FORTRAN-80
Version 3.2
Reference
Manual

For Use with the TRS-80
Disk Operating System (TRSDOS)

© Copyright 1979 by Microsoft, Licensed to Radio Shack, A Division of Tandy Corporation, Fort Worth, Texas

MICROSOFT FORTRAN-80
Reference Manual

Contents

Section Page
1 Introduction i v 4 e e . . 6
2 Fortran Program FOrm . « . v« & o o o o« o« o « 1
2.1 Fortran Character Set .« « « o « « o« « « 17

2.7.17 Lettlrs v v« v v v o o o o o o o o 1

2.7.2 DigitsS + o o o ¢ o o o o o o o o 1

2.1.3 Alphanumerics « « « « « « « « o« . 8

2.1.4 Special Characters . . « + « « « 8

2.2 FORTRAN Line Format . « « « o o o o« » o 9

2.3 Statements « + ¢ ¢ ¢ ¢ e e o e o « + « o 13

3 Data Representation/Storage Format 14

3.1 Data names and types . . .+ . « « .+ .« . . 14
3.7.17 NameS v v v v ¢ v & o o o« « o« o . 14
3.7T.2 TypPeS & v v v v v i e e e e . .14

3.2 Constants 4 v 4 4« v e . . 15

3.3 Variables ¢ v v v v 4« v 4 . . 19

3.4 Arrays and Array Elements 20

3.5 Subscripts e v e v W W .20

3.6 Data Storage Allocation 21

4 FORTRAN EXPressSionsS v« v v v o « o o o o o o . 25
4.1 Arithmetic Expressions « 25
4.2 Expression Evaluation ., ., 26
4.3 Logical EXPressions . . . o« o o o o o o 27

4.3.1 Relational Expressions ., 28

4.3.2 Logical Operators 28
4,4 Hollerith, Literal, and Hexadecimal

Constants in Expressions . . « o« o o o . 31

5 Replacement Statements . . . ¢« ¢« « ¢ o+ + . . 32

6 Specification Statements . . « . + « o« . . . 34

Specification Statements 34
Array Declarators . . . + ¢ « o« o« o o« o 34
Type Statements ¢« ¢« ¢« « « . 35
EXTERNAL Statements . . ¢« . . & o « « « 37
DIMENSION Statements ., « . . 37

[] L I
N WwhN -

N OY O OY O

6.6
6.7

6.8 DATA Initialization Statement

COMMON Statements
EQUIVALENCE Statements .

FORTRAN Control Statements . .

7.1

~l
e
wN

NN NN NN
e o o & o o »
=0 O~10uU1d

GOTO Statements « « « « o«
7.1.1
7.1.2 Computed GOTO . .
7.1.3 Assigned GOTO
ASSIGN Statement . .
IF Statement . . .
7.3.1 Arithmetic IF
7.3.2 Logical IF .
DO Statement . . .
CONTINUE Statement
STOP Statement .
PAUSE Statement .
CALL Statement .
RETURN Statement
END Statement . .

Input/Output . « « o« ¢ o o o &

8.1

o o
e
wN

o 00 o
« o o
N Ut >

Formatted READ/WRITE .
8.1.1 Formatted READ .
8.1.2 Formatted WRITE
Unformatted READ/WRITE
Disk File I/O0 . . « &
8.3.1 Random Disk I/O
8.3.2 OPEN Subroutine
Auxiliary I/0 Statements
ENCODE/DECODE « « « o o o

Unconditional GOTO

e

Input/Output List Spec1f1catlon

8.6.1 List Item TypesS .« « + =
8.6.2 Special Notes on List
Specifications . . « . &
FORMAT Statements . « « o o o o
8.7.1 Field Descriptors . . .
8.7.2 Numeric Conversions . .
8.7.3 Hollerith Conversions .
8.7.4 Logical Conversions . .
8.7.5 X Descriptor . . . « ¢« o
8.7.6 P Descriptor « « ¢« o o =«
8.7.7 Special Control Features
of FORMAT Statements . .
8.7.7.1 Repeat Specifications
8.7.7.2 Field Separators . .
8.7.8 FORMAT Control, List Spec1f1catlons
and Record Demarcation .
8.7.9 FORMAT Carriage Control
8.7.10 FORMAT Specifications in Arrays .

. L] L] L - L[] * *

L] L] L] R ® L] . .

L]

L] L] L L] . L] * L] * L] L] L] . * L] L] L) L] *

s 6 o o & ® @

37
39
41

44

44
44
45
45
46
47
47
47
48
51
52
52
53
53
53

54

54
54
57
58
59
59
60
60
61
62
62

64
65
65
66
71
73
74
74

75
75
77

78
79
79

Functions and Subprograms .

WO W WWIWILWLWLWIOWY
L]
SOOIV WN

0 Return

PROGRAM Statement « . + . .
Statement Functions
Library Functions «. « ¢« v « « . .
Function Subprograms . . « o e a4 e
Construction of Function Subprograms « o+ .
Referencing a Function Subprogram
Subroutine Subprograms
Construction of Subroutine Subprograms ., .
Referencing a Subroutine Subprogram ., . . .

From Function and Subroutine

Subprograms . . . e e« e o o e o o = o o @

[V}
L .
RN
N —a

APPENDIX A=-

APPENDIX B-

APPENDIX C-

APPENDIX D-

APPENDIX E-

Processing Arrays in Subprograms
BLOCK DATA Subroutine « « o o« o « &

Language Extensions and Restrictions
I/O0 Interface . . v v v v o« o o o &
Subprogram Linkages . . ¢« « .« + . .
ASCII Character Codes

FORTRAN-80 Library Subroutines . ., .

82

83
83
84
88
88
90
91
91
92

93
94
96
98
100
102
104

105

FORTRAN-80 Reference Manual Page 6

SECTION 1

INTRODUCTION

FORTRAN 1is a wuniversal, problem oriented programming
language designed to simplify the preparation and check-out
of computer programs., The name of the language - FORTRAN -
is an acronym for FORmula TRANslator.

The syntactical rules for using the language are rigorous
and require the programmer to define fully the
characteristics of a problem in a series of precise
statements., These statements, called the source program,
are translated by a system program called the FORTRAN
processor into an object program in the machine language of
the computer on which the program is to be executed.

This manual defiries the FORTRAN scurce language for the 8080
and Z~-80 microcomputers, This language includes the
American National Standard FORTRAN language as described in
ANSI document X3.9-1966, approved on March 7, 1966, plus a
number of language extensions and some restrictions. These
language extensions and restrictions are described in the
text of this document and are listed in Appendix A,

NOTE

This FORTRAN differs from the
Standard in that it does not
include the COMPLEX data type.

Examples are included throughout the manual to illustrate
the construction and use of the language elements. The
programmer should be familiar with all aspects of the
language to take full advantage of its capabilities.

Section 2 describes the form and components of an 8080
FORTRAN source program. Sections 3 and 4 define data types
and their expressional relationships. Sections 5 through 9
describe the proper construction and usage of the various
statement classes.

FORTRAN-80 Reference Manual Page 7

SECTION 2

FORTRAN PROGRAM FORM

8080 FORTRAN source programs consist of one program unit
called the Main program and any number of program units
called subprograms. A discussion of subprogram types and
methods of writing and using them is in Section 9 of this
manual,

Programs and program units are constructed of an ordered set
of statements which precisely describe procedures for
solving problems and which also define information to be
used by the FORTRAN processor during compilation of the
object program. Each statement is written using the FORTRAN
character set and following a prescribed line format.

2.1 FORTRAN CHARACTER SET

To simplify reference and explanation, the FORTRAN
character set 1is divided into four subsets and a
name is given to each.

2.1.1 LETTERS
+E,*,G,H,1,J,K,L,M,N,0,P,Q,R,S,T,U
12, %

NOTE
No distinction is made between upper and
lower case letters. However, for clarity

and legibility, exclusive use of upper case
letters is recommended.

2.1.2 DIGITS

0,1,2,3,4,5,6,7,8,9

NOTE
Strings of digits representing numeric
quantities are normally interpreted as
decimal numbers. However, in certain

statements, the interpretation is in the

FORTRAN-80 Reference Manual Page 8

R e A B i |

Hexadecimal number system in which case the
letters A, B, C, D, E, F may also be used
as Hexadecimal digits. Hexadecimal usage
is defined in the descriptions of
statements in which such notation is
allowed.

ALPHANUMERICS

A sub-set of characters made up of all letters and
all digits.

SPECIAL CHARACTERS

Blank

Equality Sign
Plus Sign

Minus Sign
Asterisk

Slash

Left Parenthesis
Right Parenthesis
Comma

Decimal Point

NOTES:

1. FORTRAN program lines consist of 80 character
positions or columns, numbered 1 through 80.
They are divided into four fields.

2. The following special characters are classified
as Arithmetic Operators and are significant in
the unambiguous statement of arithmetic
expressions.

+ Addition or Positive Value
- Subtraction or Negative VAlue
* Multiplication
/ Division
** Exponentiation
3. The other special characters have specific

application in the syntactical expression of
the FORTRAN language and in the construction of
FORTRAN statements.

FORTRAN-80 Reference Manual Page 9

2.2

4. Any printable character may appear in a
Hollerith or Literal field.

FORTRAN LINE FORMAT

The sample FORTRAN coding form (Figure 2.1) shows
the format of FORTRAN program lines. The lines of
the form consist of 80 character positions or
columns, numbered 1 through 80, and are divided
into four fields.

1. Statement Label (or Number) field- Columns 1
through 5 (See definition of statement labels).

2. Continuation character field-
Column 6

3. Statement field-
Columns 7 through 72

4. Indentification field-
Columns 73 through 80

The identification field is available for any
purpose the FORTRAN programmer may desire and is
ignored by the FORTRAN processor.

The lines of a FORTRAN statement are placed in
Columns 1 through 72 formatted according to line
types. The four line types, their definitions, and
column formats are:

1. Comment line -- used for source program
annotation at the convenience of the
programmer,

1. Column 1 contains the letter C.

2, Columns 2 - 72 are used in any desired
format to express the comment or they may
be left blank.

3. A comment line may be followed only by an
initial 1line, an END 1line, or another
comment line.

4. Comment lines have no effect on the object
program and are ignored by the FORTRAN
processor except for display purposes in
the listing of the program.

o

TN

L ¢ $&ENOIA

] 1 T ‘
BEEE “

79 £9 29 19 09 45 8BS /S 95 S6 ¥S €5 7§ 1§ 05 &¥ 8 v OF Sy vr &v I¥ b OF 6 8 [E 9¢ GE ¥€ €€ TE € 06 62 8 £LZ 9 ST wT €T &« 1z 02 6L 8L £1 9L 6L vl €1 ZL LL Ol 6 8 £
T T T T T

¥9 €9 29 19 09 66 8BS Z5 95 S5 ¥S €5 26 IS 05 6V 8y Ly 9y Sy vy £ Ty 1y Ov 6F 8¢ L 9€ GC ¥ EE & L 0T 6T 8 /¢ 9z Sz ¥ €T TT 1T 0T ¢l 8l

Zl 9L Sl ¥l €l

i1l

ol

6 8

L

(NMOHS ION 08-¢£L 0dS 4I ‘NMOHS LON ZL-S9 S,7T00) INIWILVLS NVELIOd

vu&aH

VOEEZMaZH

10

FORTRAN-80 Reference Manual Page 11

B
Example:
Cc COMMENT LINES ARE INDICATED BY THE
Cc CHARACTER C IN COLUMN 1.
C THESE ARE COMMENT LINES
2. END line =-- the last line of a program unit.

1. Columns 1-5 may contain a statement label.

2. Column 6 must contain a zero or blank.

3. Columns 7-72 contain one of the characters
E, N or D, in that order, preceded by,
separated by or followed by blank
characters.

4. Each FORTRAN program unit must have an END
line as its 1last 1line to inform the
Processor that it is at the physical end of
the program unit.

5. An END line may follow any other type line.

o Example:
END
3. Initial Line -- the first or only line of each
statement.

1. Columns 1-5 may contain a statement label
to identify the statement.

2. Column 6 must contain a zero or blank.

3. Columns 7-72 contain all or part of the
statement.

4., An initial line may begin anywhere within

the statement field.
Example:

C THE STATEMENT BELOW CONSISTS
C OF AN INITIAL LINE
C

A= ,5*SQRT (3-2.*C)

FORTRAN-80 Reference Manual Page 12

4. Continuation Line -- used when additional lines
of coding are required to complete a statement
originating with an initial line.

1. Columns 1-5 are ignored, unless Column 1
contains a C,

2. If Column 1 contains a C, it is a comment
line.

3., Column 6 must contain a character other
than zero or blank.

4. Columns 7-72 contain the continuation of
the statement. '

5. There may be as many continuation lines as
needed to complete the statement.

Examgle:

C THE STATEMENTS BELOW ARE AN INITIAL LINE
C AND 2 CONTINUATION LINES
C
63 BETA(1,2) =
1 A6BAR**7- (BETA (2,2)~A5BAR*50
2 +SQRT (BETA(2,1)))

A statement label may be placed in columns 1-5 of a
FORTRAN statement initial 1line and is used for
reference purposes in other statements.

The following considerations govern the use of
statement labels:
1. The label is an integer from 1 to 99999.

2. The numeric value of the label, leading =zeros
and blanks are not significant.

3. A label must be unique within a program unit.

4. A label on a continuation line is ignored by
the FORTRAN Processor.

FORTRAN-80 Reference Manual Page 13

Example:

C EXAMPLES OF STATEMENT LABELS
C
1
1 01
99999
763

STATEMENTS

Individual statements deal with specific aspects of
a procedure described in a program unit and are
classified as either executable or non-executable,

Executable statements specify actions and cause the
FORTRAN Processor to generate object program
instructions. There are three types of executable
statements:

1. Replacement statements.
2. Control statements.

3. Input/Output statements.

Non-executable statements describe to the processor
the nature and arrangement of data and provide
information about input/output formats and data
initialization to the object program during program
loading and execution. There are five types of
non-executable statements:

1. Specification statements.

2. DATA Initialization statements.

3. FORMAT statements.

4. FUNCTION defining statements.

5. Subprogram statements.

The proper usage and construction of the various

types of statements are described in Sections 5
through 9,

FORTRAN-80 Reference Manual Page 14

SECTION 3

DATA REPRESENTATION / STORAGE FORMAT

The FQRTRAN Language prescribes a definitive method for
identifying data used in FORTRAN programs by name and type.

3.1

DATA NAMES AND TYPES

NAMES

1. Constant - An explicitly stated datum.
2. Variable - A symbolically identified datum.

3. Array - An ordered set of data in 1, 2 or 3
dimensions.

4, Array Element - One member of the set of data
of an array.

TYPES
Integer -- Precise representation of integral
numbers (positive, negative or zero) having

precision to 5 digits in the range -32768 to +32767
inclusive (=2**15 to 2**15-1),

Real ~- Approximations of real numbers (positive,
negative or 2zero) represented in computer storage
in 4-byte, floating-point form. Real data are
precise to 7+ significant digits and their
magnitude may lie between the approximate limits of
10*%*-38 and 10**38 (2%*-127 and 2**127).

Double Precision -- Approximations of real numbers
(positive, negative or zero) represented in
computer storage in 8-byte, floating-point form.
Double Precision data are precise to 16+
significant digits in the same magnitude range as
real data.

Logical -- One byte representations of the truth
values "TRUE" or "FALSE" with "FALSE defined to
have an internal representation of zero. The
constant .TRUE. has the wvalue =1, however any
non-zero value will be treated as .TRUE. in a
Logical IF statement. In addition, Logical types
may be used as one byte signed integers in the

FORTRAN-80 Reference Manual Page 15

range =128 to +127, inclusive.

Hollerith -- A string of any number of characters
from the computer's character set. All characters
including blanks are significant. Hollerith data

require one byte for storage of each character in
the string.

CONSTANTS
FORTRAN constants are identified explicitly by
stating their actual value. The plus (+) character

need not precede positive valued constants.

Formats for writing constants are shown in Table
3-1.

FORTRAN-80 Reference Manual

TYPE

INTEGER

Page

Table 3-~1. CONSTANT FORMATS

FORMATS AND RULES OF USE EXAMPLES

1« 1 to 5 decimal digits -763
interpreted as a deci- 1
mal number. +00672

2. A preceding plus (+) or -32768
minus (~) sign is op- +32767
tional.

3. No decimal point (.) or
comma (,) is allowed.

4., Value range: -32768
through +32767 (.i.e.,

-2**15 through 2**15-1).

