
Abstract

Hundreds of commercial applications used in mainstream design
activities have demonstrated proven demand for 3D graphics ren-
dering products. The demand is for faster and more powerful ren-
derers, thus creating the system design problem of how to achieve
maximum rendering performance from the technology available to
implement the system. This paper describes a graphics rendering ar-
chitecture that takes advantage of several novel architectural fea-
tures: a custom floating point processing core with tailored data
stores and bussing structures, the arrangement of these cores into a
SIMD processor for low overhead multiprocessing, and the hyper-
pipelining of the fixed point scan conversion units for low over-
head, high bandwidth pixel generation into an interleaved frame
buffer. These features combine to form a solution to the system de-
sign problem which distinguishes itself by its overall performance
and its ability to maximize performance while minimizing system
size. The resulting architecture is capable of over a half million
gouraud shaded Z-buffered triangles per second, with a sustained
fill rate for gouraud shaded and Z-buffered pixels of 80M pixels per
second. The architecture fits in a desktop workstation.

Introduction

A graphics rendering architecture for a high performance desktop
workstation is described.

3D graphics workstations are used by a broad range of applications
[IRIS92]. Many of the applications fall into the categories tradition-
ally called computer-aided design (CAD), where the designer
makes progressive refinements on the shape and dimensioning of a
product based on feedback from visual modeling, and computer-
aided engineering (CAE), where the designer also wishes to analyze
properties of the design such as thermal and stress gradients or
structural strength, in addition to shape and appearance. 3D graph-
ics workstations are used in the following applications, among oth-
ers: car and airplane design, tool design, packaging design, indus-
trial and product design, furniture design, clothing and shoe design,
architectural and civil engineering, production floor and plant de-
sign, geothermal and atmospheric analysis, molecular modeling,
pharmaceutical design, chemical analysis, and film animation and
special effects.

Application packages today running on 3D workstations enable de-
sign efforts that are compute intensive, limited only by today’s ren-
derers. The complexity of models that renderers can effectively
handle is far less than the model complexity with which users are
attempting to work. This creates tremendous demand for faster and
more powerful graphics rendering systems. How to achieve the
highest performance rendering system from the technology avail-
able is the system design problem that this demand presents to the
system designer.

Further clarification of the graphics rendering system design prob-
lem is necessary. Most graphics renderers today perform rapid, ac-
celerated rendering of 3-sided polygons and straight line segments.
The renderer receives these basic graphics primitives, each primi-
tive with vertex descriptions defined by the application, and per-
forms the calculations to render the primitive as pixel values into
the frame buffer [FOLEY90,SEGAL92,VAND87]. The basic
graphics primitives allow close approximation to any arbitrary
curve or surface by sub-dividing the curve into line segments or the
surface into polygons to the point where the rendered image is vi-
sually acceptable to the user. For the system designer, the primitives
provide a simple and limited set of processing algorithms that must
be accelerated, enabling the focus to achieve high performance sys-
tems.

A top level flow diagram is presented in Figure 1 illustrating the
process for rendering the basic graphics primitives. The graphics
renderer receives polygons or lines from the application process
and performs the steps shown in the flow diagram to render each
polygon or line as color and Z pixel values into the frame buffer.
Details of each processing step are carefully discussed in [FO-
LEY90] and [NEWM79].

Implementation bottlenecks in a graphics rendering system typical-
ly appear: 1) in the floating point compute power available for the
world coordinate to screen coordinate transformations and for ver-
tex color computations; 2) in the floating or fixed point compute
power available for triangle slope and line slope calculations; 3) in
the rate of generation of pixel values from the fixed point iterators;
4) and in the achieved pixel bandwidth into the frame buffer.

Commercial architectures have approached these bottlenecks in a
variety of ways. [KIRK90] presents an architecture where the per
vertex and slope calculations are performed on the host CPU and
multiple iteration engines drive an interleaved frame buffer. [AP-
GAR88] also executes the per vertex calculations on the host, but
off-loads most of the slope calculations to a fixed point engine, and
uses a unique combination of multiple iteration units to drive pixel
results into an interleaved system memory. [AKEL88,89] describe
an approach utilizing a serial pipeline of floating point processors
for the per vertex calculations, fixed point engines for the slope cal-
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culations, and multiple iteration units to drive an interleaved frame
buffer. The architecture introduced in [TORB87] also uses multiple
floating point processors but arranges them into a MIMD parallel
processor, uses a fixed point slope engine, and multiple iterators to
drive an interleaved frame buffer. [PERS88] uses a single floating
point processor to perform both per vertex and slope calculations,
and a single iterator to drive an interleaved frame buffer. Note that
the interleaved frame buffer is the only feature common to all the
approaches, and that most approaches use multiple iteration units.

