signers extended the R3000 architecture by
increasing the data word size and virtual address
space. This design entailed widening the machine

registers and data paths, and sign-extending 32-
bit data when loading into registers. Since certain
operations work differently on 64-bit data than
on sign-extended 32-bit data, we added additional

instruaions for 64-bit data, including integer loads,
stores, adds, subtracts, shifts, multiplies, divides,
and coprocessor moves.

The chip also supports a 64-hit virtual address
space with wide virtual address data paths. It
stores 32-bit addresses as 64-bit entities in sign­
extended form and stores the results of address
computation on these entities in sign-extended
form. Thus it continues to support the previous
32-bit architeaure's addressing.'

The hardware cost of extending the architec­
ture to 64 bits was about 7 percent of the die

0272-1732/92/0400-0010$03.00 © 1992 IEEE

area. A longer, M-hit ALU stage repre­
sents the cycle time speed penalty.

CPU pipeline
The R4000's eight pipeline stages al­

low it to process more instructions at once
than can the R3000's five-stage pipeline.'
Superpipelining has split the instruction

and data memory references across two
stages. Consequently, we could distrib­
ute the logic more evenly acTOSS pipe­
line stages (See Figure 2.) The

single-cycle ALU stage takes slightly more
time than each of the cache access stages.

Although the superpipeline increases

the cycles per instruction due to longer

branch and load delays, it greatly im­
proves the achievahle cycle time. Fu­

ture increases in cache size will not
require a fundamental redesign of the
superpipeline. We considered super­
scalar design as another way to increase
instruction-level parallelism, but our
studies showed that with current tech­
nology the chip muld perform higher
with a less complex superpipeline.

Figure 3 on the next page shows op­
timal pipeline movement, completing
one instruction every internal clock
cycle. The internal, or pipeline, clock
rate of the R4000 is twice the external
input, or master, clock frequency.

The processor accesses the instruc­
tion cache during the instruction first
(IF) and instruction second (IS) stages,
with a new cache access starting every
cycle. The MMU translates the instruc­
tion virtual address into a physical ad­
dress during these stages. The
instruction bits available at the begin­
ning of the register file (RF) stage are
decoded and used to access the regis­
ter me. Also at this time, the tags read
from the instruction cache are com­
pared with the physical address to de­
termine whether the instruction cache
access was a hit. If so, the instruction
can advance to its execution (EX) stage.
For nonmemory operations, the
instruction's result is available by the
end of the EX stage.

In the data first (DF) and data sec­
ond (DS) stages, the R4000 accesses

Decode I
Data

I Tag I I Tag I
Instruction

J Decode I cache cache

I .. i i I Store I buffer/aligner IBus
n t System
Write buffer I

address
and data

.. SC Data
SCTae

SCAddr
DBus

, i
System

�
control

�
FP regmter fite -I 1 MMU registers

P-cache
control 1TL6

FP pipeline bypass
TLB

FP status register

]--I DVAIVA System,
FP multipty unit ..- S"",_ f- Address unit 00",""

Program
FP divide unit counter

n � t

� - Register file
Pipeline ALU

FP add. convert, and con'''"

square root unit Load allgnerlstore drtver

Integer multiplv/divide
MD Hi. MD Lo

SC System control IVA Instruction\lirfllaladdress
DVA Data virtual address FP FIOBting point

Figure 1. R4000 internal block diagram,

IF IS RF EX DF DS Te WB
Instruction

cache : 0 DF Data first IS Instruction second

access r:lnstruction:
: tag :

Instruction : check :
address : :

translation nstruction:
decode :

DS

EX
IF

Data second RF Register file

Execution TC Tag check
Instruction first WB Write back

Read J.,ALU �
register ' operation:

(D-cache 0
access) J+' Data

file , tag
Data address : check

translation)

Figure 2. R4000 pipeline activities.

I

April 1992 11

R4000

Eight
deep

Master
clock cycle ..---

I IF L IS I RF I EX I DF I DS 1 TC WB

I IF I IS I RF I EX I DF I DS TC WB I
I
PiPeline

l I IF I cycle IS I RF I EX I DF DS TC I WB I
I IF I IS I RF I EX DF DS I TC I WB I

I IF I IS I RF EX DF I DS I TC I WB I
I IF I IS RF EX I DF I DS I TC I WB j

I IF IS RF I EX I DF I DS I TC I WB I
IF IS I RF I EX I DF I DS I TC I WB I -

Current
CPU
cycle

Figure 3. R4000 pipeline and instruction overlapping.

the data cache, with a new access starting every cycle. The
MMU translates the data virtual address into a physical ad­
dress during these stages. In the tag check (TC) stage, the
R40(){) compares the data tags from the cache tag array with
the translated address to determine if the data cache access
was a hit. For stores, if the tag check passes in TC, the data
travel to the store buffer and enter the data cache the next
time cache bandwidth is available. Instmctions finally go to
the write back (WE) stage where the data are written to the
register file if necessary.

Load interlocks and branch instmctions dismpt the normal
flow of the pipeline. For loads, the data are not ready until
the end of the cache access in the DS stage. If any of the two
instructions after a load use the result of the load in their EX

Load
Use load result

Full Slip Slip Full Full
Run Run Run Run Run

A 'DF: DS : TC : WB:
B EX: DF : DS: TC WB
C RF: EX'
D IS: RFtEX:
E IF: IS ' RF"'EX
F : IF"IS"RF

: �IF:IS
: : : IF
, , ,

DF
EX
RF
IS
IF

Figure 4. Load interlock/slip cycle.