1. A decimal number with 345.
precision to 7 digits -.345678
and represented in one +345.678
of the following forms: +.3E3

~73E4
a. + or -.f + or =-i,.f
b. + or -i.E+ or -e
+ or ~-.fE+ or -e
+ or ~i.fE+ or -e

where i, £, and e are
each stxings represent-
ing integer, fraction,
and exponent respective-
ly.

2. Plus (+) and minus (-)
characters are optional.

3. In the form shown in 1 b

above, if r represents any

of the forms preceding

E+ or -e (i.e., rE+ or =-e),

the value of the constant
is interpreted as r times
10**e, where -38<=e<=38,

If the constant preceding
E+ or -e contains more
significant digits than

16

FORTRAN-80 Reference Manual Page

DOUBLE
PRECISION

LOGICAL

-LITERAL

HEXADECIMAL

the precision for real
data allows, truncation
occurs, and only the

most significant digits
in the range will be rep-

resented.
A decimal number with +345.678
precision to 16 digits. All +,3D3
formats and rules are identi- -73D4

cal to those for REAL con-
stants, except D is used in
place of E. Note that a real
constant is assumed single pre-
cision unless it contains a

"D" exponent.

.TRUE. generates a non-zero . TRUE,
byte (hexadecimal FF) and .FALSE.
.FALSE. generates a byte in

which all bits are 0.

If logical values are

used as one=-byte integers, the
rules for use are the same as
for type INTEGER, except that
the range allowed is =128 to
+127, inclusive.

In the literal form, any
number of characters may be
enclosed by single quotation
marks. The form is as follows:

'X1X2X3...Xn'

where each Xi is any charac-
ter other than '. Two
quotation marks in succession
may be used to represent the
quotation mark character
within the string, i.e.,

if X2 is to be the gquotation
mark character, the string
appears as the following:

'X1''X3...Xn"
1. The letter Z or X Z'12°

followed by a single quote,
up to 4 hexadecimal X'AB1F!

17

FORTRAN-80 Reference Manual Page
digits (0-9 and A-F) and a Z'FFFF'
single quote is recognized
as a hexadecimal value. X'1F'

2. A hexadecimal constant is
right justified in its storage
value.

18

FORTRAN-80 Reference Manual Page 19

3.3

VARIABLES

Variable data are identified in FORTRAN statements
by symbolic names. The names are unique strings of
from 1 to 6 alphanumeric characters of which the
first is a letter.

NOTE

System variable names and runtime
subprogram names are distinguished from
other variable names in that they begin
with the dollar sign character ($). It is
therefore strongly recommended that in
order to avoid conflicts, symbolic names in
FORTRAN source programs begin with some
letter other than "$".

Examples:

15, TBAR, B23, ARRAY, XFM79, MAX, A1$C

Variable data are classified into four types:
INTEGER, REAL, DOUBLE PRECISION and LOGICAL. The
specification of type is accomplished in one of the
following ways:

1. Implicit typing in which the first 1letter of
the symbolic name specifies Integer or Real
type. Unless explicitly typed (2., below),
symbolic names beginning with I, J, K, L, M or
N represent Integer variables, and symbolic
names beginning with letters other than I, J,
K, L, M or N represent Real variables.

Integer Variables

ITEM
J1
MODE
K123
N2

FORTRAN-80 Reference Manual Page 20

Real Variables

BETA
H2
ZAP
AMAT
XIiID

2. Variables may be typed explicitly. That 1is,
they may be given a particular type without
reference to the first letters of their names,
Variables may be explicitly typed as INTEGER,
REAL, DOUBLE PRECISION or LOGICAL. The
specific statements wused in explicitly typing
data are described in Section 6.

Variable data receive their numeric value assignments during

program execution or, initially, in a DATA statement
(Section 6).

Hollerith or Literal data may be assigned to any type
variable, Sub~paragraph 3.6 contains a discussion of
Hollerith data storage.

3.4 ARRAYS AND ARRAY ELEMENTS

An array is an ordered set of data characterized by
the property of dimension. An array may have 1, 2
or 3 dimensions and 1is identified and typed by a
symbolic name in the same manner as a variable
except that an array name must be so declared by an

"array declarator.”" Complete discussions of the
array declarators appear in Section 6 of this
manual. An array declarator also indicates the

dimensionality and size of the array. An array
element is one member of the data set that makes up
an array. Reference to an array element in a
FORTRAN statement is made by appending a subscript
to the array name. The term array element is
synonymous with the term subscripted variable used
in some FORTRAN texts and reference manuals.

An initial value may be assigned to any array

element by a DATA statement or its value may be
derived and defined during program execution.

3.5 SUBSCRIPTS

A subscript follows an array nhame to uniquely

FORTRAN-80 Reference Manual Page 21

identify an array element. In use, a subscript in
a FORTRAN statement takes on the same
representational meaning as a subscript in familiar
algebraic notation.

Rules that govern the use of subscripts are as

follows:

1. A subscript contains 1, 2 or 3 subscript
expressions (see 4 below) enclosed in
parentheses.

2. 1If there are two or three subscript expressions
within the parentheses, they must be separated
by commas.

3. The number of subscript expressions must be the
same as the specified dimensionality of the
Array Declarator except in EQUIVALENCE
statements (Section 6).

4. A subscript expression is written in one of the
following forms:

K C*V V-K
V C*V+K C*V-K
V+K

where C and K are integer constants and V is an
integer wvariable name (see Section 4 for a
discussion of expression evaluation).

5. Subscripts themselves may not be subscripted.

Examples:
X(2*3-3,7) A(I,J,K) I(20) C(L-2) Y (I)
3.6 DATA STORAGE ALLOCATION

Allocation of storage for FORTRAN data is made in
numbers of storage units. A storage unit is the
memory space required to store one real data value
(4 bytes).

Table 3~2 defines the word formats of the three
data types.

Hexadecimal data may be associated (via a DATA
statement) with any type data. Its storage
allocation is the same as the associated datum,

Hollerith or literal data may be associated with
any data type by use of DATA initializaton

FORTRAN-80 Reference Manual Page 22

statements (Section 6).

Up to eight Hollerith characters may be associated
with Double Precision type storage, up to four with
Real, up to two with Integer and one with Logical
type storage,

FORTRAN-80 Reference Manual Page 23

TYPE

INTEGER

LOGICAL

REAL

TABLE 3-2., STORAGE ALLOCATION BY DATA TYPES

ALLOCATION

2 bytes/ 1/2 storage unit
S Binary Value

Negative numbers are the 2's complement of
positive representations.

1 byte/ 1/4 storage unit
Zero (false) or non-zero (true)

A non-zero valued byte indicates true (the
logical constant .TRUE. is represented by
the hexadecimal value FF). A zero valued
byte indicates false.

When used as an arithmetic value, a Logical
datum is treated as an Integer in the range
-128 to +127.

4 bytes/ 1 storage unit

Characteristic S Mantissa
Mantissa (continued)

The first byte is the characteristic
expressed in excess 200 (octal) notation;
i.e., a value of 200 (octal) corresponds to a
binary exponent of 0. Values less than 200
(octal) correspond to negative exponents, and
values greater than 200 correspond to
positive exponents. By definition, if the
characteristic is zero, the entire number is
zero.

The next three bytes constitute the mantissa.
The mantissa 1is always normalized such that
the high order bit is one, eliminating the
need to actually save that bit. The high bit
is used instead to indicate the sign of the
number, A one indicates a negative number,
and zero indicates a positive number. The
mantissa is assumed to be a binary fraction
whose binary point is to the 1left of the
mantissa.

FORTRAN-80 Reference Manual Page 24

DOUBLE
PRECISION

8 bytes/ 2 storage units

The internal form of Double Precision data is
identical with that of Real data except
Double Precision uses 4 extra bytes for the
matissa.

FORTRAN-80 Reference Manual Page 25

SECTION 4

FORTRAN EXPRESSIONS

A FORTRAN expression is composed of a single operand or a
string of operands connected by operators. Two expression
types --Arithmetic and Logical-- are provided by FORTRAN.
The operands, operators and rules of use for both types are
described in the following paragraphs.

4.1 ARITHMETIC EXPRESSIONS

The following rules define all permissible
arithmetic expression forms:

1. A constant, variable name, array element
reference or FUNCTION reference (Section 9)
standing alone is an expression.

Examples:
S(I) JOBNO 217 17.26 SQRT (A+B)
2. If E is an expression whose first character is

not an operator, then +E and -E are called
signed expressions.

Examples
-S +JOBNO =217 +17.26 =SQRT (A+B)
3. If E is an expression, then (E) means the

quantity resulting when E is evaluated.

Examples:

(-A) - (JOBNO) - (X+1) (A-SQRT (A+B))
4., If E is an unsigned expression and F is any

expression, then: F+E, F-E, F*E, F/E and F**E

are all expressions.

Examples:

-(B(I,J)+SQRT (A+B(K,L)))

1.7E=-2** {X+5.0)
=(B(I+3,3*J+5)+A)

FORTRAN-80 Reference Manual Page 26

4.2

5.

An evaluated expression may be Integer, Real,

Double Precision, or Logical. The type is
determined by the data types of the elements of
the expression, If the elements of the

expression are not all of the same type, the
type of the expression is determined by the
element having the highest type. The type
hierarchy (highest to lowest) is as follows:
DOUBLE PRECISION, REAL, INTEGER, LOGICAL.

Expressions may contain nested parenthesized
elements as in the following:

A* (Z-((Y+X) /T)) **J

where Y+X is the innermost element, (Y+X)/T is
the next innermost, Z-((Y+X)/T) the next. 1In
such expressions, care should be taken to see
that the number of left parentheses and the
number of right parentheses are equal.

EXPRESSION EVALUATION

Arithmetic expressions are evaluated according to
the following rules:

1.

Parenthesized expression elements are evaluated
first. If parenthesized elements are nested,
the innermost elements are evaluated, then the
next innermost until the entire expression has
been evaluated.

Within parentheses and/or wherever parentheses
do not govern the order or evaluation, the
hierarchy of operations in order of precedence
is as follows:

a. FUNCTION evaluation

b. Exponentiation

c. Multiplication and Division
d. Addition and Subtraction
Example:

The expression

A* (Z- ((Y+R) /T)) **J+VAL

is evaluated in the following sequence:

FORTRAN~-80 Reference Manual Page 27

A

Y+R = e1
(e1)/T = e2
Z-e2 = e3
e3**J = ¢4
A*ed = e5
e5+VAL = eb
3. The expression X**Y**7 is not allowed. It

should be written as follows:
(X**Y)**Z or X**(Y**Z)
4. Use of an array element reference requires the
evaluation of its subscript. Subscript

expressions are evaluated under the same rules
as other expressions.

LOGICAL EXPRESSIONS

A Logical Expression may be any of the following:

1. A single Logical Constant (i.e., .TRUE. or
.FALSE.), a Logical variable, Logical Array
Element or Logical FUNCTION reference (see
FUNCTION, Section 9).

2. Two arithmetic expressions separated by a
relational operator (i.e., a relational
expression).

3. Logical operators acting upon logical
constants, logical variables, 1logical array
elements, logical FUNCTIONS, relational

expressions or other logical expressions.

FORTRAN-80 Reference Manual Page 28

The value of a logical expression is always either
.TRUE. or .FALSE.

RELATIONAL EXPRESSIONS

The general form of a relational expression is as
follows:

el r e2
where el and e2 are arithmetic expressions and r is

a relational operator. The six relational
operators are as follows:

LT, Less Than

.LE, Less than or equal to
.EQ. Equal to

.NE, Not equal to

.GT. Greater than

.GE, Greater than or equal to

The value of the relational expression is .TRUE.
if the condition defined by the operator is met.
Otherwise, the value is .FALSE,
Examples:

A.EQ.B

(A**J) ,GT. (ZAP* (RHO*TAU-ALPH))

LOGICAL OPERATORS

Table 4-1 lists the logical operations. U and V
denote logical expressions.

N

FORTRAN-80 Reference Manual Page 29

Table 4-1., Logical Operations

.NOT.U The value of this expression is the
logical complement of U (i.e., 1
bits become 0 and 0 bits become 1).

U.AND.V The value of this expression is the
logical product of U and V (i.e.,
there is a 1 bit in the result only
where the corresponding bits in both
U and V are 1.

U.OR.V The value of this expression is the
logical sum of U and V (i.e., there
is a 1 in the result if the

corresponding bit in U or V is 1 or
if the corresponding bits in both U
and V are 1.

U.XOR.V The value of this expression is the
exclusive OR of U and V (i.e., there
is a one in the result if the
corresponding bits in U and V are 1
and 0 or 0 and 1 respectively.

Examples:

If U = 01101100 and V = 11001001 , then
.NOT.U = 10010011
U.AND.V = 01001000

U.O0R.V = 11101101
U.XOR.V = 10100101

FORTRAN-80 Reference Manual Page 30

The following are additional considerations for
construction of Logical expressions:

1.

Any Logical expression may be enclosed in
parentheses, However, a Logical expression to
which the .NOT. operator is applied must be
enclosed in parentheses if it contains two or
more elements.

In the hierarchy of operations, parentheses may
be used to specify the ordering of the
expression evaluation. Within parentheses, and
where parentheses do not dictate evaluation
order, the order is understood to be as
follows:

a. FUNCTION Reference

b. Exponentiation (**)

C. Multiplication and Division (* and /)
d. Addition and Subtraction (+ and -)

e. .LT., .LE., .EQ., .NE., .GT., .GE.

£. .NOT.

g. .AND,

h. .OR., .XOR.

Examples:
The expression
X JAND, Y .OR. B(3,2) .GT. Z

is evaluated as

el = B(3,2).GT.Z
e2 = X ,AND. Y
e3 = e2 .0OR. el

The expression
X .AND. (Y .OR. B(3,2) .GT. 2Z)

is evaluated as

el = B(3,2) .GT. Z
e2 =Y ,0R. el
e3 = X .AND. e2

It is invalid to have two contiguous logical
operators except when the second operator is
.NOT.

FORTRAN-80 Reference Manual Page 31

That is,

.AND, .NOT,
and

.OR..NOT.

are permitted.

Example:
A.AND..NOT.B is permitted
A.AND..OR.B is not permitted

HOLLERITH, LITERAL, AND HEXADECIMAL CONSTANTS IN
EXPRESSIONS

Hollerith, Literal, and Hexadecimal constants are
allowed in expressions in place of Integer
constants. These special constants always evaluate
to an Integer value and are therefore limited to a
length of two bytes. The only exceptions to this
are:

1. Long Hollerith or Literal constants may be used
as subprogram parameters.

2. Hollerith, Literal, or Hexadecimal constants
may be up to four bytes long in DATA statements
when associated with Real variables, or up to
eight bytes 1long when associated with Double
Precision variables.

FORTRAN-80 Reference Manual Page 32

SECTION 5

REPLACEMENT STATEMENTS

Replacement statements define computations and are wused
similarly to equations in normal mathematical notation.
They are of the following form:

v =€

where v is any variable or array element and e is an
expression,

FORTRAN semantics defines the equality sign (=) as meaning
to be replaced by rather than the normal is eguivalent to.
Thus, the object program instructions generated by a
replacement statement will, when executed, evaluate the
expression on the right of the equality sign and place that
result in the storage space allocated to the variable or

array element on the left of the equality sign.

The following conditions apply to replacement statements:

1. Both v and the equality sign must appear on the
same line. This holds even when the statement is
part of a logical IF statement (section 7).
Example:

C IN A REPLACEMENT STATEMENT THE '='

c MUST BE IN THE INITIAL LINE.
A(5,3) =
1 B(7,2) + SIN(C)

The line containing v= must be the initial line of
the statement unless the statement is part of a
logical IF statement. In that case the v= must
occur no later than the end of the first line after
the end of the IF.

2. If the data types of the variable, v, and the
expression, e, are different, then the value
determined by the expression will be converted, 1if
possible, to conform to the typing of the variable.
Table 5-1 shows which type expressions may be
equated to which type of variable. Y indicates a
valid replacement and N indicates an invalid
replacement. Footnotes to Y indicate conversion
considerations.

FORTRAN-80 Reference Manual Page 33

Table 5-1. Replacement By Type

Expression Types (e)
Variable
Types Integer Real Logical Double
Integer Y Ya Yb Ya
Real Yc Y Yc Ye
Logical Yd Ya Y Ya
Double Yc Y Yc Y

a. The Real expression value is converted to Integer,
truncated if necessary to conform to the range of
Integer data.

b. The sign is extended through the second byte.

c. The variable is assigned the Real approximation of
the Integer value of the expression.

d. The variable is assigned the truncated value of the
Integer expression (the low-order byte 1is wused,
regardless of sign).

e. The variable is assigned the rounded value of the
Real expression.

