tworking example - granular-channel-hydro - subglacial hydrology model for sedimentary channels
git clone git://src.adamsgaard.dk/granular-channel-hydro
Log
Files
Refs
README
LICENSE
---
commit 709930aac7cbe7585ab6f956aed5f370b41d7166
parent 464ba42ad1e569c9c86c0b29e272ad9555b32feb
Author: Anders Damsgaard Christensen 
Date:   Thu,  2 Feb 2017 21:47:16 -0800

working example

Diffstat:
  M 1d-channel.py                       |      60 +++++++++++++++++--------------

1 file changed, 33 insertions(+), 27 deletions(-)
---
diff --git a/1d-channel.py b/1d-channel.py
t@@ -23,7 +23,7 @@ import sys
 # # Model parameters
 Ns = 25                # Number of nodes [-]
 Ls = 100e3             # Model length [m]
-t_end = 24.*60.*60.*365  # Total simulation time [s]
+t_end = 24.*60.*60.*30.  # Total simulation time [s]
 tol_Q = 1e-3       # Tolerance criteria for the normalized max. residual for Q
 tol_P_c = 1e-3     # Tolerance criteria for the normalized max residual for P_c
 max_iter = 1e2*Ns  # Maximum number of solver iterations before failure
t@@ -39,13 +39,15 @@ theta = 30.    # Angle of internal friction in sediment [deg]
 
 # Water source term [m/s]
 # m_dot = 7.93e-11
-m_dot = 4.5e-7
+# m_dot = 4.5e-7
+m_dot = 4.5e-6
 # m_dot = 5.79e-5
+# m_dot = 1.8/(1000.*365.*24.*60.*60.)  # Whillan's melt rate from Joughin 2004
 
 # Walder and Fowler 1994 sediment transport parameters
-K_e = 0.1   # Erosion constant [-], disabled when 0.0
+K_e = 6.0   # Erosion constant [-], disabled when 0.0
 # K_d = 6.0   # Deposition constant [-], disabled when 0.0
-K_d = 0.1   # Deposition constant [-], disabled when 0.0
+K_d = K_e   # Deposition constant [-], disabled when 0.0
 alpha = 1e5  # Geometric correction factor (Carter et al 2017)
 # D50 = 1e-3 # Median grain size [m]
 # tau_c = 0.5*g*(rho_s - rho_i)*D50  # Critical shear stress for transport
t@@ -74,9 +76,10 @@ s = numpy.linspace(0., Ls, Ns)
 ds = s[1:] - s[:-1]
 
 # Ice thickness and bed topography
-H = 6.*(numpy.sqrt(Ls - s + 5e3) - numpy.sqrt(5e3)) + 1.0  # max: 1.5 km
-# H = 1.*(numpy.sqrt(Ls - s + 5e3) - numpy.sqrt(5e3)) + 1.0  # max: 255 m
-# H = 0.6*(numpy.sqrt(Ls - s + 5e3) - numpy.sqrt(5e3)) + 1.0
+# H = 6.*(numpy.sqrt(Ls - s + 5e3) - numpy.sqrt(5e3)) + 1.0  # glacier
+slope = 0.1  # Surface slope [%]
+H = 1000. + -slope/100.*s
+
 b = numpy.zeros_like(H)
 
 N = H*0.1*rho_i*g            # Initial effective stress [Pa]
t@@ -200,10 +203,9 @@ def channel_growth_rate(e_dot, d_dot, porosity, W):
 
 def update_channel_size_with_limit(S, dSdt, dt, N):
     # Damsgaard et al, in prep
-    S_max = ((c_1*N.clip(min=0.)/1000. + c_2) *
-             numpy.tan(numpy.deg2rad(theta))).clip(min=S_min)
-    S_max[:] = 1000.
-    S = numpy.minimum(S + dSdt*dt, S_max).clip(min=S_min)
+    S_max = numpy.maximum((c_1*numpy.maximum(N, 0.)/1000. + c_2) *
+                          numpy.tan(numpy.deg2rad(theta)), S_min)
+    S = numpy.maximum(numpy.minimum(S + dSdt*dt, S_max), S_min)
     W = S/numpy.tan(numpy.deg2rad(theta))  # Assume no channel floor wedge
     return S, W, S_max
 