12 IEEE Micro

DS
DF
EX
RF
IS
IF

TC: WB:
DS: TC: WB
DF: DS: TC
EX: DF: DS
RF: EX: DF

stages, the hardware interlocks and slips. As shown in Figure
4, during the slip the DF, DS, TC, WB stages of the pipeline
advance while the IF, IS, RF, EX stages do not. For the load
interlock, this permits the load instmction to advance and
complete its cache access, while the instruction that depends
on the load remains in the EX stage.

The result of a branch condition check and a branch target
address calculation are not known until the end of the EX
stage. (See Figure 5.) By that time, up to three subsequent
instructions have entered the pipeline. If the branch is not
taken, the processor can continue to execute all instructions
that have entered the pipeline with no penalty. If the branch is
taken, the processor accesses instructions at the branch target
address. For taken branches, the Mips architecture allows one

A
B

C
D
E
F

instruction after the branch to complete before execut­
ing the branch target instruction. The other two instmc­
tions that have already entered the pipeline are nullified.

We considered a branch target scheme that prefetches
instmctions from both paths of a branch, producing a
smaller hranch penalty. However, implemcntation con­

straints required the simpler approach without a
prefetching scheme.

Results of insrmcrions that have completcd their ex­
ecution, but have not yet written their results into the

register file, may be bypassed as operanill; for subse-
quent instmctions.

Integer data path
The R4000's M-hit execution unit includes a 64-bit

register file, load aligner, ALU, shifter, multiplier, and
divider. The 64-hit data path supports extended ad-

dressing without the use of long pointers or segment
registers.'

The AiU stage, EX, was a speed-critical path. To shorten
the cycle time, the AiU comprises an adder and a logical
unit. The 64-bit, carry-select adder manipulates all 32-bit op­
erands as sign-extended, 64-bit operands. It also performs
address calculations for loads, stores, and branches, and is
used in integer multiply and divide.

R4000 provides hardware support for integer multi­
ply and divide. It uses a 2-bit Booth algorithm for inte­
ger multiplication and breaks each iteration into four
stages: Booth decoding, multiplicand selection, partial
product generation, and product accumulation. The
carry-save adder (CSA) adds intermediate partial prod­
ucts, and two separate 64-bit registers Hi and Lo store
the final product.

The multiplier cycles at twice the pipeline clock frequency
to produce two sums for each pipeline cycle. Since the R4000
uses a CSA, the multiply results are in a sum-and-carry form
and must be combined through full carry propagation. The
integer AiU performs this operation when the result moves
to the general registers. Integer multiply latency is 10 pipe­
line cycles for 32-bit operations and 20 pipeline cycles for 64-
bit operations.

Divides use a 1-bit-per-iteration, nonrestoring algorithm.
This algorithm leaves the quotient in a signed-digit form
that must be converted back to a binary representation and
possibly corrected at the end of the divide. Divides use the
main integer adder for the remainder add or subtract opera­
tions, thus preventing the instructions from entering the pipe­
line during a divide. The implementation takes two pipeline
cycles per iteration; each iteration resolves 1 bit of divi­
dend. The latencies are 69 pipeline cycles for a 32-bit di­
vide and 133 pipeline cycles for a 64-bit divide operation.
We found this performance suffiCient, due to the infrequent
occurrence of the integer divide operations.

The integer shifter performs immediate or variable shifts from
zero to 63 places. We designed the shifter to shift up to 32 bits in
one cycle, making it half the size of a 64-bit shifter. To accom­
plish shifts greater than 32 bits, the pipeline slips for one cycle
while forcing a 32-bit shift in the EX cycle. In the next cycle, the
shifter performs the remainder of the shift. A trade-off between
area and performance led to this decision.

The register file is a 32-entry by 64-bit array with two read
ports and one write port. It can read and write in the same
cycle. In the case of reading and writing the same location in
the same cycle, the R4000 provides local bypassing of the
write data into the read bus.

Floating-point unit
The FPU implements the IEEE Std 754-1985.6 Its three

functional units--multiplier, adder, and divider-operate on
single- and double-precision operands. While the FPU ex-

Branch IF IS RF EX DF
taken

Delay 1 IF IS RF EX

Delay 2 IF IS FR

Delay 3 IF IS

Target IF

Figure 5. Branch delay.

ecutes a multicycle operation, the CPU pipeline can con­
tinue in parallel until the FPU detects a data or resource
dependency. It can transfer data directly to or from the CPU
or cache memory. The FPU executes up to three instruc­
tions concurrently, one per functional unit. It retires only
one instruction per cycle7

The floating-point multiplier (see Figure 6 on next page)
uses a modified Booth algorithm that scans four overlapping
groups of 3 bil.'; at once. Thus 8 bits of the multiplier operand
can retire with each iteration. The mantissa portion of the
multiply array uses four CSAs in a pipeline fashion. The mul­
tiplier pipeline includes four stages:

• Booth encoding and multiplicand selection,
• partial sum-and-carry generation of selected multipli­

cands,
• partial product summation of the previous stage result

with the previous iteration result, and
• guard, round, and sticky-bit generation.

In the cycle following the last iteration of the multiply, the
sum and carry from the multiplier array travel to the float­
ing-point adder to produce the final rounded product.

The multiplier cycles at twice the pipeline clock frequency,
so each iteration through the multiplier takes only half a pipe­
line cycle. R4000's high-speed operation demands that the
multiplier array use a two-phase design approach. To reduce
the clock skew in this region, the multiplier uses stronger
clock drivers (with lower fanout). These drivers allow more
aggressive latch designs with improved set-up times, and thus
reduce overhead. All CSA and Booth multiplexers use dy­
namic logic design due to speed criticality.