The goal of the architecture described here is to provide a powerful
graphics rendering system, maximizing performance while mini-
mizing size. The architecture utilizes several novel approaches to
overcoming rendering bottlenecks. Floating point performance is
accomplished through the custom design of a highly efficient float-
ing point processing core, and by employing multiple cores con-
trolled in a low overhead SIMD parallel processor. The floating
point core is tailored to accommodate both the per vertex calcula-
tions and the triangle and line slope calculations. Fixed point itera-
tion performance is achieved through hyper-pipelining two identi-
cal iteration units, allowing each unit to sustain the pixel generation
requirements of multiple pixel memory busses. Each iteration unit
is pipelined until technology limits of integration are encountered.
The multiple memory busses provide the necessary bandwidth into
the frame buffer memory.

These features result in a graphics rendering system solution distin-
guished by overall performance, and by compactness of size. The
architecture is implemented in a desktop workstation [INDIG93]. It
is capable of over 1.3 million depth-cued lines per second, over half
a million gouraud shaded Z-buffered polygons per second, with a
sustained fill rate of 80M gouraud shaded Z-buffered pixels per sec-
ond.

Figure 1. Process for rendering basic graphics primitives

BREAK SURFACES INTO POLYGONS,
CURVES INTO LINES

OUTPUT POLYGONS, LINES

RECEIVE POLYGON, LINE
−VERTEX DESCRIPTIONS IN WORLD

COORDINATES WITH POSITIONAL, COLOR
SURFACE NORMAL INFORMATION

TRANSFORM TO EYE COORDINATES

LIGHT
SOURCES

CALCULATE
VERTEX

COLOR AND
INTENSITY

CLIP TEST

IS
CLIPPING

NECESSARY

CLIP POLYGON AND
IF NECESSARY

BREAK INTO
TRIANGLES; CLIP

LINE

CALCULATE TRIANGLE EDGE SLOPES AND THE
PARTIAL PARAMETER SLOPES ACROSS PLANAR

SURFACE; CALCULATE LINE SLOPE AND
PARAMETER SLOPES ALONG LINE; SUB−PIXEL

POSITION ITERATION STARTING POINT

FOR TRIANGLE, FIND NEXT PIXEL INSIDE TRIANGLE
USING EDGE TO DETERMINE IN/OUT, AND INTERATE
PARAMETER SLOPES TO GET R,G,B,Z VALUES FOR
PIXEL; FOR LINE, INTERATE SLOPES TO FIND NEXT

PIXEL AND R,G,B, VALUES

PERSPECTIVE OR ORTHOGRAPHIC
PROJECTION TO SCREEN COORDINATES

Z
COMPARE

PASS
?

UPDATE COLOR AND Z VALUE IN FRAME

LAST
PIXEL

DONE

PER VERTEX
CALCULATIONS,
FLOATING POINT

FOR RANGE &
PRECISION

SLOPE
CALCULATIONS,

FLOATING OR
FIXED POINT

SIMPLE FIXED
POINT

INTERATION

FRAME BUFFER
PIXEL BANDWIDTH

APPLICATION
EXECUTING

ON CPU

GRAPHICS
RENDERING
SYSTEM

Y

N

N

Y

Y

N

TOP LEVEL SYSTEM VIEW

This section presents a block diagram of the architecture in Figure
2. The key components are briefly introduced, followed by a de-
scription of the overall control structure and the data flow through
the system. The subsequent sections discuss each of these key com-
ponents in detail, describing the critical decisions made to deter-
mine their structure, then detailing the internal operation of each
component. The final section discusses the technology targeted for
the architectural implementation and the implementation results.

The block diagram is shown in Figure 2. The key components are
the FIFO interface to the system bus, the Command Processor (CP),
the SIMD parallel processor, the dual Raster Engines (RE), and the
frame buffer. The SIMD processor is made up of a sequencer, a mi-
crocode store, and multiple Geometry Engines (GE). Each GE is a
custom floating point processing core. Each Raster Engine is a hy-
per-pipelined iteration unit.