t@@ -276,39 +278,43 @@ def pressure_solver(psi, F, Q, S):
     return P_c
 
 
-def plot_state(step, time):
+def plot_state(step, time, S_, S_max_, title=True):
     # Plot parameters along profile
     fig = plt.gcf()
-    fig.set_size_inches(3.3, 3.3)
+    fig.set_size_inches(3.3*1.1, 3.3*1.1)
 
     ax_Pa = plt.subplot(2, 1, 1)  # axis with Pascals as y-axis unit
-    ax_Pa.plot(s_c/1000., P_c/1000., '--r', label='$P_c$')
+    #ax_Pa.plot(s_c/1000., P_c/1000., '--r', label='$P_c$')
+    ax_Pa.plot(s/1000., N/1000., '--r', label='$N$')
 
     ax_m3s = ax_Pa.twinx()  # axis with m3/s as y-axis unit
     ax_m3s.plot(s_c/1000., Q, '-b', label='$Q$')
 
-    plt.title('Day: {:.3}'.format(time/(60.*60.*24.)))
+    if title:
+        plt.title('Day: {:.3}'.format(time/(60.*60.*24.)))
     ax_Pa.legend(loc=2)
-    ax_m3s.legend(loc=1)
+    ax_m3s.legend(loc=3)
     ax_Pa.set_ylabel('[kPa]')
     ax_m3s.set_ylabel('[m$^3$/s]')
 
-    ax_m = plt.subplot(2, 1, 2, sharex=ax_Pa)
-    ax_m.plot(s_c/1000., S, '-k', label='$S$')
-    ax_m.plot(s_c/1000., S_max, '--k', label='$S_{max}$')
+    ax_m2 = plt.subplot(2, 1, 2, sharex=ax_Pa)
+    ax_m2.plot(s_c/1000., S_, '-k', label='$S$')
+    ax_m2.plot(s_c/1000., S_max_, '--', color='#666666', label='$S_{max}$')
     # ax_m.semilogy(s_c/1000., S, '-k', label='$S$')
     # ax_m.semilogy(s_c/1000., S_max, '--k', label='$S_{max}$')
 
-    ax_ms = ax_m.twinx()
+    ax_ms = ax_m2.twinx()
     ax_ms.plot(s_c/1000., e_dot, '--r', label='$\dot{e}$')
     ax_ms.plot(s_c/1000., d_dot, ':b', label='$\dot{d}$')
 
-    ax_m.legend(loc=2)
-    ax_ms.legend(loc=1)
-    ax_m.set_xlabel('$s$ [km]')
-    ax_m.set_ylabel('[m]')
+    ax_m2.legend(loc=2)
+    ax_ms.legend(loc=3)
+    ax_m2.set_xlabel('$s$ [km]')
+    ax_m2.set_ylabel('[m$^2$]')
     ax_ms.set_ylabel('[m/s]')
 
+    ax_Pa.set_xlim([s.min()/1000., s.max()/1000.])
+
     plt.setp(ax_Pa.get_xticklabels(), visible=False)
     plt.tight_layout()
     if step == -1:
t@@ -352,7 +358,7 @@ psi = -rho_i*g*gradient(H, s) - (rho_w - rho_i)*g*gradient(b, s)
 
 # Prepare figure object for plotting during the simulation
 fig = plt.figure('channel')
-plot_state(-1, 0.0)
+plot_state(-1, 0.0, S, S_max)
 
 
 # # Time loop
t@@ -394,8 +400,8 @@ while time <= t_end:
     # Find new effective pressure in channel segments
     N_c = rho_i*g*H_c - P_c
 
-    if step % 10 == 0:
-        plot_state(step, time)
+    if step + 1 % 10 == 0:
+        plot_state(step, time, S, S_max)
 
     # import ipdb; ipdb.set_trace()
     # if step > 0: break