The floating-point multiply latency is seven pipeline cycles
for single-precision and eight for double-precision operations.
The repe-at rate i� three pipeline cycles for single precision and
four for double precision.

Apri11992 13

R4000

Multiplier
operand

Multiplicand
operand

normal source o perands that go
throu gh the unpack stage to form data
inputs tllr all adder-supported opera-

r-::-:-:...,.-:,---'L-,------,FPM clock, FPM clock B tions. The mu ltiplier/divider units send

their intermediate results on the other

path to the adder's input Mage fur fi-
/' 8 least-significant bits

.-­-2x -Ix 2x Ix

FPM clock

nal computation. No new instnJctions

can enter the pipeline while the inter­
mediate result travels from multiplier
ur divider to the adder for the cleanup

cycles . The one data repacker in the

FPM clock B Control Multi lier start
Reset

FPU packs the final result produced
hy the adder TO the correct data for­
mat. Oul ut enable logic

Tristate drivers

Sum Carry

Out ut enable

Guard, round,
sticky logic

We hased the floating-point divide

operation on the SRT divide algorithm,"

which scle<.1S thc quotient digit based
on an estimation of the partial remain-
der. This technique has the advantage
of no t requiring a full-precision adder

to add or subtract the partial remainder
with a divisor multiple. Therefore it nJns
faster. The latency and repeat rates for
floating-point divide operations are 23

and 22 cycles for single-precision op­
erations and 36 and 35 cycles for double­

precision operations. (See Table 1.)
'Ine adder calculates square root by

CSA Carry-save adder
generating 1 root hit per cycle using

thc SRT algo rithm. Since the adder also
supports multiply and divide instruc-

FPM Floating-point multiplier

Figure 6. Block diagram of the floating-point multiplier.

111e floating-po int adder (Figure 7) processes one add or sub­

tract in four pipeline cycles and starts a new operation every
three pipeline cycles for both single- and double-precision op­
erations. The adder also assists dIe multiplier and divider for
cleanup operations, such as rounding , and final result
computation.

To provide necessary bandwidth to support a two-staged,
pipelined multiplier (as seen hy the adder), we designed the
adder to process a pair of double-precision, multiply-and­
add instructions every four cycles.

The adder comprises four stages:

• unpack,
• mantissa add,
• resu lt rounding, and

• mantissa shift (alignment/normalize).

The adder has two data entry paths. One accommodates the

14 IEEE Micro

tions, no new computational instruc­

tio n may start while it calcula tes a

square root. The square-root latency

is 54 and 112 cycles fur single- and
double-precision operations.

Designers equipped the floating-point divider and the multi­
plier units with features that allow d1e circuit to power down at
the end of every operation by recirculating zeros in the unit.

The floating-point register me is a 32-entry by 64--bit array

with two read ports and two write ports. We dedicated one of
dIe write ports for FP computational result writebacks and the
other for FP load, store, and move instructions. In the case of

reading and writ ing the same location in the same cycle, dIe
register me locally bypasses the write data onto the read huses.

Stalls, slips, and exceptions
Pipeline hazards interrupt sm(xlth pipe line flow (Figure

2), causing stalls, slips, or exceptiOns. In stall cycles, the pipe­

line does not advance. When the R4000 processes the stall, it

restarts the pipeline and reissues several instructions to gen­
erate correCT results .

For slips. such as the load interlocks detailed earlier, only

the DF, DS, TC, and WE stages advance
while the IF, IS, RF, and EX stages do
not. When the slip condition is resolved,
the instructions in the pipeline resume
from whatever stage they are in. For ex­
ceptions, the processor suspends the nor­
mal sequence of instruction execution
and transfers control to an exception
handler, detailed later.

Figure 8 on the next page shows how
the entire pipeline stalls for a data cache
miss on load instruction L Since the load
miss processing takes several cycles, the
pipeline stalls until the secondary cache

and main memory access completes. Note
that before we got into the stall , instruc­
tion 4 may have used erroneous data in
its EX stage that was bypassed from the
load instruction. During the restart se­
quence, the processor repeats the EX stage
for instruction 4 to obtain the correct data
from the LOAD operation. The different
stall types include

• Data cache miss, detected by the
data tag check

• Data first stage stalls, which can oc­
cur for three mutually exclusive
groups of instruc.tions. 1) The pipe­
line stalls to resolve whether the FP
instruction will cause an exception
before moving on to guarantee pre­
cise exceptions. 2) The pipeline stalls
to let the instruction sign extend the
result. 3IThe pipeline stalls to let the
store buffer entries retire to memory
because control logic has detected a

Source operands path
.

• •
Unpack stage

• Instruction decode
• Intermediate exception

calculation
• Alignment shift

calculation

J

II r-- n 1

Multiply/divide
intermediate
results path

, I \ Shifter source /
multiplexer

\ Adder source /
multiplexer

Shift stage

• Alignment
• Normalization

\
J

Result

t I exception test

Final result
multiplexer

Add stage

Mantissa add/subtract

Result stage

• Loading zero count
• Rounding

7 I Compare
.
1

condition test

load to the same memory location. Final result

I Possible I and source
exception test

• Instrnction cache miss, detected by ------------------------------

the instruction tag check Figure 7. Adder logical block diagram.