FORTRAN-80 Reference Manual Page 34

SECTION 6

SPECIFICATION STATEMENTS

Specification statements are non~executable, non-generative
statements which define data types of variables and arrays,
specify array dimensionality and size, allocate data storage
or otherwise supply determinative information to the FORTRAN
processor., DATA intialization statements are
non-executable, but generate object program data and
establish initial values for variable data.

6.1 SPECIFICATION STATEMENTS

There are six kinds of specification statements.
Theyare as follows:

Type, EXTERNAL, and DIMENSION statements
COMMON statements

EQUIVALENCE statements

DATA initialization statements

All specification statements are grouped at the
beginning of a program unit and must be ordered as
they appear above. Specification statements may be
preceded only by a FUNCTION, SUBROUTINE, PROGRAM or
BLOCK DATA statement. All specification statements
must precede statement functions and the first
executable statement.

6.2 ARRAY DECLARATORS
Three kinds of specification statements may specify
array declarators. These statements are the
following:

Type statements
DIMENSION statements
COMMON statements

Of these, DIMENSION statements have the declaration
of arrays as their sole function. The other two
serve dual purposes. These statements are defined
in subparagraphs 6.3, 6.5 and 6.6.

Array declarators are used to specify the name,
dimensionality and sizes of arrays. An array may
be declared only once in a program unit.

An array declarator has one of the following forms:

FORTRAN-80 Reference Manual Page 35

ui (k)
ui (k1,k2)
ui (k1,k2,k3)

where ui is the name of the array, called the
declarator name, and the k's are integer constants.

Array storage allocation is established upon
appearance of the array declarator. Such storage
is allocated 1linearly by the FORTRAN processor
where the order of ascendancy is determined by the
first subscript varying most rapidly and the last
subscript varying least rapidly.

For example, if the array declarator AMAT(3,2,2)
appears, storage is allocated for the 12 elements
in the following order:

AMAT(1,1,1), AMAT(2,1,1), AMAT(3,1,1), AMAT(1,2,1),
AMAT (2,2,1), AMAT(3,2,1), AMAT(1, 1 ,2), AMAT(2,1,2),
AMAT (3,1,2), AMAT(1,2,2), AMAT(2,2,2), AMAT(3,2,2)

TYPE STATEMENTS

Variable, array and FUNCTION names are
automatically typed Integer or Real by the
'predefined' convention unless they are changed by
Type statements, For example, the type is Integer
if the first letter of an item is I, J, K, L, M or
N. Otherwise, the type is Real,

Type statements provide for overriding or
confirming the pre-defined convention by specifying
the type of an item. In addition, these statements
may be used to declare arrays.

Type statements have the following general form:
t vl,v2,...vn

where t represents one of the terms INTEGER,
INTEGER*1, INTEGER*2, REAL, REAL*4, REAL*8, DOUBLE
PRECISION, LOGICAL, LOGICAL*1, LOGICAL*2, or BYTE.
Each Vv is an array declarator or a variable, array
or FUNCTION name. The INTEGER*1, INTEGER*2,
REAL*4, REAL*8, LOGICAL*1,and LOGICAL*2 types are
allowed for readability and compatibility with
other FORTRANs. BYTE, INTEGER*1, LOGICAL*1, and
LOGICAL are all equivalent; INTEGER*2, LOGICAL*2,
and INTEGER are equivalent; REAL and REAL*4 are
equivalent; DOUBLE PRECISION and REAL*8 are
equivalent.

FORTRAN-80 Reference Manual Page 36

ExamBle:
REAL AMAT(3,3,5),BX,IETA,KLPH

NOTE

1. AMAT and BX are redundantly typed.

2. IETA and KLPH are unconditionally
declared Real.

3. AMAT (3,3,5) is a constant array
declarator specifying an array of 45
elements.

ExamEle:
INTEGER M1, HT, JMP(15), FL

NOTE

M1 is redundantly typed here. Typing of HT
and FL by the pre-defined convention is
overridden by their appearance in the
INTEGER statement. JMP (15) is a constant
array declarator. It redundantly types the
array elements as Integer and communicates
to the processor the storage requirements
and dimensionality of the array.

Examgle:
LOGICAL L1, TEMP

NOTE

All variables, arrays or FUNCTIONs required
to be typed Logical must appear in a
LOGICAL statement, since no starting letter
indicates these types by the default
convention.

FORTRAN-80 Reference Manual Page 37

6.4

EXTERNAL STATEMENTS

EXTERNAL statements have the following form:
EXTERNAL ul,u2,...,un

where each ui is a SUBROUTINE, BLOCK DATA or
FUNCTION name. When the name of a subprogram is
used as an argument in a subprogram reference, it
must have appeared in a preceding EXTERNAL
statement.

When a BLOCK DATA subprogram is to be included in a
program load, its name must have appeared in an
EXTERNAL statement within the main program unit.

For example, if SUM and AFUNC are subprogram names
to be used as arguments in the subroutine SUBR, the
following statements would appear in the calling
program unit:

EXTERNAL SUM, AFUNC

CALL SUBR(SUM,AFUNC,X,Y)

DIMENSION STATEMENTS

A DIMENSION statement has the following form:
DIMENSION u2,u2,u3,...,un
where each ui is an array declarator.
Example:
DIMENSION RAT(5,5),BAR(20)
This statement declares two arrays = the 25 element

array RAT and the 20 element array BAR.

COMMON STATEMENTS

COMMON statements are non-executable, storage
allocating statements which assign variables and
arrays to a storage area called COMMON storage and
provide the facility for various program units to
share the use of the same storage area.

FORTRAN-80 Reference Manual Page 38

COMMON statements are expressed in the following
form:

COMMON /Y1/A1/Y2/A2/.../Y¥n/An

where each Yi is a COMMON block storage name and
each Ai is a sequence of variable names, array
names or constant array declarators, separated by
commas. The elements in Ai make up the COMMON
block storage area specified by the name Yi. If
any Yi is omitted leaving two consecutive slash
characters (//), the block of storage so indicated
is called blank COMMON. If the first block name
(Y1) is omitted, the two slashes may be omitted.

Examgle:
COMMON /AREA/A,B,C/BDATA/X,Y,Z,
X FL,ZAP(30)

In this example, two blocks of COMMON storage are
allocated - AREA with space for three variables and
BDATA, with space for four variables and the 30
element array, ZAP.

Example

COMMON //A1,B1/CDATA/ZOT(3,3)
X //T2,%3

In this example, A1, B1, T2 and Z3 are assigned to
blank COMMON in that order. The pair of slashes
preceding A1 could have been omitted.

CDATA names COMMON block storage for the nine
element array, ZOT and thus ZOT (3,3) is an array
declarator. ZOT must not have been previously
declared. (Ssee ~"Array Declarators,” Paragraph
6.3.)

Additional Considerations:

1. The name of a COMMON block may appear more than
once in the same COMMON statement, or in more
than one COMMON statement.

2. A COMMON block name is made up of from 1 to 6
alphanumeric characters, the first of which
must be a letter.

3. A COMMON block name must be different from any
subprogram names used throughout the program.

FORTRAN-80 Reference Manual Page 39

4. The size of a COMMON area may be increased by
the use of EQUIVALENCE statements. See
"EQUIVALENCE Statements," Paragraph 6.7.

5. The lengths of COMMON blocks of the same name
need not be identical in all program units
where the name appears. However, if the
lengths differ, the program unit specifying the
greatest length must be loaded first (see the
discussion of LINK-80 in the User's Guide).
The length of a COMMON area is the number of
storage units required to contain the variables
and arrays declared in the COMMON statement (or
statements) unless expanded by the wuse of
EQUIVALENCE statements.

EQUIVALENCE STATEMENTS

Use of EQUIVALENCE statements permits the sharing
of the same storage unit by two or more entities.
The general form of the statement is as follows:

EQUIVALENCE (u1), (u2),..., (un)

where each ui represents a sequence of two or more
variables or array elements, separated by commas.
Each element in the sequence is assigned the same
storage unit (or portion of a storage unit) by the
processor. The order in which the elements appear
is not significant.

Example:
EQUIVALENCE (A,B,C)

The variables A, B and C will share the same
storage unit during object program execution.

If an array element 1is wused 1in an EQUIVALENCE
statement, the number of subscripts must be the
same as the number of dimensions established by the
array declarator, or it must be one, where the one
subscript specifies the array element's number
relative to the first element of the array.

Example:
If the dimensionaliity of an array, 2, has been

declared as 7Z(3,3) then in an EQUIVALENCE statement
Z(6) and Z(3,2) have the same meaning.

FORTRAN-80 Reference Manual Page 40

Additonal Considerations:

1.

2.

The subscripts of array elements must be
integer constants.

An element of a multi-dimensional array may be

referred to by a single subscript, if desired.

Variables may be assigned to a COMMON block
through EQUIVALENCE statements.

Example:

COMMON /X/A,B,C
EQUIVALENCE (A,D)

In this case, the variables A and D share the
first storage unit in COMMON block X.

EQUIVALENCE statements can increase the size of
a block indicated by a COMMON statement by
adding more elements to the end of the block.
Example:

DIMENSION R(2,2)

COMMON /Z/W,X,Y

EQUIVALENCE (Y,R(3))

The resulting COMMON block will have the
following configuration:

Variable Storage Unit

W=1L(1,1) 0
X = R(2,1) 1
Y = R(1,2) 2

R(2,2) 3

The COMMON block established by the COMMON
statement contains 3 storage units. It is
expanded to 4 storage units by the EQUIVALENCE
statement.

COMMON block size may be increased only from
the 1last element established by the COMMON
statement forward; not from its first element
backward.

Note that EQUIVALENCE (X,R(3)) would be invalid
in the example. The COMMON statement
established W as the first element in the
COMMON block and an attempt to make X and R(3)
equivalent would be an attempt to make R(1) the
first element.

FORTRAN-80 Reference Manual Page 41

5, It is invalid to EQUIVALENCE two elements of
the same array or two elements belonging to the
same or different COMMON blocks.

ExamEle:

DIMENSION XTABLE (20), D(5)
COMMON A,B(4)/ZAP/C,X

EQUiVALENCE (XTABLE (6) ,A(7)
B(3) ,XTABLE(5)),
(B(3),D(5))

<

This EQUIVALENCE statement has the following
errors:

1. It attempts to EQUIVALENCE two elements of the
same array, XTABLE(6) and XTABLE(15).

2. It attempts to EQUIVALENCE two elements of the
same COMMON block, A(7) and B(3).

3. Since A is not an array, A(7) 1is an illegal
reference.

4, Making B(3) equivalent to D(5) extends COMMON
backwards from its defined starting point.

DATA INITIALIZATION STATEMENT

The DATA initialization statement is a
non-executable statement which provides a means of
compiling data values into the object program and
assigning these data to variables and array
elements referenced by other statements.

The statement is of the following form:
DATA list/ul,u2,...,un/,list.../uk,uk+1,...uk+n/

where "list" represents a list of wvariable, array
or array element names, and the ui are constants
corresponding in number to the elements 1in the
list. An exception to the one~for-one
correspondence of list items to constants 1is that
an array name (unsubscripted) may appear in the

FORTRAN-80 Reference Manual Page 42

list, and as many constants as necessary to fill
the array may appear in the corresponding position
between slashes. Instead of ui, it is permissible
to write k*ui in order to declare the same
constant, ui, k times in succession. k must be a
positive integer. Dummy arguments may not appear
in the list.

Examgle:

DIMENSION C(7)
DATA A, B, C(1),C(3)/14.73,
X -8.1,2%7.5/

This implies that
A=14.73, B=-8.1, C(1)=7.5, c(3)=7.5

The type of each constant ui must match the type of
the corresponding item in the list, except that a
Hollerith or Literal constant may be paired with an
item of any type.

When a Hollerith or Literal constant is used, the
number of characters in its string should be no
greater than four times the number of storage units
required by the corresponding item, 1i.e., 1
character for a Logical variable, up to 2
characters for an Integer variable and 4 or fewer
characters for a Real variable.

1f fewer Hollerith or Literal characters are
specified, trailing blanks are added to fill the
remainder of storage.

Hexadecimal data are stored in a similar fashion.
1f fewer Hexadecimal characters are used,
sufficient leading zeros are added to £ill the
remainder of the storage unit.

The examples below illustrate many of the features
of the DATA statement.

FORTRAN-80 Reference Manual Page 43

DIMENSION HARY (2)
DATA HARY,B/ 4HTHIS, 4H OK.
1 ,7.86/

REAL LIT(2)

LOGICAL LT,LF

DIMENSION H4(2,2),PI3(3)

DATA A1,B1,Kt1,LT,LF,H4(1,1),8B4(2,1)
1 H4(1,2) ,H4(2,2),P13/5.9,2.5E~4,
2 64, .FALSE.,.TRUE.,1.75E-3,

3 0.85E-1,2*%75.0,1.,2.,3.14159/
4 LIT(1)/'NOGO"'/

FORTRAN-80 Reference Manual Page 44

SECTION 7

FORTRAN CONTROL STATEMENTS

FORTRAN control statements are executable statements which
affect and guide the logical flow of a FORTRAN program. The
statements in this category are as follows:
1. GO TO statements:
1. Unconditional GO TO
2. Computed GO TO

3. Assigned GO TO

2. ASSIGN
3. IF statements:
1. Arithmetic IF

2. Logical IF

4, DO

5. CONTINUE

6. STOP
7. PAUSE
8. CALL
9. RETURN

When statement labels of other statements are a part of a
control statement, such statement labels must be associated
with executable statements within the same program unit in
which the control statement appears.

7.1 GO TO STATEMENTS

7.1.1 UNCONDITIONAL GO TO

Unconditional GO TO statements are used whenever
control 1is to be transferred unconditionally to
some other statement within the program unit.

FORTRAN~-80 Reference Manual Page 45

The statement is of the following form:
GO TO k

where k is the statement label of an executable
statement in the same program unit.

ExamEle:

GO TO 376
310 A(7) = V1 =-A(3)

376 A(2) =VECT
GO TO 310

In these statements, statement 376 is ahead of
statement 310 in the logical flow of the program of
which they are a part.

COMPUTED GO TO
Computed GO TO statements are of the form:
GO TO (k1,k2,...,n),j

where the ki are statement labels, and j 1is an
integer variable, 1 < j < n.

This statement causes transfer of control to the
statement labeled kj. If j < 1 or j > n, control
will be passed to the next statement following the
Computed GOTO.

Example:

J=3

Go To(7, 70, 700, 7000, 70000), J
310 J=5
GO TO 325

When J = 3, the computed GO TO transfers control to
statement 700. Changing J to equal 5 changes the
transfer to statement 70000. Making J = 0 or J = 6
would cause control to be transferred to statement
310.

ASSIGNED GO TO

Assigned GO TO statements are of the following

FORTRAN-80 Reference Manual Page 46

form:
Go TO j,(k1,k2,...,kn)
or
GOTO J

where J is an integer variable name, and the ki are
statement labels of executable statements. This
statement causes transfer of control to the
statement whose label is equal to the current value
of J.

Qualifications

1. The ASSIGN statement must logically precede an
assigned GO TO.

2. The ASSIGN statement must assign a value to J
which is a statement label included in the list
of k's, if the list is specified.

Example:

GO TO LABEL, (80,90, 100)

Only the statement labels 80, 90 or 100 may be
assigned to LABEL.

ASSIGN STATEMENT

This statement is of the following form:
ASSIGN j TO i

where j is a statement label of an executable
statement and i is an integer variable.

The statement is used in conjunction with each
assigned GO TO statement that contains the integer
variable i. When the assigned GO TO is executed,
control will be transferred to the statement
labeled j.

FORTRAN-80 Reference Manual

Example:
ASSIGN 100 TO LABEL

ASSIGN 90 TO LABEL
GO TO LABEL, (80,90,100)

7.3 IF STATEMENT

IF statements transfer control to one of a

Page 47

series

of statements depending upon a condition. Two

types of IF statements are provided:

Arithmetic IF
Logical IF

7.3.1 ARITHMETIC IF

The arithmetic IF statement is of the form:

IF(e) ml1,m2,m3

where e is an arithmetic expression and m1, m2 and

m3 are statement labels.

Evaluation of expression e determines one of

transfer possibilities:

If e is: Transfer to:
<0 m1
=0 m2
>0 m3
Examples:
Statement Expression Value
IF (A)3,4,5 15
IF (N-1)50,73,9 0

IF (AMTX(2,1,2))7,2,1 =256

7.3.2 LOGICAL IF
The Logical IF statement is of the form:
IF (u)s

where u is a Logical expression and s

three

Transfer to

is any

executable statement except a DO statement (see

7.4) or another Logical IF statement. The

Logical

FORTRAN-80 Reference Manual Page 48

expression u is evaluated as .TRUE. oOr .FALSE,
Section 4 contains a discussion of Logical
expressions.,

Control Conditions:

If u is FALSE, the statement s is ignored and
control goes to the next statement following the
Logical IF statement. If, however, the expression
is TRUE, then control goes to the statement s, and
subsequent program control follows normal
conditions.