The SIMD parallel processor executes all the per vertex calcula-
tions and the slope calculations shown in Figure 1, the REs perform
the fixed point iteration, and the frame buffer pixel bandwidth is de-
termined by the multiple busses into the frame buffer.

Operation is initiated by the CPU sending polygon and line render-
ing commands into the FIFO across the system bus. The FIFO al-
lows the CPU to generate commands at a rate independent of how
fast the rendering occurs. If the FIFO fills up, an interrupt is gener-
ated to the CPU for exception handling.

The SIMD parallel processor is fed data from the FIFO by the Com-
mand Parser. The CP moves data from the FIFO into the ping-pong
input buffers of the Geometry Engines. The GEs read data from the
ping-pong buffers, perform necessary floating point computations,
and write results to their respective output FIFOs. GE execution is
controlled by the common sequencer and control store.

A bus controller resident in the even Raster Engine reads data from
the GE output FIFOs and transfers the data into the RE input ping-
pong buffers. The REs perform necessary iterations to generate col-
or and Z values and perform the correct pixel updates into the frame
buffer. The odd RE generates pixels for the odd numbered scan
lines of the frame buffer, and the even RE generates pixels for the
even numbered scan lines.

The sections below first discuss the GE custom floating point core
solution, followed by a discussion of the control structures required
to arrange the GEs into the SIMD parallel processor. This is fol-
lowed by a description of the hyper-pipelined RE iteration solution.

GEOMETRY ENGINE

The goal for the Geometry Engine design is to achieve the maxi-
mum realized floating point performance for graphics algorithms,
in a single chip solution. The algorithms used for evaluating perfor-
mance are the per vertex and slope calculations of Figure 1. The de-
cision is made to combine the per vertex and slope calculations into
a single floating point solution. Slope calculations are comprised of
relatively complex algorithms, difficult to implement in a hard-
wired fashion, and therefore most effectively implemented in a mi-
crocoded processor. Also, the compute cycles required for per ver-
tex calculations is almost evenly balanced with the cycles required
for slope calculations. Combining the per vertex and slope calcula-
tions into the GE relieves the need to design a second microcoded
fixed point processor of similar complexity; and the replication of
GEs in the SIMD parallel processor increases both the per vertex
and slope processing power together.

The GE design goal is met with a custom floating point processing
core. Analysis shows that a custom unit with tailored data stores,
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bussing structures, and sequencing control achieves higher realized
performance and a more compact solution than available commer-
cial alternatives. Therefore a custom approach is chosen.

Analysis of the per vertex calculations and the slope calculations
shows an even balance between multiplies and adds, therefore one
multiplier and one adder are chosen for the GE core. The GE design
approach follows the fundamental principle of maximizing the uti-
lization of the most expensive resource: the floating point multiplier
(FMPY) and the floating point adder (FALU). The following obser-
vations for maximizing utilization are taken into account in the GE
design: high data bandwidth to the correct operands is needed into
the FMPY and FALU; multiple threads of the same algorithm must
be active simultaneously. Enough bandwidth to appropriate data
storage and data sources is needed to avoid lost cycles waiting on
an operand that is slow to retrieve. A single thread of execution may
have several additions followed by several multiply operations,
thus wasting the FMPY or the FALU until a result is available from
the other unit. Multiple threads of execution is the solution.

The Geometry Engine block diagram is shown in Figure 3. Six dif-
ferent busses and four ports from the register file drive the four in-
puts to the FMPY and the FALU. Two of the busses provide imme-
diate wrap-around of FMPY and FALU results back to their inputs.
One bus gives access to the ping-pong buffer loaded by the Com-
mand Parser, while two more busses give access to a pair of special
data stores. The sixth bus accesses off-chip memory that is used for
expansion, and typically holds the global variables for the GE.

A multi-port register file is included for scratch storage of interme-
diate results. The register file is critical to allowing multiple simul-
taneous threads of calculation. Feedback paths from FMPY and
FALU result outputs are provided for single-threaded operation, but
when two threads conflict by needing the same unit for their next
computation, then one thread must be stalled by storing the interme-
diate result in the register file until the appropriate unit becomes
free.