• lnstrnction translation look-aside

buffer stalls, for instruction TIB
misses (explained in detail later)

• Multiprocessor, generated by requests from other
processors

Table 1. Integer and floating-point operation

Slips occur when the result of an instruction is not avail­
. able until the DS stage of an instruction, as occurs with loads.
Floating-point instructions interlocked for resources also cause
slips, as do integer instructions waiting for an integer multi­
ply or divide operation to complete. Variable shifts and shifts
greater than 32 bits also use slips since these operations take
two cycles to complete.

latencies and repeat rates in pipeline cycles.

Integer Floating point
!.i!ten�� �

32 bits 64 bits SP DP SP DP

Add/su btract 1 1 4 4 3 3
Multiply 10 20 7 8 3 4
Divide 69 133 23 36 22 35

Apri11992 15

R4000

Data cache miss
Cycle I Run I Run I Run Run Run I Run Run I STL 1 STL 1 STL 1 STL 1 STL I Run I Run I Run I Run I Run I

Restart I

Load 1 1/ IF IS RF EX DF

2/1 IF IS RF EX

3/1 IF IS RF

IF 4/ IS

IF
Instruction

{s/I
Issuance 6/

DS TC

DF DS

EX DF

RF EX

IS RF

IF IS

7/ OU

Figure 8. ADD data cache miss. use of load. STL indicates a stall.

Clock \ / \
Phase I 2 I I 2

Cycle Run I Run

1 Re�tartl R�tartl

I TC 1 WB I } D.m
DF I DS 1 TC wei memory

access
I DF 1 DS TC 1 WB

RF I EX 1 DF DS TC WB } Execution
I RF EX DF DS TC WBI

IF I IS RF EX DF DS TC 1 WB I

I IF IS RF EX DF DS I TC I WB I

I IF IS RF EX DF I DS I TC IWB I

/ \ / \
I I 2 I I 2

I Run I Run

Generate Resolve Distribute I
Generate

Figure 9. Circuit pipelining.

The R4000 processes many stalls and slips simultaneously.

By slipping on instructions that need the same resources as a
multicycle floating-point instruction, it can simultaneously
accept other stall conditions from instructions that continue

to advance further down the pipeline. Also, multiprocessor­
initiated stalls, which can stall the pipeline to examine the
cache, occur simultaneously with ocr, OFT', and ICf stalls
described above.

stall and slip implementation. The state machines that

control pipeline flow (run, slip, and restart machines) oper­

ate in a pipelined fashion. When logic detects a stall or slip
condition in a given cycle, the soonest the R4000 can process

this condition is the end of the next cycle.
Figure 9 shows a sample timing diagram. In the first phase,

16 IEEE Micro

Resolve Distribute

Generate Resolve Distribute

the pipeline control unit evaluates logic that may generate a stall
or slip condition. In phase 2 and the second phase 1, the state

machines are resolved. Finally, the pipeline control signals are
distributed throughout the chip during the second phase 2.

After processing a stall, the R4000 initiates a two-cycle re­
start sequence before the pipeline can run again. During this
sequence, it reevaluates portions of the pipeline with cor­

rected information hefore normal pipeline flow resumes. A:;
shown in Figure 8, it repeats three activities: data memory
access, execution, and instruction issuance.

Exception handling. The R4000 processes exceptions

from sources in different pipeline stages. It prioritizes incom­

ing exceptions and gives highest priority to the faulting in­
struction furthest along the pipeline. Table 2 lists different

exceptions and the stages where they are signaled.
During normal processing, the R4000 nullifies pipeline

stages for three reasons.

• When an exception occurs, it nullifies instructions after
the faulting instruction.

• It nullifies certain instructions in branch delay slots when
a branch is taken.

• When the pipeline slips, it creates a nullified instruction
"bubble," as the back end of the pipeline advances and
the front end does not.

After being nullified, the instruction does not commit to
any state. For performance, the processor inhibits any stalls
signalled by the instruction. For example, if an instruction
will cause a data translation exception, which is detected at
the end of the DS stage, the processor will not allow it to
signal a cache miss in the TC stage.

Memory management unit
The MMU translates virtual addresses into physical addresses

using an on-chip translation look-aside buffer (TLB). It man­
ages exceptions, controls the cache subsystem, and provides
diagnostic and error recovery facilities. Compared to the R3OOO,
the R4000 MMU provides enhanced operating system sup­
port including increased TI.B entries, variable page sizes, 64-
bit architecture support, supervisor privilege level, timer
interrupts, and a physical address trap.

We wanted to increase the number of entries in the TLB
over the 64 entries available in the R3000 since this boosts
performance in a wide range of applications. Using 128 entries
required too much area for the fuJly associative lookup circuit.
Therefore, we implemented a 48-entry TLB with each entry
mapping two consecutive pages and producing 96 effective
entries. The TLB superpipelines in the R4000 (across the DF/
DS pipeline stages) and runs in parallel with the cache access.

The instruction translation look-aside buffer (ITI.B) is a
two-entry, fully associative translation buffer that is a subset
of the main TI.B. This mB supports only a 4-Kbyte page
size, to reduce complexity with minimum performance im­
pact. When an instruction miss occurs in the instruction buffer,
the pipeline stalls and the main TI.B refills the ITLB. When a
branch is taken into a different page, the branch target in­
struction address translation uses the TLB bandwidth avail­
able during the data first and data second stages of the branch
instruction. Since the instruction first and instruction second
stages of the branch target line up with the data first and data
second stages of the branch instruction, the target address
translation refills the ITI.B without stalling the pipeline.

The R4000 implements variable page sizes on a per-page
basis, varying from 4 Kbytes to 16 Mbytes. TIlis helps to re­
duce thrashing of the TI.B in some cases, such as in the use
of a frame buffer which uses large data blocks. It implements

Table 2. Exceptions.