If s is a replacement statement (v = e, Section 5),
the variable and equality sign (=) must be on the
same line, either immediately following IF (u) or on

a separate continuation line with the line spaces
following IF(u) left blank. See example 4 below.

Examples:
1. IF(I.GT.20) GO TO 115
2, IF(Q.AND.,R) ASSIGN 10 TO J
3. 1IF(Z) CALL DECL(A,B,C)
4, IF(A.OR.B.LE.PI/2)I=J
5. IF(A.OR.B.LE.PI/2)
X I=J
DO STATEMENT
The DO statement, as implemented in FORTRAN,
provides a method for repetitively executing a

series of statements. The statement takes of one
of the two following forms:

1) DO k i = ml1,m2,m3
or
2) DO k i = m1,m2

where k is a statement label, i is an integer or
logical variable, and ml, m2 and m3 are integer
constants or integer or logical variables.

If m3 is 1, it may be omitted as in 2) above.

The following conditions and restrictions govern
the use of DO statements:

FORTRAN-80 Reference Manual

Page 49

The DO and the first comma must appear on the

initial line.

The statement labeled k, called the terminal
statement, must be an executable statement.

The terminal statement must physically follow
its associated Do, and the executable
statements following the DO, up to and
including the terminal statement, constitute
the range of the DO statement.

The terminal statement may not be an Arithmetic
IF, GO TO, RETURN, STOP, PAUSE or another DO.

If the terminal statement is a logical IF and
its expression is .FALSE., then the statements
in the DO range are reiterated.

If the expression is .TRUE., the statement of
the logical 1IF is executed and then the
statements in the DO range are reiterated. The
statement of the logical IF may not be a GO TO,
Arithmetic IF, RETURN, STOP or PAUSE.

called
The index must be
modified by any

The controlling integer variable, i, is
the index of the DO range.
positive and may not be
statement in the range.

If m1, m2, and m3 are Integer*1 variables or
constants, the DO loop will execute faster and
be shorter, but the range is 1limited to 127
iterations. For example, the loop overhead for
a DO loop with a constant 1limit and an
increment of 1 depends wupon the type of the
index variable as follows:

Index Variable Overhead

Type Microseconds Bytes
INTEGER*2 35.5 19
INTEGER¥*1 24 14

During the first execution of the statements in

the DO range, 1 1is equal to ml; the second
execution, i = ml1+m3; the third, i=m1+2*m3,
etc., until i is equal to the highest value in

this sequence less than
then the DO 1is said
statements in the DO

executed at least once,

When the DO has been satisfied,
following the

to the statement

or equal to m2, and

to be satisfied. The
range will always be
even if mt < m2.
control passes
terminal

FORTRAN-80 Reference Manual

Page 50

statement, otherwise control transfers back to
the first executable statement following the DO
statement.

Example:
The following example computes
100

Sigma Ai
i=1

where a is a one-dimensional array

100 DIMENSION A(100)

SUM = A(1)
DO 31 I = 2,100
31 SUM =SUM + A(I)

END

The range of a DO statement may be extended to
include all statements which may logically be
executed between the DO and 1its terminal
statement. Thus, parts of the DO range may be
situated such that they are not physically
between the DO statement and its terminal
statement but are executed logically in the DO
range. This is called the extended range.

Examgle:
DIMENSION A(500), B(500)

po 50 1 = 10, 327, 3
IF (V7 -C*C) 20,15,31

50 A(I) = B(I) + C

20 ¢ =C - .05
GO TO 50
31 C=C+ .0125

GO TO 30

FORTRAN-80 Reference Manual Page 51

7.5

10. It is invalid to transfer control into the
range of a DO statement not itself in the range
or extended range of the same DO statement.

11. Within the range of a DO statement, there may
be other DO statements, in which case the DO's
must be nested. That is, if the range of one
DO contains another DO, then the range of the
inner DO must be entirely included in the range
of the outer DO.

The terminal statement of the inner DO may also
be the terminal statement of the outer DO.

For example, given a two dimensional array A of
15 rows and 15 columns, and a 15 element
one-dimensional array B, the following
statements compute the 15 elements of array C
to the formula:

15
Ck =Sigma AkjBm, k = 1,2,...,15
3=1

DIMENSION A(15,15), B(15), C(15)

DO 80 K =1,15

C(K) = 0.0
DO 80 J=1,15
80 C(K) = C(K) +A(K,J) * B(J)

CONTINUE STATEMENT

CONTINUE is classified as an executable statement.
However, its execution does nothing. The form of
the CONTINUE statement is as follows:

CONTINUE

CONTINUE 1is frequently wused as the terminal
statement in a DO statement range when the
statement which would normally be the terminal
statement is one of those which are not allowed or
isonly executed conditionally.

FORTRAN-80 Reference Manual Page 52

ExamEle:
DO 5 K= 1,10

IF (c2) 5,6,6
6 CONTINUE

c2 = C2 +.005
5 CONTINUE

STOP STATEMENT

A STOP statement has one of the following forms:
STOP
or
STOP c
where ¢ is any string of one to six characters.
When STOP is encountered during execution of the
object program, the characters c (if present) are
displayed on the operator control console and
execution of the program terminates.
The STOP statement, therefore, constitutes the

logical end of the program.

PAUSE STATEMENT

A PAUSE statement has one of the following forms:
PAUSE
or
PAUSE c
where ¢ is any string of up to six characters.
When PAUSE is encountered during execution of the
object program, the characters c (if present) are
displayed on the operator control console and

execution of the program ceases.

The decision to continue execution of the program
is not under control of the program. If execution

FORTRAN~80 Reference Manual Page 53

7.9

is resumed through intervention of an operator
without otherwise changing the state of the
processor, the normal execution sequence, following
PAUSE, is continued.

Execution may be terminated by typing a "T" at the

operator console. Typing any other character will
cause execution to resume.

CALL STATEMENT

CALL statements control transfers into SUBROUTINE
subprograms and provide parameters for use by the
subprograms. The general forms and detailed
discussion of CALL statements appear in Section 9,
FUNCTIONS AND SUBPROGRAMS,

RETURN STATEMENT

The form, use and interpretation of the RETURN
statement is described in Section 9.

END STATEMENT

The END statement must physically be the last
statement of any FORTRAN program. It has the
following form:

END

The END statement is an executable statement and
may have a statement label. It causes a transfer
of control to be made to the system exit routine
$EX, which returns control to the operating system.

FORTRAN~-80 Reference Manual Page 54

SECTION 8

INPUT / OUTPUT

FORTRAN provides a series of statements which define the
control and conditions of data transmission between computer
memory and external data handling or mass storage devices
such as magnetic tape, disk, line printer, punched card
processors, keyboard printers, etc.

These statements are grouped as follows:
1. Formatted READ and WRITE statements which cause

formatted information to be transmitted between the
computer and I/0 devices.

2. Unformatted READ and WRITE statements which
Transmit unformatted binary data in a form similar
to internal storage.

3. Auxiliary I/O statements for positioning and
demarcation of files.

4. ENCODE and DECODE statements for transferring data
between memory locations.

5, FORMAT statements used in conjunction with
formatted record transmission to provide data
conversion and editing information between internal
data representation and external character string

forms.
8.1 FORMATTED READ/WRITE STATEMENTS
8.1.1 FORMATTED READ STATEMENTS

A formatted READ statement 1is used to transfer
information from an input device to the computer.

Two forms of the statement are available, as
follows:

READ (u,f,ERR=L1,END=L2) k

or

READ (u,f,ERR=L1,END=L2)
where:

u - specifies a Physical and Logical Unit Number
and may be either an unsigned integer or an

FORTRAN-80 Reference Manual Page 55

integer variable in the range 1 through 255.
If an Integer variable is wused, an Integer
value must be assigned to it prior to execution
of the READ statement.

Units 1, 3, 4, and 5 are preassigned to the
console Teletypewriter. Unit 2 is preassigned
to the Line Printer (if one exists). Units
6-10 are preassigned to Disk Files (see
Appendix E). These units, as well as units 11
- 255, may be re-assigned by the user (see
Appendix B).

f - is the statement label of the FORMAT statement
describing the type of data conversion to be
used within the input transmission or it may be
an array name, in which case the formatting
information may be input to the program at the
execution time. (See 8.7.10)

L1- is the FORTRAN label on the statement to which
the I1I/0 processor will transfer control if an
I/0 error is encountered.

L2- is the FORTRAN label on the statement to which
the I/0 processor will transfer control if an
End-of-File is encountered.

k - is a list of variable names, separated by com-
mas, specifying the input data.

READ (u,f)k is used to input a number of items,
corresponding to the names in the list k, from the
file on 1logical wunit u, and wusing the FORMAT
statement f to specify the external representation
of these items (FORMAT statements, 8.7) The ERR=
and END= clauses are optional. If not specified,
I/0 errors and End-of-Files cause fatal runtime
errors.

The following notes further define the function of
the READ (u,f)k statement:

1. Each time execution of the READ statement
begins, a new record from the input file is
read.

2. The number of records to be input by a single
READ statement is determined by the list, k,
and format specifications.

3. The list k specifies the number of items to be
read from the input file and the locations into
which they are to be stored.

FORTRAN-80 Reference Manual Page 56

4.

6.

Any number of items may appear in a single list
and the items may be of different data types.

If there are more quantities in an input record
than there are items in the list, only the
number of quantities equal to the number of
items in the list are transmitted. Remaining
quantities are ignored.

Exact specifications for the list k are
described in 8.6.

Examgles:

1.

Assume that four data entries are punched in a
card, with three blank columns separating each,
and that the data have field widths of 3, 4, 2
and 5 characters respectively starting in
column 1 of the card. The statements

READ (5,20)K,L,M,N
20 FORMAT (I3,3X,I4,3X,12,3X%,I5)

will read the card (assuming the Logical Unit
Number 5 has been assigned to the card reader)
and assign the input data to the variables K,
L, M and N. The FORMAT statement could also be

20 FORMAT (13,I17,15,18)

See 8.7 for complete description of FORMAT
statements.

Input the quantities of an array (ARRY) :
READ(6,21)ARRY

Only the name of the array needs to appear in
the 1list (see 8.6). All elements of the array
ARRY will be read and stored using the
appropriate formatting specified by the FORMAT
statement labeled 21.

READ (u,k) may be used in conjunction with a FORMAT
statement to read H-type alphanumeric data into an
existing H-type field (see Hollerith Conversions,
8.7.3).

For example, the statements

READ (I,25)

25 FORMAT (10HABCDEFGHIJ)

TN

FORTRAN-80 Reference Manual Page 57

cause the next 10 characters of the file on input
device I to be read and replace the characters
ABCDEFGHIJ in the FORMAT statement.

FORMATTED WRITE STATEMENTS

A formatted WRITE statement is wused to transfer
information from the computer to an output device.

Two forms of the statement are available, as
follows:

WRITE (u, f,ERR=L1,END=L2)k

or

WRITE (u,f,ERR=L1,END=L2)
where:
u - specifies a Logical Unit Number.

f - is the statement label of the FORMAT statement
describing the type of data conversion to be
used with the output transmission.

L1~ specifies an I/O error branch.
L2- specifies an EOF branch.

k - is a list of variable names separated by com-
mas, specifying the output data.

WRITE (u,f)k is used to output the data specified
in the list k to a file on logical unit u using the
FORMAT statement £ to specify the external
representation of the data (see FORMAT statements,
8.7). The following notes further define the
function of the WRITE statement:

1. Several records may be output with a single
WRITE statement, with the number determined by
the list and FORMAT specifications.

2. Successive data are output until the data
specified in the list are exhausted.

3. If output is to a device which specifies fixed
length records and the data specified in the
list do not fill the record, the remainder of
the record is filled with blanks.

FORTRAN-80 Reference Manual Page 58

ExamEle:
WRITE(2,10)A,B,C,D

The data assigned to the variables A, B, C and D
are output to Logical Unit Number 2, formatted
according to the FORMAT statement labeled 10.

WRITE (u,f) may be used to write alphanumeric
information when the characters to be written are
specified within the FORMAT statement. In this
case a variable list is not required.

For example, to write the characters 'H CONVERSION'
on unit 1,

WRITE (1,26)

26 FORMAT (12HH CONVERSION)

8.2 UNFORMATTED READ/WRITE

Unformatted I/O (i.e. without data conversion) is

accomplished using the statements:

READ (u, ERR=L1,END=L2) k

WRITE(u,ERR=L1,END=L2) k

where:

u - specifies a Logical Unit Number.

L1- specifies an I/0 error branch.

L2- specifies an EOF branch.

k - is a list of variable names, separated by
commas, specifying the I/0 data.

The following notes define the functions of

unformatted I/0 statements.

1. Unformatted READ/WRITE statements perform
memory-image transmission of data with no data

conversion or editing.

2. The amount of data transmitted corresponds to
the number of variables in the list k.

FORTRAN-80 Reference Manual Page 59

3. The total length of the list of variable names
in an unformatted READ must not be longer than
the record length. If the 1logical record
length and the length of the list are the same,
the entire record is read. If the 1length of
the 1list 1is shorter than the logical record
length the unread items 1in the record are
skipped.

4. The WRITE(a)k statement writes one 1logical
record.

5. A logical record may extend across more than
one physical record.

8.3 DISK FILE I/O

A READ or WRITE to a disk file (LUN 6-10)
automatically OPENs the file for I/O. The file
remains open until closed by an ENDFILE command
(see Section 8.4) or until normal program
termination.

NOTE

Exercise caution when doing sequential
output to disk files. TIf output is done to
an existing file, the existing file will be
deleted and replaced with a new file of the
same name.

8.3.1 RANDOM DISK I/O

SEE ALSO SECTION 3 OF YOUR MICROSOFT FORTRAN USER'S
MANUAL.

Some versions of FORTRAN-80 also provide random
disk I/0. For random disk access, the record
number is specified by using the REC=n option in
the READ or WRITE statement. For example:

I =10
WRITE (6,20,REC=I,ERR=50) X, Y, Z

This program segment writes record 10 on LUN 6, If
a previous record 10 exists, it is written over,
If no record 10 exists, the file 1is extended to

FORTRAN-8Q0 Reference Manual Page 60

create one. Any attempt to read a non-existent
record results in an I/O error.

In random access files, the record length varies
with different versions of FORTRAN. See Section 3
of your Microsoft FORTRAN User's Manual. It is
recommended that any file you wish to read randomly
be created via FORTRAN (or Microsoft BASIC) random
access statements. Files created this way (using
either binary or formatted WRITE statements) will
zero-fill each record to the proper length if the
data does not fill the record.

Any disk file that is OPENed by a READ or WRITE
statement is assigned a default filename that is
specific to the operating system. See also Section
3 of the FORTRAN User's Manual.

8.3.2 OPEN SUBROUTINE

Alternatively, a file may be OPENed using the OPEN
subroutine. LUNs 1-5 may also be assigned to disk
files with OPEN. The OPEN subrputine allows the
program to specify a filename and device to be
associated with a LUN.

An OPEN of a non-existent file creates a null file
of the appropriate name. An OPEN of an existing
file followed by sequential output deletes the
existing file. An OPEN of an existing file
followed by an input allows access to the current
contents of the file.

The form of an OPEN call varies under different
operating systems. See your Microsoft FORTRAN
User's Manual, Section 3.

8.4 AUXILIARY‘I/O STATEMENTS

Three auxiliary I/0O statements are provided:

BACKSPACE u
REWIND u
ENDFILE u

The actions of all three statements depend on the
LUN with which they are used (see Appendix B).
When the LUN is for a terminal or line printer, the
three statements are defined as no-ops.

When the LUN is for a disk drive, the ENDFILE and
REWIND commands allow further program control of
disk files. ENDFILE u closes the file associated
with LUN u. REWIND u closes the file associated

FORTRAN-80 Reference Manual Page 61

with LUN u, then opens it again. BACKSPACE is not

implemented at this time, and therefore causes an
error if used.

8.5 ENCODE/DECODE

ENCODE and DECODE statements transfer data,
according to format specifications, from one
section of memory to another. DECODE changes data
from ASCII format to the specified format. ENCODE
changes data of the specified format into ASCII
format. The two statements are of the form:

ENCODE (A,F) K
DECODE (A,F) K

where;

A is an array name
F is FORMAT statement number
K is an I/0 List

DECODE is analogous to a READ statement, since it
causes conversion from ASCII to internal format.
ENCODE is analogous to a WRITE statement, causing
conversion from internal formats to ASCII.