On the other hand, a multi-port register file is an expensive com-
modity and its size is limited. Reviewing the per vertex calculations
concludes that the ping-pong buffer and the register file are suffi-
cient to perform the per vertex calculations with maximum FMPY
and FALU utilization. On reviewing the slope calculations, howev-
er, it is noted that frequently data from each vertex of a triangle, or
both vertices of a line, are needed simultaneously during multi-

threaded computation. The register file cannot be made big enough
to hold the data structures for each vertex. The GE is designed to
have three separate data stores, one for each vertex of a triangle or
for the two vertices of a line, used during the slope calculation pro-
cess. The ping-pong buffer is used to hold the data structure for one
vertex, while the two special data stores hold the data structures for
up to two more vertices.

This extensive memory and bussing structure is wasted without
flexible independent addressing and flexible control of data move-
ment. This is accomplished through a very wide instruction word
which allows control of the breadth of resources.

The result of the described structure is that simultaneous access can
be made to the ping-pong buffer, the two special data stores, the
global variables memory, the result outputs, and the register file by
any of the four FMPY and FALU inputs. Multiple threads of exe-
cution supported by this accessible bandwidth into the FMPY and
FALU inputs maximizes FMPY and FALU utilization.

Figure 3. Geometry Engine block diagram
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Figure 2. Block Diagram of the architecture
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GE operation occurs as follows. The Command Parser loads data
into the ping-pong buffer. The ping-pong buffer allows CP loading
of data into one side of the buffer while the GE is executing and ac-
cessing the other side of the buffer. The CP initiates GE execution
by informing the GE sequencer that data is fully loaded. The se-
quencer looks up instructions in the GE microcode store, and these
instructions control the execution functions of the GE. For lines and
triangles, the GE performs per vertex calculations, accessing data
from the ping-pong buffer, then constructs vertex data structures
based on screen space coordinates and puts one vertex data struc-
ture back in the ping-pong buffer and up to two more vertex data
structures into each of the special data stores. Slope calculations are
then performed, drawing operands from the ping-pong buffer and
the two special data stores. Calculated iteration coefficients and ini-
tial values are passed to the Raster Engines by storing them to the
output FIFO.

SIMD PARALLEL PROCESSOR

A single floating point processor cannot achieve the desired perfor-
mance. Therefore multiple floating point processors are used in the
design. The following goals for multiprocessing led to the SIMD
parallel processor solution: 1) a linear performance increase must
be achieved with the addition of Geometry Engines; 2) the multi-
processing solution must have the lowest possible impact over and
above a uniprocessor solution.

Three approaches are considered for the multiprocessing solution.
The first is a pipeline of floating point processors [AKEL88, 89].
Each pipeline stage performs a subset of the per vertex and slope
computations, passing intermediate results to the next processor in
the pipeline. Each pipeline processor is executing a different set of
code to implement its separate subset of the algorithm. This ap-
proach has several disadvantages. The throughput of a pipeline is
the speed of the slowest processing step. Overall performance is de-
termined by the processor with the biggest subset of the algorithm
to process. Since the algorithm cannot be divided into perfectly
equal subsets, a less-than-linear performance gain is achieved. Also
note, that to add processors, a new subdivision of the algorithm
must take place and new code must be written and tuned. The final
disadvantage of this approach is in the burden of overhead the ap-
proach requires. Although having the advantage of not requiring the
distribution mechanism at the head of the pipe needed by the next
two approaches considered, each processor does require its own se-
quencer, microcode store, globals data store, in addition to control
logic to interface each of the pipeline stages.

The second approach considered is a parallel MIMD (Multiple In-
struction Multiple Data) array of processors [TORB87]. Each pro-
cessor performs independent execution of the per vertex and slope
calculations for its own polygon or line primitive. Linear perfor-
mance gains are attained when the same kind of primitive is distrib-
uted to each processor, thus satisfying the first multiprocessing
goal. Processors may be added without requiring changes to proces-
sor code. The disadvantage of the MIMD parallel processor lies in
the overhead required to implement such an approach. A parallel
processor requires a distribution function that takes primitives in
the FIFO (received from the CPU) and disburses a primitive to each
of the processors present. A MIMD parallel processor also requires
that each processor has its own sequencer, microcode store, and
globals data store.