Cycles Exceptions

IF -

IS -

RF Instruction translation
EX Interrupt

Bus error instruction
Illegal instruction

Breakpoint
Syscall
Coprocessor unusable
ECC instruction
Virtual coherency instruction

DF -

DS Overflow
Floating point

TC TLB modified
Data translation

WB Bus error data
Virtual coherency data
Watch

NMI
Reset

variable page sizes by having a mask associated with each
TLB entry. When addresses approach the TI.B for translation,
the corresponding mask bits in the TLB specify which virtual
address bits participate in the comparison and translation.

The R4000 instruction set architecture supports 64-bit ad­
dressing. The current revision of the R4000 uses 40 bits of the
64-bit virtual address space. Increasing the effective virtual
address size above 40 bits would have made the TI.B wider
than the data path and difficult to fit into the layout. Hard­

ware explicitly checks the unused upper bits (bits 61:40) of
the virtual address to make sure they are zero, ensuring a
smooth transition for software as the size of the virtual ad­
dress grows in future revisions. The R4000 supports a physi­
cal address of 36 bits.

The unit includes a supervisor privilege level of operation,
in addition to the kernel and user levels present in previous
company designs. This mode improves operating system sup­
port with more privilege levels.

A CACHE instruction provides a set of operationS allowing
the implementation of both a high-performance, symmetric,
multiprocessing operating system and a high-performance
workstation operating system. This instruction makes some
tasks more efficient, including block copy, page zeroing, cache
initialization, page flushing, and cache testing.

The CACHE instruction supports a number of operations
including

Apri11992 17

01

R4000

• load and store of cache tags,
• selective invalidation of cache lines,
• create dirty exclusive data cache lines, and
• forced writeback of lines.

'Ine J{4000 provides a physical address trap feature for debug­
ging software. TIlls takes an exception on a reference to a se­
lected physical address, which is specified in the Watch register.

The Count and Compare registers implement a timer inter­

rupt service. The Count register acts as a timer, incrementing at
half the pipeline clock rate. When the value in the Count regis­

ter equals the value in the Compare register an interrupt occurs.

Memory hierarchy
The R4000 fits a range of system configurations . A pro­

grammable system interface permits tuning to different sys­
tem specifications and exploiting future improvements in

DRAM and SRAM design. The R4000 supports a two-level

cache hierarchy that configures to run with different line sizes.
Multiple cache coherency protocols available on the R4000
support several multiprocessor systems9.!O

The limited available primary cache size necessitated sup­
port for a closely coupled off-chip secondary cache required
by high-end systems. We estimated the cache control section
required 10 percent extra logic to support systems both with
and without secondary cache. The R4000 manages its primary
and secondary caches using a write-back method, in which
stores send data into the caches, but the data do not write
back to memory until the cache line is replaced or flushed.

The processor maintains its primary caches as a subset of the

secondary cache contents. TIlls prevents the occurrence of vir­
tual aliases, which could lead to incorrect operation. A virtual
alias occurs when multiple virtual addresses in the primary cache
map to the same physical address in the secondary cache.

The p rimary caches are virtually indexed, so the second­
ary cache stores 3 bits of the virtual address (bits 14 to 12)
needed to locate the primary cache lines that may contain

data from a particular secondary cache line. (This virtual ad­

dress infollnation will support primary caches up to 32 Koytes
each). Because only one copy of the secondary cache line
can reside in the primary cache, no two virtual addresses in
the primary cache can map to the same physical location.

Without this capability, R4000 would have to flush the large

secondary cache to prevent aliasing . This is time consuming,

especially for aliases caused by reusing pages for I/O.
Primary cache. While the initial version of R1000 uses an

on-chip primary cache size of 8 Kbytes of instruction and 8
Kbytes of data, we can easily increase these sizes. 'Ine cur­
rent revision supports primary caches up to 32 Kbytes each
of instmction and data.

The primary cache is a direct-mapped, Virtually indexed,
physically tagged cache. Direct mapping makes it easy to find
the location of a particular line in the cache and to manage

18 IEEE Micro

Cache consistency between the primary and secondary caches.
As the primary cache is virtually indexed, the virtual ad­

dress generated by R4000's address unit looks up the cache
line, while the address translation occurs in parallel. The ad­
dress translation produces the physical address of the access,
and the comparator compares it with the physical address
read from the tag of the cache lines. The processor uses data

coming out of the cache before it checks the tag, reducing
the delay before load data can be used by one cycle.

Direct-mapped caches access faster than associative caches,
but their hit rate is not as high as for set-associative caches.
This penalty decreases as we increase the size of the primary
caches. The primary caches support two software-program­
mable line sizes (16 and 32 bytes) that users can change
independently for the instmction and data caches.

R4000 needs two cycles to access data in the primary cache,
but a new address may enter every cycle. This is possible
because the processor accesses the cache array in one cycle,
excluding the address buffering and the data drive time. The
address does not acces dle array until the begi nning of phase
2 of the first cycle, when the data from the previous access

have been latched.
The primary instruction and data caches have separate data

and tag arrays. The data cache data array and tag array may be

addressed separately every cycle. During the data first and

data second stages of a store instruction, the processor ac­
cesses the tag array for the store, while it may access the data
array for a previous store that has passed its tag check and has
data waiting in the store buffer. The two-entry store buffer

decouples the data to be stored from the rest of the pipeline.
Since the architecture supports byte stores, the data cache

array is arranged in eight blocks. Each block has a byte of
data, a parity bit, and a redundant bit. The primary caches
access 64 bits of data at a time, with the ability to write se­

lected bytes. Row and column redundancy tenus improve

the die yidd. To replace a defective row or column in one of
the cache arrays with a redundant row or column, the manu­

facturer must blow the laser fuses.
Secondary cache. The secondary cache is direct mapped,

physica lly indexed, and physically tagged. Manufacturers can
build it from industry-standard static RAMs of different speeds
and densities. 'Ine US-bit-wide secondary cache interface
allows a single access to the secondary cache to fill a four­
word primary cache line. This cache supports a line size of

four, eight, 16, or 32 words.
A physically indexed secondary cache makes multiprocessor

support easy as all addresses on the system bus can be physical,
eliminating the need for extra address translation information.