FORTRAN-80Reference Manual Page 62

8.6

8.6.1

NOTE

Care should be taken that the array A is
always 1large enough to contain all of the
data being processed. There is no check
for overflow. An ENCODE operation which
overflows the array will probably wipe out
important data following the array. A
DECODE operation which overflows will
attempt to process the data following the
array.

INPUT/OUTPUT LIST SPECIFICATIONS

Most forms of READ/WRITE statements may contain an
ordered 1list of data names which identify the data
to be transmitted. The order in which the 1list
items appear must be the same as that in which the
corresponding data exists (Input), or will exist
(Output) in the external I/O medium.

Lists have the following form:
ml,m2,...,mn

where the mi are list items separated by commas, as
shown,

LIST ITEM TYPES

A list item may be a single datum identifier or a
multiple data identifier,

1. A single datum identifier item is the name of a
variable or array element. One or more of
these items may be enclosed in parentheses
without changing their intended meaning.

Examgles:
A

c(26,1),R,K,D,(1,J)

NOTE

The entry (I,J) defines two items in a
list while (26,1) is a subscript.

FORTRAN-80 Reference Manual Page 63

2,

Multiple data identifier items are 1in two
forms:

a. An array name appearing in a 1list without
subscript(s) is considered equivalent to the
listing of each successive element of the
array.

Examgle:

If B is a two dimensional array, the list item
B is equivalent to: B(1,1),B(2,1),B(3,1)....,
B(1,2),B(2,2)...,B(3,k).

where j and k are the subscript limits of B.
b. DO-implied items are lists of one or more
single datum identifiers or other DO-implied
items followed by a comma character and an
expression of the form:

i =ml,m2,m3 or i = m1,m2
and enclosed in parentheses.
The elements i,m1,m2,m3 have the same meaning
as defined for the DO statement. The DO

implication applies to all list items enclosed
in parentheses with the implication.

ExamEles:

DO-Implied Lists Equivalent Lists
(X(I),I=1,4) X(1),X(2),X(3),X(4)
(Q(J3),R(J),3=1,2) Q(1),R(1),0(2),R(2)
(G (K) ,K=1,7,3) G(1),G(4),G(7)

((a(1,J3),1=3,5),3=1,9,4) A(3,1),A(4,1),A(5,1)
A(3,5),A(4,5),A(5,5)
A(3,9),A(4,9),A(5,9)

(R(M) ,M=1,2),I,2AP(3) R(1),R(2),I,ZAP(3)
(R(3),T(I),I=1,3) R(3)IT(1)IR(3)IT(2)I
R(3),T(3)

Thus, the elements of a matrix, for example,
may be transmitted in an order different from
the order in which they appear in storage. The
array A(3,3) occupies storage in the order
A(1,1),A(2,1), A(3,1),A(1,2),A(2,2),A(3,2),
A(1,3),A(2,3),A(3,3). By specifying the
transmission of the array with the DO-implied
list item ((aA(I1,J),3=1,3),I=1,3), the order of
transmission is:

FORTRAN-80 Reference Manual Page 64

A(1,1),A(01,2),A(1,3),A(2,1),A(2,2),
A(2,3),A(3,1),A(3,2),A(3,3)

8.6.2 SPECIAL NOTES ON LIST SPECIFICATIONS

1.

The ordering of a list is from 1left to right
with repetition of items enclosed in
parentheses (other than as subscripts) when
accompanied by controlling DO-implied index
parameters,

2. Arrays are transmitted by the appearance of the
array name (unsubscripted) in an input/output
list.

3. Constants may appear in an input/output list
only as subscripts or as indexing parameters.

4., For input lists, the DO-implying elements i,
ml, m2 and m3 may not appear within the
parentheses as list items.

Examples:

1. READ (1,20) (I1,J,A(I),I=1,J3,2) is not allowed

2. READ(1,20)I1,J,(A(1),I=1,J,2) is allowed

3. WRITE(1,20)(I1,J,A(I),I=1,3,2) is allowed

Consider the following examples:

DIMENSION A(25)

(1)
A(3)
A(5)
J=5

nmuan
SIS V)

.1
.2
e3

WRITE (1,20) J,(I,A(I),I=1,J,2)

the output of this WRITE statement is

1.

5,1,2.1,3,2.2,5,2.3

Any number of items may appear in a single
list.

FORTRAN-80 Reference Manual Page 65

8.7

2. In a formatted transmission (READ(u, f)k,
WRITE (u,f)k) each item must have the correct
type as specified by a FORMAT statement.

FORMAT STATEMENTS

FORMAT statements are non-executable, generative
statements used in conjunction with formatted READ
and WRITE statements. They specify conversion
methods and data editing information as the data is
transmitted between computer storage and external
media representation.

FORMAT statements require statement 1labels for
reference (f) in the READ(u,f)k or WRITE(u,f)k
statements.

The general form of a FORMAT statement 1is as
follows:

n FORMAT (s1,s2,...,sn/s1',s2',...,sn'/...)

where n is the statement label and each si is a
field descriptor. The word FORMAT and the
parentheses must be present as shown. The slash
(/) and comma (,) characters are field separators
and are described in a separate subparagraph. The
field is defined as that part of an external record
occupied by one transmitted item.

FIELD DESCRIPTORS

Field descriptors describe the sizes of data fields
and specify the type of conversion to be exercised
upon each transmitted datum. The FORMAT field
descriptors may have any of the following forms:

Descriptor Classification

rFw.d

rGw.d

rEw.d Numeric Conversion
rDw.d

riw

rLw Logical Conversion
rAw

nHh1h2...hn Hollerith Conversion
'1112...1n"

nX Spacing Specification

mP Scaling Factor

FORTRAN-80 Reference Manual Page 66

where:

1. w and n are positive integer constants defining
the field width (including digits, decimal
points, algebraic signs) in the external data
representation.

2. d is an integer specifying the number of
fractional digits appearing in the external
data representation.

3. The characters F, G, E, D, I, A and L. indicate
the type of conversion to be applied to the
items in an input/output list.

4. r is an optional, non-zero integer indicating
that the descriptor will be repeated r times.

5. The hi and 1i are characters from the FORTRAN
character set.

6. m is an integer constant (positive, negative,
or zero) indicating scaling.

NUMERIC CONVERSIONS

Input operations with any of the numeric
conversions will allow the data to be represented
in a "Free Format"; i.e., commas may be used to
separate the fields in the external representation.

F-type conversion

Form: Fw.d

Real or Double Precision type data are processed
using this conversion. w characters are processed
of which d are considered fractional.

F-output

Values are converted and output as minus sign (if
negative), followed by the integer portion of the
number, a decimal point and d digits of the
fractional portion of the number. If a value does
not f£ill the field, it is right Jjustified in the
field and enough preceding blanks to fill the field
are inserted. If a value requires more field
positions than allowed by w, the first w-1 digits
of the value are output, preceded by an asterisk.

TN

FORTRAN-80 Reference Manual Page 67

F-Output Examples:

FORMAT Internal Output

Descriptor Value (b=blank)

F10.4 368.42 bb362.4200

F7.1 -4786.361 -4786.4

F8.4 8.7E=2 bb0.0375

F6.4 4739.76 *,7600

F7.3 -5.6 b-5.600

* Note the loss of leading digits in the 4th 1line
above,

F-Input

(See the description under E-Input below.)

E-type Conversion

Form: Ew.d

Real or Double Precision type data are processed
using this conversion. w characters are processed
of which d are considered fractional.

E-Output

Values are converted, rounded to d digits, and
output as:

1. a minus sign (if negative),
2. a zero and a decimal point,
3. d decimal digits,
4, the letter E,
5. the sign of the exponent (minus or blank),
6. two exponent digits,
in that order. The values as described are right
justified in the field w with preceding blanks to
fill the field if necessary. The field width w
should satisfy the relationship:
w>d+ 7

Otherwise significant characters may be lost. Some
E-Output examples follow:

FORTRAN-80 Reference Manual Page 68

FORMAT Internal Output
Descriptor Value (b=blank)
E12.5 76.573 bb.76573Eb02
E14.7 -32672,354 -b.3267235Eb05
E13.4 -0.0012321 bb-b.1232E-02
EB.2 76321.73 b.76Eb05
E-Input

Data values which are to be processed under E, F,
or G conversion can be a relatively loose format in
the external input medium. The format is identical
for either conversion and is as follows:

1. Leading spaces (ignored)

2. A + or - sign (an unsigned input is assumed to
be positive)

3. A string of digits

4. A decimal point

5. A second string of digits
6. The character E

7. A + or - sign

8. A decimal exponent

Each item in the list above is optional; but the
following conditions must be observed:

1. 1If FORMAT items 3 and 5 (above) are present,
then 4 is required.

2, If FORMAT item 8 is present, then 6 or 7 or
both are required.

3. All non-leading spaces are considered zeros.

Input data can be any number of digits in 1length,
and correct magnitudes will be developed, but
precision will be maintained only to the extent
specified in Section 3 for Real data.

FORTRAN~-80 Reference Manual Page 69

E- and F- and G- Input Examples:

FORMAT Input Internal
Descriptor (b=blank) Value
E10.3 +0.23756+4 +2375.60
E10.3 bbbbb17631 +17.631
G8.3 b1628911 +1628.911
F12.4 bbbb-6321132 -632.1131

Note in the above examples that if no decimal point
is given among the input characters, the d in the
FORMAT specification establishes the decimal point
in conjunction with an exponent, if given. If a
decimal point is included in the input characters,
the d specification is ignored.

The letters E, F, and G are interchangeable in the

input format specifications. The end result is the
same,

D-Type Conversions

D-Input and D-Output are identical to E-Input and
E-Output except the exponent may be specified with
a "D" instead of an "E."

G-Type Conversions

Form: Gw.d

Real or Double Precision type data are processed
using this conversion. w characters are processed
of which d are considered significant.

G-Input:

(see the description under E-Input)

G-Output:

The method of output conversion is a function of
the magnitude of the number being output. Let n be

the magnitude of the number. The following table
shows how the number will be output:

FORTRAN-80 Reference Manual Page 70

Magnitude Equivalent Conversion
10972 = p < 1097 F(w-4).1,4%
1091 «= n < 109 F (w-4) .0, 4X
Otherwise Ew.d
I-Conversions

Form: 1Iw

Only Integer data may be converted by this form of
conversion., w specifies field width.

I-Output:

Values are converted to Integer constants.
Negative values are preceded by a minus sign. If
the value does not fill the field, it is right
justified in the field and enough preceding blanks
to fill the field are inserted. If the value
exceeds the field width, only the least significant
w-1 characters are output preceded by an asterisk.

Examples:

FORMAT Internal Output
Descriptor Value (b=blank)
I6 +281 bbb281
I6 -23261 -23261
I3 126 126
I4 -226 =226

I-Input:

A field of w characters is input and converted to
internal integer format. A minus sign may precede
the integer digits., If a sign is not present, the
value is considered positive.

Integer values in the range -32768 to 32767 are
accepted, Non-leading spaces are treated as zeros.

-

FORTRAN-80 Reference Manual Page 71

Examples:
Format Input Internal
Descriptor (b=blank) Value

I4 b124 124

I4 -124 -124

17 bb6732b 67320

I4 1b2b 1020

HOLLERITH CONVERSIONS

A-Type Conversion

The form of the A conversion is as follows:
Aw

This descriptor causes unmodified Hollerith
characters to be read into or written from a
specified list item.

The maximum number of actual characters which may
be transmitted between internal and external
representations using Aw is four times the number
of storage wunits in the corresponding list item
(i.e., 1 character for logical items, 2 characters
for Integer items, 4 characters for Real items and
8 characters for Double Precision items).

A-Output:

If w is greater than 4n (where n is the number of
storage units required by the list item), the
external output field will consist of w-4n blanks
followed by the 4n characters from the internal
representation. If w is less than 4n, the external
output field will consist of the leftmost w
characters from the internal representation.

Examples:
Format Internal Type Output
Descriptor (b=blanks)
A1 A1 Integer A
A2 AB Integer AB
A3 ABCD Real ABC
Ad ABCD Real ABCD
A7 ABCD Real bbbABCD
A-Input:

If w is greater than 4n (where n is the number of

FORTRAN-80 Reference Manual Page 72

storage units required by the corresponding list
item), the rightmost 4n characters are taken from
the external input field. If w is less than 4n,
the w characters appear left justified with w-4n
trailing blanks in the internal representation.

ExamEles:

Format Input Type Internal
Descriptor Characters (b=blanks)

Al A Integer Ab

A3 ABC Integer AB

A4 ABCD Integer AB

A1l A Real Abbb

A7 ABCDEFG Real DEFG
H-Conversion

The forms of H conversion are as follows:
nHh1h2...hn
‘h1ih2...hn'

These descriptors process Hollerith character
strings between the descriptor and the external
field, where each h represents any character from
the ASCII character set.

NOTE

Special consideration is required if an
apostrophe (') 1is to be used within the
literal string in the second form. An
apostrophe character within the string is
represented by two successive apostrophes.
See the examples below.

H=-Output:

The n characters hi, are placed in the external
field. In the nHh1h2...hn form the number of
characters in the string must be exactly as
specified by n. Otherwise, characters from other
descriptors will be taken as part of the string.
In both forms, blanks are counted as characters.

FORTRAN-80 Reference Manual Page 73

Examples:

Format Output

Descriptor (b=blanks)
1HA or 'A' A
8HbSTRINGDb or 'bSTRINGD' bSTRINGD
11HX(2,3)=12.0 or 'X(2,3)=12,0" X(2,3)=12.0
12HIbSHOULDN'T or 'IbSHOULDN''T' IbSHOULDN'T
H-Input

The n characters of the string hi are replaced by
the next n characters from the input record. This
results in a new string of characters in the field

descriptor.

FORMAT Input Resultant

Descriptor (b=blank) Descriptor
401234 or '1234" ABCD 4HABCD or 'ABCD'
7HbbFALSE or 'bbFALSE' bFALSED 7HbFALSEDb or 'bFALSEDL'
6Hbbbbbb or 'bbbbbb' MATRIX 6HMATRIX or 'MATRIX'

8.7.4 LOGICAL CONVERSIONS

The form of the logical conversion is as follows:
Lw
L-Output:

If the value of an item in an output list
corresponding to this descriptor is 0, an F will be

output; otherwise, a T will be output. If w is
greater than 1, w-1 1leading blanks precede the
letters,

ExamEles:

FORMAT Internal Output
Descriptor Value (b=blank)

L1 =0 F

L1 <>0 T

L5 <>0 bbbbT

L7 =0 bbbbbbF
L-Input

The external representation occupies w positions.
It consists of optional blanks followed by a "T" or
"F", followed by optional characters.

FORTRAN-80 Reference Manual Page 74

8.7.5 X DESCRIPTOR

The form of X conversion is as follows:

nX

This descriptor causes no conversion to occur, nor
does it correspond to an item in an input/output
list, When used for output, it causes n blanks to
be inserted in the output record. Under input
circumstances, this descriptor causes the next n
characters of the input record to be skipped.

Output Examples:

FORMAT Statement Output
(b=blanks)

3 FORMAT (1HA,4X,2HBC) AbbbbBC

7 FORMAT (3X,4HABCD, 1X) bbbABCDb

Input Examples:

FORMAT Statement Input String Resultant Input

10 FORMAT (F4.1,3X,F3.0) 12.5ABC120 12.5,120
5 FORMAT (7X,I3) 1234567012 012

8.7.6 P DESCRIPTOR

The P descriptor 1is wused to specify a scaling
factor for real conversions (F, E, D, G). The form
is nP where n is an integer constant (positive,
negative, or zero).

The scaling factor is automatically set to zero at
the beginning of each formatted I/O call (each READ
or WRITE statement). If a P descriptor is
encountered while scanning a FORMAT, the scale
factor is changed to n. The scale factor remains
changed until another P descriptor is encountered
or the I/0 terminates.

Effects of Scale Factor on Input:

During E, F, or G input the scale factor takes
effect only if no exponent 1is present in the
external representation. In that case, the
internal value will be a factor of 10**n less than
the external value (the number will be divided by
10**n before being stored).

FORTRAN~80 Reference Manual Page 75

Effect 9£ Scale Factor on OQutput:

E-Output, D-Output:

The coefficient is shifted left n places relative
to the decimal point, and the exponent is reduced
by n (the value remains the same).

F-Output:

The external value will be 10**n times the internal
value.