The third approach considered is a parallel SIMD (Single Instruc-
tion Multiple Data) array of processors. Each processor executes
the same instruction in lockstep, but is computing results for its own
polygon or line primitive. Like the MIMD processor already exam-
ined, the SIMD parallel processor achieves linear performance
gains with the addition of processors when the same kind of primi-

tive is distributed to each processor. The advantage of the SIMD ap-
proach is in the low overhead required to implement a multiproces-
sor. All processors share the same sequencer, the same microcode
store, and the same globals data memory. The only implementation
overhead required over a uniprocessing solution is the addition of
the distribution function. It is worth noting that this is a simple func-
tion and therefore a small overhead to tolerate. The SIMD parallel
processor is chosen as it optimally achieves the multiprocessing
goals.

Note that a key assumption to accomplishing linear performance
gain from a parallel processor (SIMD or MIMD) is that the same
kind of primitive is distributed to each of the processors (all lines or
all polygons). This requires that the primitives coming through the
FIFO from the CPU arrive in significant groupings of lines together
and polygons together, rather than a fully random distribution of
lines and polygons. For a MIMD processor, if the FIFO holds alter-
nating lines and polygons, the throughput slows down to the rate of
the slower primitive - the polygon. For a SIMD processor, alternat-
ing lines and polygons is a worst case scenario. Performance will
reduce to that of a uniprocessor. Extensive analysis of model data
sets used on 3D workstations shows polygons typically clump in
large bunches and lines do the same. This is particularly true of
CAD/CAE applications. The result is linear performance gain for
parallel processor arrangements.

The unique system features required for SIMD parallel processing
will now be discussed. Please refer to Figure 2. The features includ-
ed for SIMD processing are the distribution function performed by
the CP, sequencing functions to allow SIMD branching, common
bus for the microinstruction, common bus for the globals data store,
and indirect addressing requirements into GE memories. The GE
input ping-pong buffer and output FIFO are also crucial to perfor-
mance.

COMMAND PARSER

To describe the operation of the Command Parser, we must first ex-
plain the needs of the distribution function. The purpose of the CP
is to analyze the command and data stream coming through the
FIFO, distribute data accordingly to the GEs, and subsequently ini-
tiate GE execution. To perform this function, the CP must detect
boundaries between primitives, detect whether subsequent primi-
tives are of the same or different kind, and maintain the correct or-
der of primitive disbursement to the GEs.

Please refer to Figure 4 for a diagram of the Command Parser. The
CP is microcoded for flexibility. This allows different routines for
primitives comprised of vertices with different kinds of attributes,
and the exception handling of polygons with greater than three
sides.

CP operation begins with the arrival of a command token in the
FIFO. The command token causes the CP sequencer to branch to a
routine appropriate for the kind of primitive arriving in the FIFO.
This branch mechanism inherently defines primitive boundaries.
The command token is read from the FIFO and stored in the Current
Command register. A compare function allows branching based on
whether the current command token just arrived is identical or dif-
ferent from the last command token received. If the token is identi-
cal, then the arriving primitive can be distributed to the next GE in
the parallel processor. If the token is different, then the GEs that
have already been loaded with data must swap their input ping-pong
buffer and begin executing before the arriving primitive can be dis-
tributed to the next GE. The token compare mechanism allows the
CP to branch to different routines to handle these two cases.

The CP must determine to which GE the arriving primitive should
be written. A round robin scheme of distribution is chosen,
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Figure 4. Command Parser block diagram

primitives being loaded in a continuous sequence from GE #0
through to GE #7, and back around. Referring back to Figure 2,
primitive coefficients calculated by the GEs are pulled from the GE
output FIFOs in the same round robin order. A pointer to the GE
that is currently being loaded, and a counter which maintains the
number of GEs that have been loaded since the last execute com-
mand provide the tools to determine for which GE the arriving
primitive is destined. The incrementing and clearing of these
counters is under microcode control. After choosing the appropriate
GE, the CP pulls vertex data from the FIFO and writes it across the
CP-GE Bus and into the GE’s ping-pong buffer.