With R4000 supporting a maximum secondary cache size
of 4 Mbytes, and with several such caches present in a mul­
tiprocessor system, the pr obability of a soft error demands
support for error checking and correction. This ECC support
for the secondary cache corrects 1-bit errors and detects 2-bit

errors. R4000 perfonns on-chip tag correction, but it needs
external hardware support to correct data errors.

We chose parity support for the primary cache since the
on-chip caches are small and less prone to soft-error failure.

If the operating system finds a parity error in the primary
cache on a clean line, it can arrange to refill the primary
cache line. When it detects a cache error, the processor takes
an exception and jumps to uncached space. There the oper­
ating system examines the cache error control register, which
specifies the type and location of the cache error.

One complex operation carried out in the cache logic is the

write-back of dirty lines to memory. During writebacks, a state
machine, the zipper, merges dirty (corrupted) lines in the pri­
mary cache with the data from the secondary cache as the line
transfers to the system interface. The zipper checks tags in the
primary instruction and data caches. It invalidates both instruc­
tion and data lines while merging any dirty data from the pri­
mary data cache. This operation completes in four pipeline cycles
to match the maximum speed supported by the secondary cache.

System interface. The system interface lets the processor
access external resources required to satisfy cache misses. It
also allows an external agent access to some of the processor's
internal resources. For multiprocessor system�, the system in­
terface provides the processor mechanisms necessary to main­

tain cache coherence of shared data.
R4000 uses a 64-hit-wide system interface to increase main

memory bandwidth compared with previous 32-bit system
interfaces. 1ne system interface can receive a double word
every two pipeline cycles. If R4000 is operating without a
secondary cache, the system interface can operate at the maxi­
mum system interface data rate, since the primary cache has
a 64-bit data path that supports this rate. With a secondary
cache, the maximum data rate the processor can support
directly relates to the secondary cache access time. If the

access takes too long, the processor cannot transmit or ac­
cept data at the maximum rate. The sec-
ondary cache only accepts· reads and
writes occurring in at least four cycles.
With fast static RAMs that support a four­
cycle access, the secondary cache inter­
face can keep up with data coming in
from the system interface at the maxi­
mum rate. Designers can program the
system interface to transmit data in a
range of rates, to suit different system
and secondary cache speeds.

The system interface can be pro­
grammed to be clocked by a divided­
down version (divided by two, three, or
four) of the internal clock frequency. The
internal clock runs at twice the

Multiprocessor
interconnect

network

I
Almost anything

Snoopy bus
Cross-bar switch
Butterfly switch
Write-invalidate
Write-update

sions of the R4000 to run faster versions. For example, a
system designed for a 50 MHz R4000 (with the system inter­
face programmed to halve the internal 100 MHz pipeline
clock) could implement a 75 MHz R4000 with the system
interface clock divisor changed to divide by three. A 75 MHz
external clock generates a 150 MHz internal pipeline clock,
which the divisor divides by three to produce a 50 MHz sys­
tem clock.

The R4000 supports an overlapped mode of operation on
the system interface when configured with a secondary cache.
When a miss occurs in the secondary cache that requires a
line to be written back to rnain memory, the system interface
sends out a read request for the miss and then immediately
send� out a write with the writeback data. 1bis saves the
R4000 from haVing to buffer up secondary cache lines before
they are written back, which would usc significant chip area
to support the largest secondary cache line of 32 words.

MultipnK:eSSOr support- The R4000 provides mechanisms
to implement a variety of cache cohcrency protocols that
may be snoopy or directory based (see Figure 10). Designers
closely coupled the multiprocessor logic with the pipeline
activity to allow access to the primary caches.

The starting point for R4000's coherency model was the
MESI (modified, exclusive, shared, invalid) protocol. MESI
implements a four-state cache coherence protocol (the states
are invalid, clean exclusive, dirty exclUSive, and shared). R4000
implements a fifth, the dirty shared state (Figure lIon the
next page), which allows for efficient implementations of a
semaphore given the support for update protocol. When a
processor successfully acquires a semaphore by gaining a
dirty shared copy of the semaphore, all the other processors
using that semaphore will be updated with its new value.

They don't need to generate additional transactions on the
bus. With the MESI protocol, a request from another proces­
sor (that is, an intervention) can cause writebacks to the sys-

I
User ASIC

System
interface

�
Low-jevel. generic interface

• •
Read noncoherent
Read coherent
Read coherent exclusive
Write
Invalidate
Update

Read data
Read data, shared
Snoop request
Intervention request
State change
Invalidate
Update

processor's input, or master, clock. This
allows systems designed for slower ver- Figure 10. Multiprocessor protocols.

Apri/1992 19

R4000

An invalidate received
will cause a return to a
state invalid from any

other state.

response
to a read

Intervention response
to a read or update sent

Figure 1 1 . Cache coherency diagram.

tern memoty. These writehacks place an additional hurden
on the system design. (The R4000 cannot process three-party
transactions on interventions.) The processor stores the state
of a cache line along with the tag amI data for each line in
the caches.