G-Output:
The scale factor is ignored if the internal value

is small enough to be output using F conversion.
Otherwise, the effect is the same as for E output.

SPECIAL CONTROL FEATURES OF FORMAT STATEMENTS

Repeat Specifications

1. The E, F, D, G, I, L and A field descriptors
may be indicated as repetitive descriptors by
using a repeat count r in the form rEw.d,
rFw.d, rGw.d, rIw, rlLw, rAw., The following
pairs of FORMAT statements are equivalent:

66 FORMAT (3F8.3,F9.2)
C IS EQUIVALENT TO:
66 FORMAT (F8.3,F8.3,F8.3,F9.,2)

14 FORMAT (2I3,2A5,2E10.5)
C IS EQUIVALENT TO:
14 FORMAT (I13,I13,A5,A5,E10.5,E10.5)

2. Repetition of a group of field descriptors is
accomplished by enclosing the group in
parentheses preceded by a repeat count.
Absence of a repeat count indicates a count of
one. Up to two levels of parentheses,
including the parentheses required by the
FORMAT statement, are permitted.

Note the following equivalent statements:

FORTRAN-80 Reference Manual Page 76

22 FORMAT (I3,4(F6.1,2X))
C IS EQUIVALENT TO:
22 FORMAT (I3,F6.1,2X,F6.1,2X,F6.1,2X,
1 F6.1,2X)

3. Repetition of FORMAT descriptors is also
initiated when all descriptors in the FORMAT
statement have been used but there are still
items in the input/output list that have not
been processed. When this occurs the FORMAT
descriptors are re~used starting at the first
opening parenthesis in the FORMAT statement. A
repeat count preceding the parenthesized
descriptor(s) to be re-used is also active in
the re-use. This type of repetitive use of
FORMAT descriptors terminates processing o, the
current record and initiates the processing of
a new record each time the re-use begins,
Record demarcation under these circumstances is
the same as in the paragraph 8.7.7.2 below.

Input Example:

DIMENSION A(100)
READ (3,13) A

13 FORMAT (5F7.3)

In this example, the first 5 quantities from each
of 20 records are input and assigned to the array
elements of the array A.

Output Example:

WRITE (6,12)E,F,K,L,M,KK,LL,MM,K3,LE,
1 M3

12 FORMAT (2F9.4,(3I7))

In this example, three records are written., Record
1 contains E, F, K, L and M, Because the
descriptor 3I7 is reused twice, Record 2 contains
KK, LL and MM and Record 3 contains K3, L3 and M3.

TN

FORTRAN~-80Reference Manual Page 77

B.7.7.2

Field Separators

Two adjacent descriptors must be separated in the
FORMAT statement by either a comma or one Or more
slashes.

Example:
2HOK/F6.3 or 2HOK,F6.3

The slash not only separates field descriptors, but
it also specifies the demarcation of formatted
records.

Each slash terminates a record and sets up the next
record for processing. The remainder of an input
record is ignored; the remainder of an output
record is filled with blanks. Successive slashes
(///+.+../) cause successive records to be ignored on
input and successive blank records to be written on
output.

Output example:
DIMENSION A(100),J(20)

WRITE (7,8) J,A
8 FORMAT (10I7/1017/50F7.3/50F7.3)

In this example, the data specified by the list of
the WRITE statement are output to unit 7 according
to the specifications of FORMAT statement 8. Four
records are written as follows:

Record 1 Record 2 Record 3 Record 4
J(1) J(11) A(1) A(51)
J(2) J(12) A(2) A(52)
J(10) J(20) A(50) A(100)

Input Example:

DIMENSION B(10)

READ (4,17) B
17 FORMAT (F10.2/F10.2///8F10.2)

In this example, the two array elements B(1) and
B(2) receive their values from the first data

FORTRAN-80 Reference Manual Page 78

fields of successive records (the remainders of the
two records are ignored). The third and fourth
records are ignored and the remaining elements of
the array are filled from the fifth record.

FORMAT CONTROL, LIST SPECIFICATIONS AND RECORD
DEMARCATION

The following relationships and interactions
between FORMAT control, input/output 1lists and
record demarcation should be noted:

1. Execution of a formatted READ or WRITE
statement initiates FORMAT control.

2, The conversion performed on data depends on
information jointly provided by the elements in
the input/output list and field descriptors in
the FORMAT statement.

3. If there is an input/output list, at least one
descriptor of types E, F, D, G, I, L or A must
be present in the FORMAT statement.

4, Each execution of a formatted READ statement
causes a new record to be input.

5. Each item in an input 1list corresponds to a
string of characters in the record and to a
descriptor of the types E, F, G, I, L or A in
the FORMAT statement.

6. H and X descriptors communicate information
directly between the external record and the
field descriptors without reference to list
items.

7. On input, whenever a slash 1is encountered in
the FORMAT statement or the FORMAT descriptors
have been exhausted and re-use of descriptors
is initiated, processing of the current record
is terminated and the following occurs:

a. Any unprocessed characters in the record
are ignored.

b. If more input is necessary to satisfy
list requirements, the next record is
read.

FORTRAN~-80 Reference Manual Page 79

8.7.10

8. A READ statement is terminated when all items
in the input list have been satisfied if:

a. The next FORMAT descriptor is E, F, G, I,
L or A.

b. The FORMAT control has reached the last
outer right parenthesis of the FORMAT
statement.

If the input list has been satisfied, but the
next FORMAT descriptor is H or X, more data are
processed (with the possibility of new records
being input) until one of the above conditions
exists.,

9. If FORMAT control reaches the last right
parenthesis of the FORMAT statement but there
are more list items to be processed, all or
part of the descriptors are reused. (See item
3 in the description of Repeat Specifications,
sub-paragraph 8.7.7.1)

10. When a Formatted WRITE statement is executed,
records are written each time a slash is
encountered in the FORMAT statement or FORMAT
control has reached the rightmost right
parenthesis. The FORMAT control terminates in
one of the two methods described for READ
termination in 8 above. Incomplete records are
filled with blanks to maintain record lengths.

FORMAT CARRIAGE CONTROL

The first character of every formatted output
record is used to convey carriage control
information to the output device, and is therefore
never printed. The carriage control character
determines what action will be taken before the
line is printed. The options are as follows:

Control Character Action Taken Before Printing
0 Skip 2 lines
1 Insert Form Feed
+ No advance
Other Skip 1 line

FORMAT SPECIFICATIONS IN ARRAYS

The FORMAT reference, f, of a formatted READ or
WRITE statement (See 8.1) may be an array name
instead of a statement label. If such reference is

FORTRAN-80 Reference Manual Page 80

made, at the time of execution of the READ/WRITE
statement the first part of the information
contained in the array, taken in natural order,
must constitute a valid FORMAT specification. The
array may contain non-FORMAT information following
the right parenthesis that ends the FORMAT
specification.,

The FORMAT specification which is to be inserted in
the array has the same form as defined for a FORMAT
statement (i.e., it begins with a left parenthesis
and ends with a right parenthesis).

The FORMAT specification may be inserted in the
array by use of a DATA initialization statement, or
by use of a READ statement together with an Aw

FORMAT. Example:
Assume the FORMAT specification

(3F10.3,416)

or a similar 12 character specification is to be
stored into an array. The array must allow a
minimum of 3 storage units.

The FORTRAN coding below shows the various methods
of establishing the FORMAT specification and then
referencing the array for a formatted READ or
WRITE.

FORTRAN-80 Reference Manual Page 81

C DECLARE A REAL ARRAY
DIMENSION A(3), B(3), M(4)

C INITIALIZE FORMAT WITH DATA STATEMENT
DATA A/'(3F1','0.3,','416)"'/

C READ DATA USING FORMAT SPECIFICATIONS
o IN ARRAY A
READ(6,A) B, M

C DECLARE AN INTEGER ARRAY
DIMENSION IA(4), B(3), M(4)

C READ FORMAT SPECIFICATIONS
READ (7,15) IA
C FORMAT FOR INPUT OF FORMAT SPECIFICATIONS
15 FORMAT (4A2)

C READ DATA USING PREVIOUSLY INPUT
C FORMAT SPECIFICATION
READ (7,IA) B,M

FORTRAN-80 Reference Manual Page 82

SECTION 9

FUNCTIONS AND SUBPROGRAMS

The FORTRAN language provides a means for defining and using
often needed programming procedures such that the statement
or statements of the procedures need appear in a program
only once but may be referenced and brought into the logical
execution sequence of the program whenever and as often as
needed.

These procedures are as follows:

1. Statement functions.
2. Library functions.
3. FUNCTION subprograms.

4, SUBROUTINE subprograms.

Each of these procedures has its own unique requirements for
reference and defining purposes. These requirements are
discussed in subsequent paragraphs of this section.
However, certain features are common to the whole group or
to two or more of the procedures. These common features are
as follows:

1. Each of these procedures is referenced by its name
which, in all cases, 1is one to six alphanumeric
characters of which the first is a letter.

2. The first three are designated as "functions" and
are alike in that:

1. They are always single valued (i.e., they
return one value to the program unit from which
they are referenced).

2, They are referred to by an expression
containing a function name.

3. They must be typed by type specification
statements if the data type of the
single-valued result is to be different from
that indicated by the pre-defined convention.

3. FUNCTION subprograms and SUBROUTINE subprograms are
considered program units.

FORTRAN-80 Reference Manual Page 83

In the following descriptions of these procedures, the term
calling program means the program unit or procedure in which
a reference to a procedure is made, and the term "called
program" means the procedure to which a reference is made.

9.1

THE PROGRAM STATEMENT

The PROGRAM statement provides a means of
specifying a name for a main program unit. The
form of the statement is:

PROGRAM name

If present, the PROGRAM statement must appear
before any other statement in the program unit.
The name consists of 1-6 alphanumeric characters,
the first of which is a letter. If no PROGRAM
statement is present in a main program, the
compiler assigns a name of $MAIN to that program.

STATEMENT FUNCTIONS

Statement functions are defined by a single
arithmetic or logical assignment statement and are
relevant only to the program unit in which they
appear., The general form of a statement function
is as follows:

f(al,a2,...an) = e

where f is the function name, the ai are dummy
arguments and e is an arithmetic or logical
expression.

Rules for ordering, structure and use of statement
functions are as follows:

1. Statement function definitions, if they exist
in a program unit, must precede all executable
statements in the unit and follow all
specification statements.

2. The ai are distinct variable names or array
elements, but, being dummy variables, they may
have the same names as variables of the same
type appearing elsewhere in the program unit.

3. The expression e is constructed according to
the rules in SECTION 4 and may contain only

references to the dummy arguments and
non-Literal constants, variable and array
element references, utility and mathematical

function references and references to

FORTRAN-80 Reference Manual Page 84

previously defined statement functions.

4. The type of any statement function name or
argument that differs from its pre-defined
convention type must be defined by a type
specification statement.

5. The relationship between f and e must conform
to the replacement rules in Section 5.

6. A statement function is called by its name
followed by a parenthesized list of arguments.
The expression is evaluated using the arguments
specified in the call, and the reference is
replaced by the result.

7. The ith parameter in every argument 1list must
agree 1in type with the ith dummy in the
statement function.

The example below shows a statement function and a
statement function call.

C STATEMENT FUNCTION DEFINITION
C
FUNC1(A,B,C,D) = ((A+B)**C)/D

C STATEMENT FUNCTION CALL
C
A12=A1-FUNC1(X,Y,27,C7)

LIBRARY FUNCTIONS

Library functions are a group of utility and
mathematical functions which are "built-in" to the
FORTRAN' system. Their names a pre-defined to the
Processor and automatically typed. The functions
are listed in Tables 9-1 and 9-2. In the tables,
arguments are denoted as al,a2,...,an, if more than
one argument is required; or as a if only one is
required.

A library function is called when its name is wused
in an arithmetic expression. Such a reference
takes the following form:

f(al,a2,...an)

where f is the name of the function and the ai are
actual arguments. The arguments must agree in
type, number and order with the specifications
indicated in Tables 9-1 and 9-2,

FORTRAN-80 Reference Manual Page 85

In addition to the functions listed in 9-1 and 9-2,
four additional library subprograms are provided to
enable direct access to the 8080 (or Z80) hardware.
These are:

PEEK, POKE, INP, OUT

PEEK and INP are Logical functions; POKE and OUT
are subroutines. PEEK and POKE allow direct access
to any memory location. PEEK (a) returns the
contents of the memory location specified by a.
CALL POKE(a1l1,a2) causes the contents of the memory
location specified by a1l to be replaced by the
contents of a2. INP and OUT allow direct access to
the I/0O ports. INP (a) does an input from port a
and returns the 8-bit value input. CALL OUT(al,aZ2)
outputs the value of a2 to the port specified by
al.

Examples:
A1 = B+FLOAT (I7)
MAGNI = ABS (KBAR)
PDIF = DIM(C,D)
S3 = SIN(T12)

ROOT = (-B+SQRT(B**2-4,*A*C))/
1 (2.*%Rn)

FORTRAN-80 Reference Manual

Function Name

TABLE 9-1

Intrinsic Functions

Definition

ABS
IABS
DABS

AINT
INT
IDINT

AMOD
MOD

AMAXO
AMAX1
MAXO
MAX1
DMAX1

AMINO
AMIN1
MINO
MIN1
DMIN1

FLOAT

IFIX

SIGN
ISIGN
DSIGN

DIM
IDIM
SNGL

DBLE

lal

Sign of a times lar-

gest integer <= |al

al (mod a2)

Max (al,a2,...)

Min(al,a2,...)

Conversion from
Integer to Real

Conversion from
Real to Integer

Sign of a2 times |a1l

al - Min(al,a2)

Types
Argument Function
Real Real
Integer Integer
Double Double
Real Real
Real Integer
Double Integer
Real Real
Integer Integer
Integer Real
Real Real
Integer Integer
Real Integer
Double Double
Integer Real
Real Real
Integer Integer
Real Integer
Double Double
Integer Real
Real Integer
Real Real
Integer Integer
Double Double
Real Real
Integer Integer
Double Real
Real Double

Page 86

FORTRAN-80 Reference Manual

TABLE 9-2

Page 87

Basic External Functions

Number
of
Name Arguments Definition Argument
EXP 1 e**y Real
DEXP 1 Double
ALOG 1 In (a) Real
DLOG 1 Double
ALOG10 1 logi10 (a) Real
DLOG10 1 Double
SIN 1 sin (a) Real
DSIN 1 Double
CoSs 1 cos (a) Real
DCOS 1 Double
TANH 1 tanh (a) Real
SQRT 1 (a) ** 1/2 Real
DSQRT 1 Double
ATAN 1 arctan (a) Real
DATAN 1 Double
ATAN2 2 arctan (al/a2) Real
DATAN2 2 Double
DMOD 2 al(mod a2) Double

Type
Function

Real
Double

Real
Double

Real
Double

Real
Double

Real
Double

Real

Real
Double

Real
Double

Real
Double

Double

FORTRAN-80 Reference Manual Page 88

9.4

FUNCTION SUBPROGRAMS

A program unit which begins with a FUNCTION
statement is called a FUNCTION subprogram.

A FUNCTION statement has one of the following
forms:

t FUNCTION f (al,a2,...an)

or

FUNCTION f(al1,a2,...an)

where:

1.

t is either INTEGER, REAL, DOUBLE PRECISION or
LOGICAL or is empty as shown in the second
form.

f is the name of the FUNCTION subprogram.

The ai are dummy arguments of which there must
be at least one and which represent variable
names, array hames or dummy names of SUBROUTINE
or other FUNCTION subprograms.

CONSTRUCTION OF FUNCTION SUBPROGRAMS

Construction of FUNCTION subprograms must comply
with the following restrictions:

1.

2,

The FUNCTION statement must be the first
statement of the program unit,

Within the FUNCTION subprogram, the FUNCTION
name must appear at least once on the left side
of the equality sign of an assignment statement
or as an item in the input list of an input
statement, This defines the value of the
FUNCTION so that it may be returned to the
calling program.

Additional values may be returned to the
calling program through assignment of values to
dummy arguments.

FORTRAN-80 Reference Manual Page 89

Example:
FUNCTION Z27(A,B,C)

77 = 5.%(A=B) + SQRT(C)

C REDEFINE ARGUMENT
B=B+Z7

RETURN

END

The names in the dummy argument list may not appear
in EQUIVALENCE, COMMON or DATA statements in the
FUNCTION subprogram.

If a dummy argument is an array name, then an array
declarator must appear in the subprogram with
dimensioning information consistant with that in
the calling program.