Once all 8 GEs have been loaded, or when the current primitive is
different from the previous primitive, the CP must initiate GE exe-
cution. The CP first tells the GE sequencer which GEs are loaded,
passes the GE sequencer the appropriate address to begin execution,
and then issues the GE sequencer an execute command. An inter-
lock mechanism will stall the CP if the GE is currently executing at
the time of the CP execute command, and will initiate GE execution
only when the previous execution is complete. Once the interlock
mechanism clears, it is an indication that the GE ping-pong buffers
have been swapped, and the CP resumes distribution of primitives
from the FIFO.

GE SEQUENCER

The GE sequencer is shown in Figure 2. The sequencer is based on
a standard uniprocessor design. Flexible branch functions are sup-
ported for jumps and subroutine calls. Branching is controlled with-
in separate fields of the GE’s wide instruction word. This allows
concurrent branching with the GE datapath control, thus not affect-
ing datapath performance thru branches.

To this uniprocessor design base are added functions which allow
control of multiple SIMD processors. The GE sequencer has control
to stall each of the GEs independently. This control is used in two
different ways. The first is on receipt of an execute command from
the CP once the GEs are idle. The GE sequencer will decode which
GEs the CP has loaded from information passed by the CP. Those
GEs not loaded will be stalled by the GE sequencer for the duration
of the primitive execution. The second fashion the stall control is
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used is for implementing conditional subroutine calls across SIMD
processors. If a subset of the processors does not pass the condition,
that subset is stalled by the GE sequencer for the duration of the
subroutine call, while the remaining processors execute the subrou-
tine. As an example, conditional subroutine calls are used for im-
plementing the lighting and clipping branches shown in Figure 1.

MICROCODE STORE AND GLOBALS MEMORY STORE

The GE sequencer accesses the next microinstruction from the GE
microcode store (Figure 2). The microinstruction word controls all
the GE internal functions, as well as the GE sequencer. The piece
of the microinstruction word controlling the GEs is bussed to all the
GEs for simultaneous execution.

Additional memory (not depicted) can be added external to the GEs
as an expansion memory to store global variables required in exe-
cution. The GE Data Bus (Figure 3) of each GE is bussed together
and connected to a globals memory store.

INDIRECT ADDRESSING

As explained in the section above on the Geometry Engine (Figure
3), data is read from the ping-pong buffer and the two special data
stores to perform the slope calculations for a line or triangle. De-
pending upon orientation of the primitive on the screen, these data
stores may need to be accessed differently by different processors.
In order to do this effectively in a SIMD processing environment,
indirect addressing is provided into these data stores. This minimiz-
es cycles spent out of SIMD lockstep execution and is crucial to
SIMD performance.

INPUT PING-PONG BUFFER AND OUTPUT FIFO

The GE input ping-pong buffer and the GE output FIFO are also
crucial to SIMD performance. Without a ping-pong buffer at the in-
put to the GE, the CP would have to load 8 GEsafter GE execution
of the previous primitive completes, eliminating significant paral-
lelism. The FIFO at the GE output allows all GEs to write their re-
sults in lockstep execution. Without the FIFO, a SIMD implemen-
tation would not be feasible.

RASTER ENGINE

The goal for the Raster Engine is to obtain the fastest gouraud shad-
ed Z-buffered fill rate in a single chip. It is also desired to be able to
use multiple copies of the same chip to obtain further increases in
rendering performance.

There are two major bottlenecks in rasterization: pixel generation,
and memory bandwidth. Pixel generation, the first bottleneck, can
be increased in two different ways. Contemporary architectures
have traditionally increased the rate of pixel generation by replicat-
ing in parallel the number of fixed point iterators, utilizing enough
iterators to achieve the desired pixel rate. Hyper-pipelining a single
iteration unit is the approach taken in this architecture. Hyper-pipe-
lining adds pipeline stages to a single iterator until the desired rate
of pixel generation is achieved. The pipeline stages added to the it-
erator require significantly fewer gates than would be required to
replicate iterators. Therefore, hyper-pipelining is chosen as the min-
imum solution for performance. Memory bandwidth, the second
bottleneck, is increased by using an interleaved frame buffer across
multiple memory banks.

Determining the total number of pipeline stages and the number of
memory busses for the RE is a recursive process, and depends on
the integration limits of technology. To achieve the maximum fill
rates, the iteration pipeline must support a pixel generation rate of
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N times the page mode bandwidth of a frame buffer DRAM, where
N is the number of memory busses used. A sample pipeline depth
is analyzed and the die size computed. The conclusion of this recur-
sive process led to the resultant architecture with a single hyper-
pipelined Raster Engine driving a five-way interleaved color buffer.