When R4000 receives an external snoop, intervention, invali­
date, or update, it checks the secondary cache tag and state bits
while allowing the processor to operate within the primaty cache

space in parallel. Misses in the secondary cache require no further
action because the primaty is a subset of the secondaty. If an
external event hits in the secondaty c.ache, acee,s to the primaty
may be required to complete the (r,msaction. To gain access to
the primary Cache, the processor stalls the CPU pipeline.

The processor supports write·invalidate and write-update
protocols, controlled on a per-page basis. The TIB may mark
pages as uncached, noncoherent, coherent exclUSive, coher­
ent-write exclusive , and coherent-write update . Table 3 shows
examples of the actions caused by these attributes.

'lbe R4000 provides a load linked and store conditional
pair of instructions to provide synchronization between pro­
cessors on the system bus based only on cache coherency.
An example of this is the fetch-and-add operation.

LOOp: II TO,O (TI)
addu TO, TO, 1
sc TO, ° (TI)
beq TO, 0, Loop

;load counter, set load link bit
;increment
;store back if load link bit still set
; retty if store failed

The store conditional instruction fails if the location has been
invalidated or updated since the preceding load linked in­
struction. This mechanism can implement semaphores, bit­
locks, fetch-and-add, and other synchronization mechanisms.
It also guarantees that at least one processor on the bus will
get the semaphore on the first attempt so deadlocks or long
stalls will not occur.

Design methodology
We chose full-custom data path layout for maximum speed

and the highest packing density. Designers implemented most
of the control sections using a logic syntheSiS and optimiza­

tion tool and laid them out using standard cell place-and­
route methodology. However, to achieve our target cycle
times, we had to custom design and lay out hy hand some of
the control sections in the critical paths.

We used a two-phase, zero-overlap clock strategy and dis­
trihuted it throughout the chip with a balanced clock tree, to
control skew. A phase-locked loop generates four times the
frequency of the external input (master) clock and distrib­
utes it through the chip . Divide-hy modules at the end of the
clock tree generate 2x- and Ix clocks. The processor pipe­
line and most logic use the 2x clock, which cycles twice as

fast as the master clock frequency. The integer multiplier and
floating-point multiplier use the high-speed 4x clock , four
times the master clock frequency.

The chip uses two types of register/latches: stacked and
pass-gate dynamic. Stacked registers, used extenSively, are
immune to clock skew as long as there are zero or an even
number of inversions between the two stacked latches. How­
ever, when a short setup time and fast clock-to-output delay

were necessaty, we used pass-gate dynamic
latches. In these cases, a design rule en­

Table 3. Examples of actions caused by coherency attributes.
forced a delay equivalent to the time needed
to pass through at least three inverters of a
fan-out of three between the latches to pre-

Algorithm Load-miss Store-miss

Word read Word write Uncached

Noncoherent Block read noncoherent Block read noncoherent

Coherent exclusive Block read exclusive Block read exclusive

vent data slip-through.

Coherent write exclusive Block read

Coherent write updat Block read

Block read exclusive

Block read/update

We equipped the output buffers with a
digitally controlled slew rate to reduce noise
injected into the system buses. One butTer
determines the digital control signal values
for the rest of the buffers. This output buffer
sends the pad a signal, which in turn feeds

20 IEEE Micro

back into an input pad. The processor samples the round­
trip delay and references it with the clock cycle. Users can
progrd.m the desired amount of skew in terms of a fraction of
a clock cycle. Depending on the control signals generated,
the strength of the output buffer's pullup and pull downs are
adjusted. (See Figure 12.)

We laid out the chip using a generic Mips design rule, so
all our semiconductor partners can work from a single data­
base. This database is based on a 1 .0-J.lm-dmwo, two-layer
metal, CMOS technology. Manufacturers are prodUCing the
R4000 in 0.811 technology.

Verification
Mips carried out a functional simulation of a register trans­

fer level model during the development of the R4000. The
RTI model executes at about 1,000 processor cycles per minute
on a 20-MIPS, R3000-based Magnum workstation. Designers
divided the chip into major functional blocks (CPU, FPU,
MMU, caches, and system interface) and wrote directed diag­
nostic tests to exercise these functional units. Trace compari­
sons of diagnostic tests run on an instruction-level simulator
and on the R4000 RTI verified compliance with our architec­
ture. To tmce all the required signals and data in the R4000
superpipeline, we added more verification logic to the R4000
RTL model so it could capture traces for comparison with the
instruc.tion-Ievel simulator traces.

We performed extensive automatically generated random di­
agnostic tests, again using our instruction-level simulator for trace
comparison. We wrote additional verification diagnostics to en­
sure that all thc arcs of the state machines within the R4000 were
exercised. Our designers executed R4000 diagnostics within an
RTI model of a system configurd.ble at runtime to include a sec­
ondary cache and change any of the programmable parameters
that control the system interface. They booted the Unix operating
system on the R4000 RTI model about
six months before Mips gave the design
to its manufacturing partners. It took a
5O-MIPS Mips 6280 seven days of pro­
cessing to reach the Unix prompt

We verified the multiprocessor ca­
pabilities of the R4000 using a number
of different simulation models. A uni­
processor RTL simulation of the R4000
checked that the R4000 could gener­
ate and process all the multiprocessor
requests defined by the R4000 inter­
face specification. We also developed
a simulation environment that could
support multiple R4000 processors at
the RTI level. Under this environment
we ran directed diagnostic tests and
self-checking random tests.

