tuse an iterative solution for channel dynamics - granular-channel-hydro - subglacial hydrology model for sedimentary channels
git clone git://src.adamsgaard.dk/granular-channel-hydro
Log
Files
Refs
README
LICENSE
---
commit 97a5cad4554cc24b354750d75d98d7e661bab5ca
parent 709930aac7cbe7585ab6f956aed5f370b41d7166
Author: Anders Damsgaard 
Date:   Tue, 14 Feb 2017 13:16:36 -0800

use an iterative solution for channel dynamics

Diffstat:
  M 1d-channel.py                       |      84 ++++++++++++++++++++-----------

1 file changed, 54 insertions(+), 30 deletions(-)
---
diff --git a/1d-channel.py b/1d-channel.py
t@@ -39,8 +39,8 @@ theta = 30.    # Angle of internal friction in sediment [deg]
 
 # Water source term [m/s]
 # m_dot = 7.93e-11
-# m_dot = 4.5e-7
-m_dot = 4.5e-6
+m_dot = 4.5e-7
+# m_dot = 4.5e-6
 # m_dot = 5.79e-5
 # m_dot = 1.8/(1000.*365.*24.*60.*60.)  # Whillan's melt rate from Joughin 2004
 
t@@ -198,14 +198,14 @@ def channel_deposition_rate(tau, c_bar, d_dot, Ns):
 
 def channel_growth_rate(e_dot, d_dot, porosity, W):
     # Damsgaard et al, in prep
-    return (e_dot - d_dot)/porosity*W
+    return (e_dot - d_dot)*W
 
 
-def update_channel_size_with_limit(S, dSdt, dt, N):
+def update_channel_size_with_limit(S, S_old, dSdt, dt, N):
     # Damsgaard et al, in prep
-    S_max = numpy.maximum((c_1*numpy.maximum(N, 0.)/1000. + c_2) *
+    S_max = numpy.maximum((c_1*numpy.maximum(N, 0.)/1000. + c_2)**2./4. *
                           numpy.tan(numpy.deg2rad(theta)), S_min)
-    S = numpy.maximum(numpy.minimum(S + dSdt*dt, S_max), S_min)
+    S = numpy.maximum(numpy.minimum(S_old + dSdt*dt, S_max), S_min)
     W = S/numpy.tan(numpy.deg2rad(theta))  # Assume no channel floor wedge
     return S, W, S_max
 
t@@ -285,16 +285,19 @@ def plot_state(step, time, S_, S_max_, title=True):
 
     ax_Pa = plt.subplot(2, 1, 1)  # axis with Pascals as y-axis unit
     #ax_Pa.plot(s_c/1000., P_c/1000., '--r', label='$P_c$')
-    ax_Pa.plot(s/1000., N/1000., '--r', label='$N$')
+    #ax_Pa.plot(s/1000., N/1000., '--r', label='$N$')
+    ax_Pa.plot(s/1000., H*rho_i*g/1e6, '--r', label='$P_i$')
+    ax_Pa.plot(s_c/1000., P_c/1e6, ':b', label='$P_c$')
 
     ax_m3s = ax_Pa.twinx()  # axis with m3/s as y-axis unit
-    ax_m3s.plot(s_c/1000., Q, '-b', label='$Q$')
+    ax_m3s.plot(s_c/1000., Q, '-k', label='$Q$')
 
     if title:
         plt.title('Day: {:.3}'.format(time/(60.*60.*24.)))
     ax_Pa.legend(loc=2)
     ax_m3s.legend(loc=3)
-    ax_Pa.set_ylabel('[kPa]')
+    #ax_Pa.set_ylabel('[kPa]')
+    ax_Pa.set_ylabel('[MPa]')
     ax_m3s.set_ylabel('[m$^3$/s]')
 
     ax_m2 = plt.subplot(2, 1, 2, sharex=ax_Pa)
t@@ -372,35 +375,56 @@ while time <= t_end:
 
     print_status_to_stdout(time, dt)
 
-    # Find average shear stress from water flux for each channel segment
-    tau = channel_shear_stress(Q, S)
+    it = 0
+    max_res = 1e9  # arbitrary large value
+
+    S_old = S.copy()
+    # Iteratively find solution, do not settle for less iterations than the
+    # number of nodes
+    while max_res > tol_Q or it < Ns:
+
+        S_prev_it = S.copy()
+
+        # Find average shear stress from water flux for each channel segment
+        tau = channel_shear_stress(Q, S)
+
+        # Find sediment erosion and deposition rates for each channel segment
+        e_dot = channel_erosion_rate(tau)
+        d_dot, c_bar = channel_deposition_rate(tau, c_bar, d_dot, Ns)
 
-    # Find sediment erosion and deposition rates for each channel segment
-    e_dot = channel_erosion_rate(tau)
-    d_dot, c_bar = channel_deposition_rate(tau, c_bar, d_dot, Ns)
+        # Determine change in channel size for each channel segment
+        dSdt = channel_growth_rate(e_dot, d_dot, porosity, W)
 
-    # Determine change in channel size for each channel segment
-    dSdt = channel_growth_rate(e_dot, d_dot, porosity, W)
+        # Update channel cross-sectional area and width according to growth rate
+        # and size limit for each channel segment
+        S, W, S_max = update_channel_size_with_limit(S, S_old, dSdt, dt, N_c)
 
-    # Update channel cross-sectional area and width according to growth rate
-    # and size limit for each channel segment
-    S, W, S_max = update_channel_size_with_limit(S, dSdt, dt, N_c)
+        # Find new water fluxes consistent with mass conservation and local
+        # meltwater production (m_dot)
+        Q = flux_solver(m_dot, ds)
 
-    # Find new water fluxes consistent with mass conservation and local
-    # meltwater production (m_dot)
-    Q = flux_solver(m_dot, ds)
+        # Find the corresponding sediment flux
+        # Q_b = bedload_sediment_flux(
+        Q_s = suspended_sediment_flux(c_bar, Q, S)
 
-    # Find the corresponding sediment flux
-    # Q_b = bedload_sediment_flux(
-    Q_s = suspended_sediment_flux(c_bar, Q, S)
+        # Find new water pressures consistent with the flow law
+        P_c = pressure_solver(psi, F, Q, S)
 
-    # Find new water pressures consistent with the flow law
-    P_c = pressure_solver(psi, F, Q, S)
+        # Find new effective pressure in channel segments
+        N_c = rho_i*g*H_c - P_c
 
-    # Find new effective pressure in channel segments
-    N_c = rho_i*g*H_c - P_c
+        # Find new maximum normalized residual value
+        max_res = numpy.max(numpy.abs((S - S_prev_it)/(S + 1e-16)))
+        if output_convergence:
+            print('it = {}: max_res = {}'.format(it, max_res))
+
+        # import ipdb; ipdb.set_trace()
+        if it >= max_iter:
+            raise Exception('t = {}, step = {}:'.format(time, step) +
+                            'Iterative solution not found for Q')
+        it += 1
 
-    if step + 1 % 10 == 0:
+    if step % 10 == 0:
         plot_state(step, time, S, S_max)
 
     # import ipdb; ipdb.set_trace()