Given a five-way interleave on the color buffer, the pipeline clock
rate is set at five times the DRAM page mode bandwidth, under the
assumption a pixel is generated every clock. The slowest element of
the RE pipeline is the key to ensuring the clock rate can be met, and
is what was checked during the recursive analysis. This element is
the DDA unit of the iterators. A DDA unit consists of a two input
adder with a 2:1 multiplexer on one of its inputs. The output of the
adder is fed into a register which is then fed back to the second input
of the adder. The resultant clock rate for a five-way interleave color
buffer drives the number of pipeline stages in the Raster Engine.
The hyper-pipelined Raster Engine has 26 pipeline stages from the
input ping-pong registers which hold the line and triangle iteration
parameters to the point where pixels are written into the color buff-
er.

For the system architecture implemented, it is decided to incorpo-
rate two raster engines to obtain the desired performance on the
desktop.

The RE implementation is now discussed in detail. A diagram of the
Raster Engine is shown in Figure 5. The RE is capable of drawing
rectangle, triangle and line primitives. Each primitive requires a set
of iteration coefficients which are downloaded from the GE FIFOs
into the RE ping-pong buffers. Once the ping-pong buffers are load-
ed, the RE initiates rendering of the primitive.

The execution units of the Raster Engine consist of four major sec-
tions:

• > edge processor;

• > span processor;

• > per-pixel operators;

• > memory controllers.

The edge processor combines with the span processor to perform
the task of converting a primitive into pixels. The edge processor
decomposes triangles into horizontal spans, and decomposes lines
into pixels. It has two iterators for computing the beginning and end
X location of the span, and six iterators to computer R,G,B,A,Z,Y

for the first pixel on the span. Next some terms must be defined. The
major edge of a triangle connects the vertex with maximum Y co-
ordinate value to the vertex with minimum Y. The edge connecting
the vertex with maximum Y to the vertex with the middle Y value
is called the first minor edge. The edge that runs between the vertex
with the middle Y and the vertex with the minimum Y value is
termed the second minor edge. The edge processor begins by iterat-
ing down the major edge and the first minor edge. When the proces-
sor detects the middle Y has been crossed, it swaps the first minor
edge with the second minor edge and continues down the triangle
until the minimum Y coordinate is reached. For each span, the edge
processor computes the initial R,G,B,A,X,Y,Z values for the first
pixel on the span as well as the number of pixels that have to be ren-
dered for that span. This information is passed to the span proces-
sor. When drawing lines, only one of the two edge iterators is used
to generate the X coordinate. The edge processor has 10 pipe stages
and can generate a new span every other clock.

The span processor has 6 iterators. These iterators walk through the
pixels on a span and generate the R,G,B,A,X,Z parameters for each
pixel on the span. The processor can generate one or four pixels per
clock. When gouraud shading and/or Z-buffering, the span proces-
sor will generate one pixel per clock in the X direction. When a span
is flat shaded and not Z-buffered, the span processor generates 4
pixels per clock. The block write feature of the VRAMs used in the
color buffer is utilized to write all 4 pixels generated in one memory
cycle, thus quadrupling the fill performance for screen clears and
for rendering flat shaded 2D surfaces. For lines, parameters from
the edge processor get passed through. The span processor has a
pipeline latency of 3 clocks.

The Raster Engine supports a rich set of pixel operators required by
commonly used graphics libraries [SEGAL92, VAND87]. Pixels
operators fall into two categories. The first category of operators
modify the color of the pixel, such as logicop and blend. Blend and
logicop are operations performed between the generated source col-
or and the destination color that is already stored in the color buffer.
They require readback from the color buffer which is described be-
low. There are three sets of multipliers to perform the blend func-
tion for the R,G,B components. These multipliers are followed by
an ALU which performs the logic operations. These two sections
together contain 10 pipeline stages.

The second category of pixel operators perform tests on pixel pa-

Figure 5. Raster Engine block diagram
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rameters to allow conditional updating of color pixel values. Exam-
ples in this category are the Z-compare test and stencil test. The Z-
compare test is used to determine pixel visibility in the third dimen-
sion. The stencil test is used to provide more general conditional
test operations. The Z-comparison is done in parallel with blend and
logicop in the same number of pipeline stages.