A FUNCTION subprogram may contain any defined
FORTRAN statements other than BLOCK DATA
statements, SUBROUTINE statements, another FUNCTION
statement or any statement which reterences either
the FUNCTION being defined or another subprogram
that references the FUNCTION being defined.

The logical termination of a FUNCTION subprogram is
a RETURN statement and there must be at least one
of them.

A FUNCTION subprogram must physically terminate
with an END statement.

FORTRAN-80 Reference Manual Page 90

Example:

FUNCTION SUM (BARY,I,J)
DIMENSION BARY (10,20)

SUM = 0.0
DO 8 K=1,I
DO8 M = 1,J
8 SUM = SUM + BARY (K,M)
RETURN
END

REFERENCING A FUNCTION SUBPROGRAM

FUNCTION subprograms are called whenever the
FUNCTION name, accompanied by an argument list, is
used as an operand in an expression. Such
references take the following form:

f(al,a2,...,an)

where f is a FUNCTION name and the ai are actual
arguments. Parentheses must be present in the form
shown,

The arguments ai must agree 1in type, order and
number with the dummy arguments in the FUNCTION
statement of the called FUNCTION subprogram. They
may be any of the following:

1. A variable name.

2. An array element name.

3. An array name,

4, An expression.

5. A SUBROUTINE or FUNCTION subprogram name.

6. A Hollerith or Literal constant.

If an ai is a subprogram name, that name must have
previously been distinguished from ordinary
variables by appearing in an EXTERNAL statement and
the corresponding dummy arguments in the called
FUNCTION subprograms must be used 1in subprogram
references.

If ai is a Hollerith or Literal constant, the
corresponding dummy variable should encompass
enough storage units to correspond exactly to the

amount of storage needed by the constant.

When a FUNCTION subprogram is called, program

FORTRAN~-80 Reference Manual Page 91

control goes to the first executable statement
following the FUNCTION statement.

The following examples show references to FUNCTION
subprograms.

7210 = FT1+27(D,T3,RHO)

DIMENSION DAT (5,5)

S1 = TOT1 + SUM(DAT,5,5)

SUBROUTINE SUBPROGRAMS

A program unit which begins with a SUBROUTINE
statement is called a SUBROUTINE subprogram. The
SUBROUTINE statement has one of the following
forms:

SUBROUTINE s (al,a2,...,an)

or

SUBROUTINE s

where s is the name of the SUBROUTINE subprogram
and each ai is a dummy argument which represents a

variable or array name or another SUBROUTINE or
FUNCTION name.

CONSTRUCTION OF SUBROUTINE SUBPROGRAMS

The SUBROUTINE statement must be the first statement
of the subprogram.

The SUBROUTINE subprogram name must not appear in
any statement other than the initial SUBROUTINE
statement.

The dummy argument names must not appear in
EQUIVALENCE, COMMON or DATA statements in the
subprogram.

If a dummy argument is an array name then an array
declarator must appear in the subprogram with
dimensioning information consistant with that in the
calling program.

If any of the dummy arguments represent values that
are to be determined by the SUBROUTINE subprogram
and returned to the calling program, these dummy

FORTRAN-80 Reference Manual Page 92

10.

arguments must appear within the subprogram on the
left side of the equality sign in a replacement
statement, in the input list of an input statement
or as a parameter within a subprogram reference.

A SUBROUTINE may contain any FORTRAN statements
other than BLOCK DATA statements, FUNCTION
statements, another SUBROUTINE statement, a PROGRAM
statement or any statement which references the
SUBROUTINE subprogram being defined or another
subprogram which references the SUBROUTINE
subprogram being defined.

A SUBROUTINE subprogram may contain any number of
RETURN statements. It must have at least one.

The RETURN statement (s) is the logical termination
point of the subprogram.

The physical termination of a SUBROUTINE subprogram
is an END statement.

If an actual argument transmitted to a SUBROUTINE
subprogram by the calling program is the name of a
SUBROUTINE or FUNCTION subprogram, the corresponding
dummy argument must be used in the called SUBROUTINE
subprogram as a subprogram reference,

Example:

C SUBROUTINE TO COUNT POSITIVE ELEMENTS
C IN AN ARRAY
SUBROUTINE COUNT P (ARRY,I,CNT)
DIMENSION ARRY (7)
CNT = 0
po 9 J=1,I
LF (ARRY (J)) 95,5
9 CONTINUE
RETURN
5 CNT = CNT+1.0
GO TO 9
END

REFERENCING A SUBROUTINE SUBPROGRAM

A SUBROUTINE subprogram may be called by using a
CALL statement. A CALL statement has one of the
following forms:

CALL s(al,a2,...,an)

or

FORTRAN-80 Reference Manual Page 93

CALL s

where s is a SUBROUTINE subprogram name and the ai
are the actual arguments to be used by the
subprogram. The ai must agree in type, order and
number with the corresponding dummy arguments in
the subprogram-defining SUBROUTINE statement.

The arguments in a CALL statement must comply with
the following rules:

1. FUNCTION and SUBROUTINE names appearing in the
argument list must have previously appeared in
an EXTERNAL statement.

2. If the called SUBROUTINE subprogram contains a
variable array declarator, then the CALL
statement must contain the actual name of the
array and the actual dimension specifications
as arguments,

3. If an item in the SUBROUTINE subprogram dummy
argument list is an array, the corresponding
item in the CALL statement argument 1list must
be an array.

When a SUBROUTINE subprogram 1is called, program
control goes to the first executable statement
following the SUBROUTINE statement.

Example:

DIMENSION DATA (10)

C THE STATEMENT BELOW CALLS THE
C SUBROUTINE IN THE PREVIOUS PARAGRAPH
C

CALL COUNTP (DATA,10,CPOS)

RETURN FROM FUNCTION AND SUBROUTINE SUBPROGRAMS

The logical termination of a FUNCTION or SUBROUTINE
subprogram is a RETURN statement which transfers
control back to the calling program. The general
form of the RETURN statement is simply the word

RETURN

The following rules govern the use of the RETURN
statement:

FORTRAN-80 Reference Manual Page 94

1. There must be at least one RETURN statement in
each SUBROUTINE or FUNCTION subprogram.

2. RETURN from a FUNCTION subprogram is to the
instruction sequence of the calling program
following the FUNCTION reference.

3. RETURN from a SUBROUTINE subprogram is to the
next executable statement in the calling
program which would logically follow the CALL
statement.

4. Upon return from a FUNCTION subprogram the
single-valued result of the subprogram is
available to the evaluation of the expression
from which the FUNCTION call was made.

5. Upon return from a SUBROUTINE subprogram the
values assigned to the arguments in the
SUBROUTINE are available for use by the calling
program.

Example:
Calling Program Unit

CALL SUBR(Z9,B7,R1)

Called Program Unit

SUBROUTINE SUBR(A,B,C)
READ(3,7) B
A = B**C
RETURN
7 FORMAT (F9.2)
END

In this example, Z9 and B7 are made available to
the calling program when the RETURN occurs.

PROCESSING ARRAYS IN SUBPROGRAMS

If a calling program passes an array name to a
subprogram, the subprogram must contain the
dimension information pertinent to the array. A
subprogram must contain array declarators if any of
its dummy arguments represent arrays or array

FORTRAN-80 Reference Manual Page 95

elements.

For example, a FUNCTION subprogram designed to
compute the average of the elements of any one
dimension array might be the folowing:

Calling Program Unit

DIMENSION 21(50),22(25)

A1

I

AVG(Z1,50)

A2

A1-AVG(Z22,25)

Called Program Unit

FUNCTION AVG(ARG,I)
DIMENSION ARG (50)
SUM = 0.0
DO 20 J=1,I

20 SUM = SUM + ARG (J)
AVG = SUM/FLOAT(I)
RETURN
END

Note that actual arrays to be processed by the
FUNCTION subprogram are dimensioned in the calling
program and the array names and their actual.
dimensions are transmitted to the FUNCTION
subprogram by the FUNCTION subprogram reference,
The FUNCTION subprogram itself contains a dummy
array and specifies an array declarator.

Dimensioning information may also be passed to the
subprogram in the paramater list. For example:

FORTRAN-80 Reference Manual Page 96

9.12

Calling Program Unit

DIMENSION A(3,4,5)

CALL SUBR(A,3,4,5)

END
Called Program Unit

SUBROUTINE SUBR(X,I,J,K)
DIMENSION X(I,J,K)

RETURN
END

It is valid to use variable dimensions onl when
the array name and all of the variable dimensions
are dummy arguments. The variable dimensions must
be type Integer. It is invalid to change the
values of any of the variable dimensions within the
called program.

BLOCK DATA SUBPROGRAMS

A BLOCK DATA subprogram has as its only purpose the
initialization of data in a COMMON block during
loading of a FORTRAN object program. BLOCK DATA
subprograms begin with a BLOCK DATA statement of
the following form:

BLOCK DATA [subprogram=-name]

and end with an END statement. Such subprograms
may contain only Type, EQUIVALENCE, DATA, COMMON
and DIMENSION statements and are subject to the
following considerations:

1. If any element in a COMMON block 1is to be
initialized, all elements of the block must be
listed in the COMMON statement even though they
might not all be initialized.

2. Initialization of data in more than one COMMON
block may be accomplished in one BLOCK DATA
subprogram,

FORTRAN-80 Reference Manual Page 97

3. There may be more than one BLOCK DATA
subprogram loaded at any given time.

4. BAny particular COMMON block item should only be
initialized by one program unit.

Example:

BLOCK DATA

LOGICAL A1
COMMON/BETA/B (3, 3) /GAM/C (4)
COMMON/ALPHA/A1,C,E,D

DATA B/1.1,2.5,3.8,3%4.96,
12*0,52,1.1/,C/1.2E0,3*4,0/
DATA A1/.TRUE/,E/=5.6/

FORTRAN-80 Reference Manual Page 98

APPENDIX A

Language Extensions and Restrictions

The FORTRAN-80 language includes the following extensions to
ANSI Standard FORTRAN (X3.9-1966).

1.

2'

9.

If ¢ is used in a 'STOP c¢' or 'PAUSE c¢' statement,
c may be any six ASCII characters.

Error and End-of-File branches may be specified in
READ and WRITE statements using the ERR= and END=
options.

The standard subprograms PEEK, POKE, INP, and OUT
have been added to the FORTRAN library.

Statement functions may use subscripted variables.

Hexadecimal constants may be used wherever Integer
constants are normally allowed,

The 1literal form of Hollerith data (character
string between apostrophe characters) is permitted
in place of the standard nH form.

Holleriths and Literals are allowed in expressions
in place of Integer constants.

There 1is no restriction to the number of
continuation lines.

Mixed mode expressions and assignments are allowed,
and conversions are done automatically.

FORTRAN-80 places the following restrictions upon Standard

FORTRAN.

1.

2.

The COMPLEX data type is not implemented. It may
be included in a future release.

The specification statements must appear in the
following order:

1. PROGRAM, SUBROUTINE, FUNCTION, BLOCK DATA
2. Type, EXTERNAL, DIMENSION
3. COMMON

4, EQUIVALENCE

FORTRAN-80 Reference Manual Page 99

5. DATA

6. Statement Functions

3. A different amount of computer memory is allocated
for each of the data types: Integer, Real, Double
Precision, Logical.

4. The equal sign of a replacement statement and the
first comma of a DO statement must appear on the
initial statement line.

Descriptions of these language extensions and restrictions
are included at the appropriate points in the text of this
document.

FORTRAN-80 Reference Manual Page 100

APPENDIX B

I/0 Interface

Input/Output operations are table-dispatched to the driver
routine for the proper Logical Unit Number. $LUNTB is the
dispatch table. It contains one 2-byte driver address for
each possible LUN., It also has a one-byte entry at the
beginning, which contains the maximum LUN plus one. The
initial run-time package provides for 10 LUN's (1 - 10), all
of which correspond to the TTY. Any of these may be
redefined by the user, or more added, simply by changing the
appropriate entries in $LUNTB and adding more drivers. The
runtime system uses LUN 3 for errors and other user
communication. Therefore, LUN 3 should correspond to the
operator console. The initial structure of $LUNTB is shown
in the 1listings following this appendix.

The device drivers also contain local dispatch tables. Note
that $LUNTB contains one address for each device, yet there
are really seven possible operations per device:

1) Formatted Read
2) Formatted Write
3) Binary Read

4) Binary Write

5) Rewind

6) Backspace

7) Endfile

Each device driver contains up to seven routines. The
starting addresses of each of these seven routines are
placed at the beginning of the driver, in the exact order
listed above. The entry in $LUNTB then points to this local
table, and the runtime system indexes into it to get the
address of the appropriate routine to handle the requested
I/0 operation.

The following conventions apply to the individual 1I/0
routines:
1. Location $BF contains the data buffer address for

READs and WRITEs.

2. For a WRITE, the number of bytes to write 1is in
location $BL.

3. For a READ, the number of bytes read should be
returned in $BL.

FORTRAN-80 Reference Manual Page 101

4, Al} I/0 operations set the condition codes before
exit to indicate an error condition, end-of-file
condition, or normal return: ‘

a) C¥Y=1, Z=don't care - I/0 error
b) CY=0, Z=0 - end-of-file encountered
c) CY=0, Z=1 - normal return

The runtime system checks the condition codes after
calling the driver. If they indicate a non-normal
condition, control is passed to the label specified
by "ERR=" or "END=" or, if no label is specified, a
fatal error results.

5. $IOERR is a global routine which prints an "ILLEGAL
I/O0 OPERATION" message (non-fatal). This routine
may be wused if there are some operations not
allowed on a particular device (i.e. Binary I/0 on
a TTY).

NOTE

The I/0 buffer has a fixed maximum length
of 132 bytes wunless it 1is changed at
installation time. If a driver allows an
input operation to write past the end of
the buffer, essential runtime variables may
be affected. The consequences are
unpredictable.

The listings following this appendix contain an example
driver for a TTY. REWIND, BACKSPACE, and ENDFILE are
implemented as No-Ops and Binary I/0 as an error. This is
the TTY driver provided with the runtime package.

S aEmeaers

MAC80 1.9 PAGE 1

gg%gg ; TTY I/0 DRIVER
00300 EXT SIOERR, $SBL, SBF, SERR, STTYIN , STTYOT
00400 IRECER EQU 822 ' ;INPUT RECORD TOO fONG
. 00509 ENTRY SDRV3
pg13 00609 SDRV3: DW DRV3FR ;FORMATTED READ
2042 . 287080 DW DRV3FW ;FORMATTED WRITE
0010 ' 00807 DW DRV3BR ;BINARY READ
001g 00900 DW DRV3BW ;BINARY WRITE
000E ' 21000 DW DRV3RE sREWIND
000E 01108 DW DRV3BA ;BACKSPACE
) 81200 _ DW DRV3EN ;ENDFILE
AF 01308 DRV3EN: XRA A THESE OPERATIONS ARE
21200 :NO-OPS FOR TTY
@1500 DRV3RE BEQU DRV3EN
c9 %g%g DRV3BA EQU DRV3EN
C3 0era * 21800 DRV3BW: JMP SIOERR ;ILLEGAL OPERATIONS
41900 : (PRINT ERROR AND RETURN)
02900 DRV3BR BQU DRV3BW
AF 02100 DRV3FR: XRA A ;READ
32 0000 * 02200 STA BL :7ERO BUFFER LENGTH
CD 4000 * 22398 DRV3l: CALL YIN :INPUT A CHAR
E6 7F 02100 ANT 177 ;AND OFF PARITY
FE @A _ 02500 CPI 19 :TGNORE LINE FEEDS
CA 0017 * 02600 Jz DRV31
F5 @27¢0 PUSH PSW ;SAVE IT
2A 0@15 * 02800 LALD SBL +GET CHAR POSIT IN BUFFER
26 00 02900 MVI H,0 ONLY 1 BYTE
EB 03000 XCHG
20 0008 * 03100 LHLD SBF :GET BUFFER ADDR
19 03200 DAD D :ADD OFFSET
Fl 03300 POP PSW :GET CHAR
77 031400 MOV M,A :PUT IT IN BUFFER
13 83500 INX D s INCREMENT SBL
EB 03600 XCHG ,
22 00923 * 03700 SHLD S$BL sSAVE IT
FE @D 03800 CPI 015 :CR?
8 03900 RZ + YES~—DONE
7D 24000 MOV AL : SBL
FE 80 04100 CPI 128 :MAX IS DECIMAL 128
DA 2017 ! 942008 DRV31 +GET NEXT CHAR
CD 0009 * 04300 CALL SERR
12 04400 DB IRECER ;INPUT RECORD TOO LONG
AF 34500 XRA A ;CLEAR FLAGS
c9 04600 _ RET
3A 0031 * #4708 DRV3FW: LDA $BL sBUFFER LENGTH
B7 04800 ORA A