Data

Tristate ---+-1
drivers

implementation of the R4000 matched the RTI description
by generating a gate-level model from schematics. Obviously,
this model ran much slower than the RTI model, and so we
needed a large compute resource to run the diagnostic test
suite at the gate level. In the final stages of verification we
used ten 6280 machines and around thirty 20-MIPS Magnum
workstations.

Testability and packaging
The R4000 implements JTAG (IEEE Std. 1149.0 boundary

scan specifications, intended to provide a test capability for
the interconnection hetween the R4000 processor, the printed
circuit board, and other components on the board.

The chip comes in two package configurations. The
R4000MC and R4000SC, which have the 1 2S-bit data inter­
face to the secondary cache, are packaged in a 447-pin lead
or plastic grid array. The R4000MC supports multiprocessor
systems while the R4000SC supports high-performance uni­
processor systems. The R4000PC, for desktop, low-cnd serv­
ers, and embedded control systems, comes in a 179-pin PGA
with no secondary cache interface.

TABLE 4 USTS SPECMARKS FOR SIMillATED RESULTS of a
realistic memory system. (See next page). We simulated the
CPU time and most of the important aspects of memory and
heuristically added the I/O times. Correlation of simulations
with R4000 systems in the lab show the simulations to be
pesSimistic. til

Acknowledgments
The R4000 became a reality due to an enormous team

effort managed by our leader, Tom Riordan. We also had

Control signals

'--,---1- Out

Control signals L-______ --'

Finally, we verified that the physical Figure 1 2. Output buffer.

I

r
_� __ A_� '�_

R4000

�-- - --- ----

Table 4. Simulated Specmarks for a 50-MHz
external-clock R4000.

S-cache size P-cache
Benchmark 4 M bytes 5 1 2 Kbytes only

Gec 46 43 2 7

Esp resso 54 54 38

Sp ice2g 6 42 3 8 2 7

Dodue 49 46 3 3

Nasa7 56 46 43

Li 66 65 47

E q ntott 54 52 50
Matrix300 2 78 273 1 77
Fpppp 55 54 29
Tomcatv 58 59 37

Simu lated SPEC 63 59 42
Simu lated SPEC int 55 53 39
Simul ated SPEC fp 69 64 44

C PI (si m u l ated SPEC) 1 . 5 1 . 6 2 . 3

great SUppOt1 from other groups within Mips that had t o put
up with our constant demands for SUppOt1. Unfot1unately,
we cannot list each member of the R4000 team, but we thank

them alL

References
J. Hennessy et aI., " Mips: A VLSI Processor Architedure, " Tech.

Report 223, C omputer Systems Laboratory, Stanford Un iverSity,
Stanford, Calif. , 1 983.

2. J .L Hennessy and DA Patterson , Computer Architecture.' A

QuantitativeApproach, Morgan Kaufmann Publishers, San Mateo,
Cal if , 1 990.

3. JR. Mashey, "64-Bit C omputing, " Byte, Sept 1 99 1 , pp. 1 35- 1 42
4. MIPS R4000 Microprocessor User's Manual, Mips Computer

Systems Inc, Sunnyvale, Calif., 1 99 1

5 , S . Waser and M . Flynn, Introduction to Arithmetic for Digital

Systems Designers, Holt, Rinehart, and Winston, New York, 1 982.

6. ANSI/IEEE Std 745- 1985, Standard for Binary Floating-point

Arithmetic, IEEE, New York, 1 985.

7. C . Rowen, M. Johnson, and P. Rles, "The Mips R301 0 Floating-Point

Coprocessor, " IEEE Micro, Vol. 8, No . 3, June 1 988, pp, 53-62.
8. D.E Atkins, " H igh-Radix Division Using Estimates of the Divisor

and Partial Reminders," IEEE Trans. Computers, Vol . C- 1 7, No.
1 0, Oct 1 968, pp, 925-934.

' J . S.A Przybylski, Cache and Memory Hierarchy Design, Morgan

Kaufmann, 1 990.

1 0. AJ. Smith , " Cache Memories, " Computing Surveys, Vol 1 4, No.

3 , Sept 1 982.

22 IEEE Micro

Sunil S. Mirapuri defines and designs

advanced microprocessor products at Mips

Computer Systcms. Prcviously, he worked

for Rolm Milspec Computers and Intel Ja­
pan. His research interests include com­

puter architecturc , digital systems, and
computer programming.

Mirapuri received his BS and MS degrees in electrical engi­

neering from Stanford University. He is a member of the IEEE

Computer Society.

Michael S. Woodacre is a member of

Mips' VLSI design verification team, Prior

to joining Mips to work on the R4000, he
was a VLS! design engineer for [nmos'

transputer microprocessor team,

Woodacre received a 5S in computer
systems engineering from the University

of Kent in Canterbury, England.

NaderVasseghiis a member of Mips' VISI
design group, He worked on the design

and development of the W±OOO and now

works on the next-generation RISC pro­

cessor, Prior to joining Mips, he designed
network controller products and high­

speed programmablc array logic devices

at Advanced Micro Devices,
Vasseghi received his RSEE from the University of Califor­

nia at Santa Barbara and his MSEE from Southampton Uni­
versity in England , He is a member of the IEEE Computer
SoC'iety.

Address questions regarding this article to Sunil Mirapuri

at Mips Computer Systems, <)28 Arques Ave . , Sunnyvale, CA
94086; or via e-mail at sunil@mips.com.

Reader Interest Survey
Indicate your interest in this article by circling the appropriate

number on the Reader Service Card,

Low 153 Medium 154 High 155