There are memory controllers for two separate memory ports on the
Raster Engine: the color buffer port and the Z-buffer port. The color
buffer is a five-way interleaved memory port, and the Z-buffer is a
10-way interleaved memory port. The Z-buffer operation consists
of reading back the old Z value stored in the Z-buffer, comparing
that Z value with the newly generated Z value and, if the compari-
son passes indicating the new pixel is visible, the new Z value and
color value are written into the Z-buffer and color buffer respective-
ly. Since the Z-buffer requires two accesses (a read and a write) for
every write access to the color buffer, the Z-buffer port is designed
with twice the interleaving of the color buffer to accommodate Z-
buffered fill at the color gouraud shaded update rates.

As we noted above, a write access to the color buffer takes 5 clocks.
Similarly, the pipelined read-modify-write access to the Z-buffer
takes 10 clocks. Adjacent pixels along a span are allocated to adja-
cent banks of the Z-buffer interleave. Since it takes 10 clocks to per-
form a read-modify-write, and we have a 10-way interleave, bank
contention does not occur along a span and a one pixel per clock
comparison rate is achieved.

The 10 banks of the Z-buffer interleave share the same page address
to reduce memory controller complexity. There is a single block of
logic for page fault detection. Each bank can access a different col-
umn address within the page. A score boarding technique is used to
keep track of the state of each bank. When a pixel is dispatched to
a bank, a bit in the score board is set to specify that the bank is busy.
Thus, any pixel accesses to the same bank will be blocked and a
bank contention stall generated to stop pixel flow until the bank is
again idle.

The color buffer has a five-way interleave. As explained above, the
pipeline depth is chosen such that five pixels are generated in a sin-
gle VRAM page mode cycle time, allowing contentionless color
fills along a span. Read-modify-write operations to the color frame
buffer (for blend and logicop) are supported at half the fill perfor-
mance of straight color write operations. Values in the color buffer
are first read into a FIFO in the RE to await the “modify” step of the
operation. When the FIFO fills, the contents of the FIFO are then
merged with the newly generated incoming pixel stream and the re-
sult is written back into the color buffer. This two-pass operation is
continued until rendering is complete. The color buffer memory
controller has a 3 clock latency.

The operation of two REs together will be briefly discussed. The
two Raster Engines work on the same primitive together. The ren-
dering task is split based on span number. All even spans of a prim-
itive (when the Y coordinate is even) are rendered by the “even”
Raster Engine; all odd spans are rendered by the “odd” Raster En-
gine. This results in a doubling of fill performance. The edge pro-
cessor in each RE iterates through all spans, but each RE rejects the
spans that do not belong to it, and the edge processor continues it-
eration to the next span.

TECHNOLOGY

This section briefly discusses the technology used in the implemen-
tation. The technology targeted for the custom logic design is a 1.0
micron double metal CMOS gate array and standard cell process.
The process can achieve the equivalent of 100K gates on a single
die. The 1M-bit DRAM family is the targeted memory technology.
The design consists primarily of custom parts and memory compo-

nents. The design contains over a million gates of custom logic, and
is implemented across three 5” x 13” PC boards.

CONCLUSION

A graphics rendering architecture has been described which is dis-
tinguished by its overall performance, and by its ability to maxi-
mize performance while minimizing system size. The architecture
is shipping as a product in the IRIS Indigo Extreme. A scaled ver-
sion of the architecture was introduced in IRIS Indigo2 Elan. The
architecture provides state-of-the-art rendering performance in a
desktop 3D workstation.
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Figure 8. Shaded-lighted image (2 directional lights) (data
courtesy of Cisigraph Corporation) has 77420 triangles,
526235 pixels, and was rendered in 0.29 seconds.

Figure 9. Indigo2 Extreme graphics render board set..

Figure 6. Demonstration of curve and surface approximation
using graphics primitives. Note effect of increasing tessellation
depth on image quality, and on the number of primitives to ren-
der.

Figure 7. Shaded-lighted image (2 directional lights) (Data
Courtesy of Cisigraph Corporation) has 31774 triangles, 827961
pixels and was rendered in 0.13 seconds.
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