T o i B b

~J [
3>\om.z>w’n%3§\om.m—'mg\o\1.bwr—'mow> ~Jon

oo

SRS EREEEGERE R EE RS
~I~I~1-JON

[STSTSTS S LG s celos TosTasias Tas fus Tos fofas T Tasas Tos fusTosfus ToN]

Q7B

SIOERR
STTYIN
DRV3FR
DRV3RE
DR3FW2

MAC88 1.0
27 §B29 *

2D
CD 0008 *

2B

CA 9979 '
31

C2 0064 '
ac

CD @B4F *

C3 0079 '

3E 0A

CD P@5F *
29

CA 0979 !
30

C2 @079 '

3E @A
CD 0067 *

CD 90077 *

C3 007B '

DR3FW1

=
2

SeASESERERESSSSSS RSO anEEanEESS®
OO ~I~]~)~J~I~I~I~1~]I~ IOy ooyyovooovirigtiinin e
NSO 00 ~ JOWUTE (WSO 00 ~ I ULE W IR0 0 ~ IO UTE W N =IO
[STSTISIS IS O TGS Tas o EoS TS T TS TS Tas e Lo o T [TanTas fav Ius Tus T B LaosTas o Tas fas o
[STST SIS IS IS TMISES IS IS TS IS TSI IS IS T s o s s TusiosicsTus T fas Tas fosTus oS

PAGE

0043*
0080*
042"
PROE"
po64"

DR3FW1:

DR3FW2:
DRV32:

SBF

DRV3BR
DRV3EN
DRV32

DR3FW2
lgl

DR3FW2
A, 10
STTYOT
gsw

PSW
AM

H
STTYOT
PSW

A
DRV32

gERR
DRV 3
DRV3BW
DRV31

;EMPTY BUFFER
sBUFFER ADDRESS
;DECREMENT LENGTH
:SAVE IT

:CR
;OUTPUT IT
:GET FIRST CHAR IN BUFFER

;NO LINE FEEDS

;NOT FORM FEED
; FORM FEED
;OUTPUT IT

;LE

;GET CHAR BACK

:NO MORE LINE FEEDS
ng MORE LINE FEEDS

’

;GET LENGTH BACK
; INCREMENT PTR

;SAVE CHAR COUNT
;GET NEXT CHAR

; INCREMENT PTR
;OUTPUT CHAR
;GET COUNT
;DECREMENT IT
;ONE MORE TIME

0@3D*
0000"
0910
p017'

MAC80 1.0 PAGE

0001
6001

000D

06000

0000

0000 28
0001 0000
0003

0903

0003

0003

0003 0000
6005

0065 0001
0007

0007 0005
00069

00069

S|

009
209 0007
008

4098
2008
9008
gogB @000
908D B09B
200F @0@D
2011 Q00F
@813 0011
2015
90815
MACS80
PT 2031
SDRV3 00@9*

[I I oo EavIas Tev TS o]
[STSTS Lo T T Tas TS Tas Tas Tos]
O WNIN NN NN -
SQJERDRQRQBWWNHED
(SIS IS IS TSRS IS TS L TS T TS T

20

=2

% % % F *

[SISIalesd
LW LW LWLIN N NN NN N NN N =

(SISO T T TS fus T Tus T

1.0 PAGE

DSK 0001
LPTDRV Q003*

1
; COMMENT *
; DRIVER ADDRESSES FOR LUN'S 1 THROUGH 18
Ler EQU 1 ;UNIT 2 IS LPT
DSK EQU 1 ;ONITS 6-18 ARE DSK
DIC EQU] :DTC COMMUNICATIONS UNIT 4
14

ENTRY SLUNTB

EXT DRV3
SLUNTB: DB 13 ;MAX LUN + 1

DW SDRV3 ;THEY ALL POINT TO SDRV3 FOR NOW

IFF LPT

DW SDRV3

ENDIF

IFT LPT

EXT LPTDRV

DW LPTDRV

ENDIF

DW SDRV3

IFF

DW $DRV3

ENDIF

IFT DIC

EXT MDRV

DW MDRV

ENDIF

DW SDRV3

IFF K

DW DRV3

DW DRV3

DW DRV3

DW DRV3

DW DRV3

ENDIF

IFT DSK

EXT DSKDRV

DW DSKDRV

DW DSKDRV

DW DSKDRV

DW DSKDRV

DW DSKDRV

ENDIF

ND
2

0000 SLUNTB 0000"

DTC
DSKDRV @@13*

FORTRAN-80 Reference Manual Page 105

APPENDIX C

Subprogram Linkages

This appendix defines a normal subprogram call as generated
by the FORTRAN compiler. It 1is included to facilitate
linkages between FORTRAN programs and those written in other
languages, such as 8080 Assembly.

A subprogram reference with no parameters generates a simple
"CALL" instruction. The corresponding subprogram should
return via a simple "RET." (CALL and RET are 8080 opcodes =
see the assembly manual or 8080 reference manual for
explanations.)

A subprogram reference with parameters results in a somewhat
more complex calling sequence. Parameters are always passed
by reference (i.e., the thing passed is actually the address
of the 1low byte of the actual argument). Therefore,
parameters always occupy two bytes each, regardless of type.

The method of passing the parameters depends upon the number
of parameters to pass:

1. If the number of parameters is less than or equal
to 3, they are passed in the registers. Parameter
1 will be in HL, 2 in DE (if present), and 3 in BC
(if present).

2. If the number of parameters is greater than 3, they
are passed as follows:

1. Parameter 1 in HL.
2. Parameter 2 in DE.

3. Parameters 3 through n in a contiguous data
block. BC will point to the low byte of this
data block (i.e., to the low byte of parameter
3).

Note that, with this scheme, the subprogram must know how
many parameters to expect in order to find them.
Conversely, the calling program is responsible for passing
the correct number of parameters. Neither the compiler nor
the runtime system checks for the correct number of
parameters.

If the subprogram expects more than 3 parameters, and needs
to transfer them to a local data area, there is a system

FORTRAN-80 Reference Manual Page 106

subroutine which will perform this transfer. This argument
transfer routine is named $AT, and 1is called with HL
pointing to the local data area, BC pointing to the third
parameter, and A containing the number of arguments to
transfer (i.e., the total number of arguments minus 2). The
subprogram is responsible for saving the first two
parameters before calling -$AT. For example, if a subprogram
expects 5 parameters, it should look like:

SUBR: SHLD P1 ; SAVE PARAMETER 1
XCHG
SHLD P2 ; SAVE PARAMETER 2
MVI A,3 ;NO. OF PARAMETERS LEFT
LXI H,P3 ; POINTER TO LOCAL AREA
CALL $AT ; TRANSFER THE OTHER 3 PARAMETERS

[Body of subprogram]

RET ; RETURN TO CALLER
P1: DS 2 ; SPACE FOR PARAMETER 1
P2: DS 2 ; SPACE FOR PARAMETER 2
P3: DS 6 ; SPACE FOR PARAMETERS 3-5

When accessing parameters in a subprogram, don't forget that
they are pointers to the actual arguments passed.

NOTE

It 1is entirely up to the
programmer to see to it that
the arguments in the <calling
program match in number, type,
and length with the parameters
expected by the subprogram.
This applies to FORTRAN
subprograms, as well as those
written in assembly language.

FORTRAN Functions (Section 9) return their values in
registers or memory depending upon the type. Logical
results are returned in (A), Integers in (HL), Reals in
memory at $AC, Double Precision in memory at $pDAC. $AC and
$DAC are the addresses of the low bytes of the mantissas.

FORTRAN-80 Reference Manual

Page 107
APPENDIX D
ASCII CHARACTER CODES

DECIMAL CHAR. DECIMAL CHAR. DECIMAL CHAR.
000 NUL 043 + 086 \Y
001 SOH 044 , 087 W
002 STX 045 - 088 X
003 ETX 046 . 089 Y
004 EOT 047 / 090 Z
005 ENQ 048 0 091 [
006 ACK 049 1 092 \
007 BEL 050 2 093]
008 BS 051 3 094 A (or 1)
009 HT 052 4 095 < (ore)
010 LF 053 5 096 !
011 VT 054 6 097 a
012 FF 055 7 098 b
013 CR 056 8 099 lo
014 SO 057 9 100 d
015 ST 058 : 101 e
016 DLE 059 ; 102 f
017 DC 1 060 < 103 g
018 DC2 061 = 104 h
019 DC3 062 > 105 i
020 DC4 063 ? 106 j
021 NAK 064 @ 107 k
022 SYN 065 A 108 1
023 ETB 066 B 109 m
024 CAN 067 C 110 n
025 EM 068 D 111 o
026 SUB 069 E 112 P
027 ESCAPE 070 F 113 q
028 FS 071 G 114 r
029 GS 072 H 115]
030 RS 073 I 116 t
031 Us 074 J 117 u
032 SPACE 075 K 118 v
033 ! 076 L 119 \
034 " 077 M 120 X
035 # 078 N 121 Yy
036 $ 079 0 122 z
037 3 080 P 123 {
038 & 081 Q 124
039 ! 082 R 125 }
040 (083 S 126 ~
041) 084 T 127 DEL
042 * 085 U

LF=Line Feed FF=Form Feed CR=Carriage Return DEL=Rubout

FORTRAN-80 Reference Manual Page 108

APPENDIX E

FORTRAN-80 Library Subroutines

The FORTRAN-80 library contains a number of subroutines that
may be referenced by the user from FORTRAN or assembly
programs. In the following descriptions, $AC refers to the
floating accumulator; $AC is the address of the low byte of
the mantissa. $AC+3 is the address of the exponent. $DAC
refers to the DOUBLE PRECISION accumulator; $DAC is the
address of the low byte of the mantissa. $pac+7 is the
address of the DOUBLE PRECISION exponent.

All arithmetic routines (addition, subtraction,
multiplication, division, exponentiation) adhere to the
following calling conventions.

1. Argument 1 is passed in the registers:
Integer in [HL]
Real in $AC
Double in $DAC

2. Argument 2 is passed either in registers, or in
memory depending upon the type:

a. Integers are passed in [HL], or [DE] if
[HL] contains Argument 1.

b. Real and Double Precision values are
passed in memory pointed to by [HL].
([HL] points to the low byte of the
mantissa.)

FORTRAN-80 Reference Manual Page 109

The following arithmetic routines are contained in the

Library:

Function Name Argument 1 Type Argument 2 Type
Addition $AA Real Integer
$AB Real Real
$AQ Double Integer
$AR Double Real
$AU Double Double
Division $D9 Integer Integer
$DA Real Integer
$DB Real Real
$DQ Double Integer
$DR Double Real
$DU Double Double
Exponentiation $E9 Integer Integer
$EA Real Integer
$EB Real Real
$EQ Double Integer
$ER Double Real
$EU Double Double
Multiplication $M9 Integer Integer
$MA Real Integer
$MB Real Real
$MQ Double Integer
$MR Double Real
$MU Double Double
Subtraction $sa Real Integer
$sSB Real Real
$SQ Double Integer
$SR Double Real
$su Double Double

FORTRAN-80 Reference Manual Page 110

Additional Library routines are provided for converting
between value types. Arguments are always passed to and
returned by these conversion routines in the appropriate
registers:

Logical in [A]

Integer in [HL]

Real in $AC

Double in $DAC

Name Function

$ca Integer to Real
$CC Integer to Double
$CH Real to Integer
$CJ Real to Logical
$CK Real to Double
$CX Double to Integer
$CY Double to Real

$C2z Double to Logical

FORTRAN-80 Reference Manual

Arithmetic Expression

Arithmetic IF . . .

Arithmetic Operators .

Array L] L L 2 L] L 4 L] L]

Array Declarator . .
Array Element . . .

ASCII Character Codes

ASSIGN * L] L] [] ® * L]
Assigned GOTO . . .

BACKSPACE .« « o «
BLOCK DATA . .

CALL & « o o o o
Character Set .
Characteristic .
Comment Line . .
COMMON « o o o o
Computed GOTO .
Constant . . « .
Continuation . .
CONTINUE
Control Statemen

ts

DATA &« ¢ o o ¢ o & &«
Data Representation
Data Storage . . .

DECODE . ¢« « « o
DIMENSION . . .
Disk Files . . .
DO & 4 o o o o @
DO Implied List

Double precision
Dummy . « « o o«

* L] L] ® L] L] L]
L] L] L] L] L] L] * L]

ENCODE . . .
END
END Line . .
ENDFILE o o
EQUIVALENCE
Executable .
Expression .
Extended Range

EXTERNAL . . .

External Functi

L] -
- -
L] .
L] .
- .
ons

Field Descriptors .
FORMAT o+ ¢ o o o o o
Formatted READ . . &

. . L] L]

[) [] [] [] . L[] * L] [] * L[] L[] L[] L] . . [] [[] [] L4 L] L] * L]

L] L * ® L] L] L] L] * L] L L] . * L] . * L] L) [] L] * * * []

INDEX

L] L L] L] L] L] L] L L] L)

[] [] [] [] L) [] [] * [. [. . L . [) . .] [] [2 L [] L] [

25-26,
44, 47,
8

14, 20,
56, 79,
20

14, 20,
104

44, 46
44-45

47
49

34-35,
89-90,

37-38,
94-95
39

27, 32,

60

34, 37, 92, 96

44, 53, 92
- ,

23

9

34, 37,
44-45
14-15
9, 12
44, 51
44

39-41, 89,

34, 41, 96
14
21
61
20,
59
44,
63
14
91-93,

89, 91,

34, 37, 96

47-49

95

61
53,
11
60
34, 39-41,
13, 34, 44
25-26, 31-32
50
34,
87

89, 92, 96

89, 91,

37, 90, 93

65
55-57,
54

65’ 69’ 71_75’

91,

96

40_41 ’

96

77-80

Formatted WRITE . . . &
FUNCTION . o ¢ o o o« o o

GOTO L] . L] . - L] - L] L] L]

Hexadecimal ., . « « o &
Hollerith . +« & ¢ o o

I/O v ¢ o o
I/0 List . . .
IF - L] [] L] . []
Index o« « o« &«
Initial Line .
INP e o o s o

c

L L] . * L) L] L]

Integer . .
Intrinsic Functio

ions
Label . ¢ ¢« o o o &
Library Function . .
Library Subroutines
Line Format . . .
List Item . . .« &
Literal . . « « &
Logical . . « « &
Logical Expression
Logical IF . . .+ &
Logical Operator .
Logical Unit Number
IUN & o o o o o o o

MantisSsa ¢« o« « o o s o o

Nested « ¢ ¢ ¢ ¢ o o o o
Non-executable . « « « .
Numeric Conversions . .

Operand . « o o o o o &
Operator . « o« o« o o o &
OUT L] L d * L] * L] L] - L] L]

PAUSE .
PEEK . .
POKE . .
PROGRAM

. . » L]
L] L] . L]
L4 L . .
. L[] L L]
L . * .
. L) L L4
L[] . L] L]

Range .« « « o s o o @
READ o o o o o o o s @
Real « v ¢ o ¢ o ¢ o &
Relational Expression
Relational Operator .
Replacement Statement
RETURN . & o« ¢ o ¢ o
REWIND o « o o o o o o

Scale Factor « « + =« s« o
Specification Statement
Statement Function . . .

* L] L *

» L] * * . L] . L

57

34, 37, 82, 88-95
44, 49

8, 21, 31, 42

9, 15, 20-21, 31, 42, 56,
71-72, 90

54, 100

62

44, 47

49

11

85

14, 19, 23

86

9, 12, 44-45, 48
82, 84

105

9

62

9, 20-21, 31, 42, 72, 90
14, 19, 23, 73
27, 30, 48

a4, 47, 49

28

54, 58, 100

54, 58, 100

23

51

13, 34

66

25

25

85

44, 49, 52

85

85

34, 83, 92

49

56, 58, 65, 74, 78-80
14, 19, 23

27

27

32, 48

44, 49, 53, 89, 92-94
60

74-75

34

34, 82-83

STOP &« ¢« o « o o
Storage . . .
Storage Format .
Storage Unit . .
Subprogram ., . .
SUBROUTINE . , .
Subscript . . &

s

L
L
L]
i

Subscript Expression

Type - L] - L] L ® L
Type Statement . .

Unconditional GOTO
Unformatted I/0 .

Variable « « « « &

WRITE L] - . L] L L

44, 49, 52

35

14

21, 23, 39

37, 53, 82, 88-96, 102
34, 37, 53, 82, 89-94
20, 27

21, 27

96
35

44
58

14, 19, 32, 38, 90
57-58, 65, 74, 78-80

