timplement Meyer-Peter and Muller 1948 relationship for sediment transport - granular-channel-hydro - subglacial hydrology model for sedimentary channels
git clone git://src.adamsgaard.dk/granular-channel-hydro
Log
Files
Refs
README
LICENSE
---
commit 6afcc6591b23c355ae2cae50953afbba1de9e0d6
parent 4bb1e340b01ce37312e12942c05715d30529e2b0
Author: Anders Damsgaard 
Date:   Mon, 15 May 2017 16:11:43 -0400

implement Meyer-Peter and Muller 1948 relationship for sediment transport

Diffstat:
  M 1d-channel.py                       |     141 ++++++++++---------------------

1 file changed, 43 insertions(+), 98 deletions(-)
---
diff --git a/1d-channel.py b/1d-channel.py
t@@ -13,7 +13,7 @@
 # or CUDA.
 #
 # License: Gnu Public License v3
-# Author: Anders Damsgaard, adamsgaard@ucsd.edu, https://adamsgaard.dk
+# Author: Anders Damsgaard, andersd@princeton.edu, https://adamsgaard.dk
 
 import numpy
 import matplotlib.pyplot as plt
t@@ -22,9 +22,10 @@ import sys
 
 # # Model parameters
 Ns = 25              # Number of nodes [-]
-Ls = 10e3            # Model length [m]
+Ls = 1e3             # Model length [m]
 total_days = 60.     # Total simulation time [d]
 t_end = 24.*60.*60.*total_days  # Total simulation time [s]
+tol_S = 1e-3         # Tolerance criteria for the norm. max. residual for Q
 tol_Q = 1e-3         # Tolerance criteria for the norm. max. residual for Q
 tol_N_c = 1e-3       # Tolerance criteria for the norm. max. residual for N_c
 max_iter = 1e2*Ns    # Maximum number of solver iterations before failure
t@@ -32,7 +33,9 @@ print_output_convergence = False      # Display convergence in nested loops
 print_output_convergence_main = True  # Display convergence in main loop
 safety = 0.01        # Safety factor ]0;1] for adaptive timestepping
 plot_interval = 20   # Time steps between plots
+plot_during_iterations = False        # Generate plots for intermediate results
 speedup_factor = 1.  # Speed up channel growth to reach steady state faster
+# relax = 0.05     # Relaxation parameter for effective pressure ]0;1]
 
 # Physical parameters
 rho_w = 1000.        # Water density [kg/m^3]
t@@ -40,15 +43,12 @@ rho_i = 910.         # Ice density [kg/m^3]
 rho_s = 2600.        # Sediment density [kg/m^3]
 g = 9.8              # Gravitational acceleration [m/s^2]
 theta = 30.          # Angle of internal friction in sediment [deg]
-sand_fraction = 0.5  # Initial volumetric fraction of sand relative to gravel
-D_g = 5e-3           # Mean grain size in gravel fraction (> 2 mm) [m]
-D_s = 5e-4           # Mean grain size in sand fraction (<= 2 mm) [m]
-#D_g = 1
-#D_g = 0.1
+D = 1.15e-3          # Mean grain size [m], Lajeuness et al 2010, series 1
+tau_c = 0.016        # Critical Shields stress, Lajeunesse et al 2010, series 1
 
 # Boundary conditions
 P_terminus = 0.      # Water pressure at terminus [Pa]
-m_dot = 1e-6         # Water source term [m/s]
+m_dot = numpy.linspace(0., 1e-5, Ns-1)  # Water source term [m/s]
 Q_upstream = 1e-5    # Water influx upstream (must be larger than 0) [m^3/s]
 
 # Channel hydraulic properties
t@@ -61,8 +61,6 @@ c_2 = 4.60           # [m]
 
 # Minimum channel size [m^2], must be bigger than 0
 S_min = 1e-2
-# S_min = 1e-1
-# S_min = 1.
 
 
 # # Initialize model arrays
t@@ -81,7 +79,7 @@ b = numpy.zeros_like(H)
 N = H*0.1*rho_i*g  # Initial effective stress [Pa]
 
 # Initialize arrays for channel segments between nodes
-S = numpy.ones(len(s) - 1)*S_min  # Cross-sect. area of channel segments[m^2]
+S = numpy.ones(len(s) - 1)*0.1   # Cross-sect. area of channel segments [m^2]
 S_max = numpy.zeros_like(S)  # Max. channel size [m^2]
 dSdt = numpy.zeros_like(S)   # Transient in channel cross-sect. area [m^2/s]
 W = S/numpy.tan(numpy.deg2rad(theta))  # Assuming no channel floor wedge
t@@ -92,10 +90,6 @@ P_c = numpy.zeros_like(S)    # Water pressure in channel segments [Pa]
 tau = numpy.zeros_like(S)    # Avg. shear stress from current [Pa]
 porosity = numpy.ones_like(S)*0.3  # Sediment porosity [-]
 res = numpy.zeros_like(S)   # Solution residual during solver iterations
-Q_t = numpy.zeros_like(S)   # Total sediment flux [m3/s]
-Q_s = numpy.zeros_like(S)   # Sediment flux where D <= 2 mm [m3/s]
-Q_g = numpy.zeros_like(S)   # Sediment flux where D > 2 mm [m3/s]
-f_s = numpy.ones_like(S)*sand_fraction  # Initial sediment fraction of sand [-]
 
 
 # # Helper functions
t@@ -123,75 +117,23 @@ def channel_shear_stress(Q, S):
     return 1./8.*friction_factor*rho_w*u_bar**2.
 
 
-def channel_sediment_flux_sand(tau, W, f_s, D_s):
-    # Parker 1979, Wilcock 1997, 2001, Egholm 2013
+def channel_sediment_flux(tau, W):
+    # Meyer-Peter and Mueller 1948
     # tau: Shear stress by water flow
     # W: Channel width
-    # f_s: Sand volume fraction
-    # D_s: Mean sand fraction grain size
-
-    # Piecewise linear functions for nondimensional critical shear stresses
-    # dependent on sand fraction from Gasparini et al 1999 of Wilcock 1997
-    # data.
-    ref_shear_stress = numpy.ones_like(f_s)*0.04
-    ref_shear_stress[numpy.nonzero(f_s <= 0.1)] = 0.88
-    I = numpy.nonzero((0.1 < f_s) & (f_s <= 0.4))
-    ref_shear_stress[I] = 0.88 - 2.8*(f_s[I] - 0.1)
-
-    # Non-dimensionalize shear stress
-    shields_stress = tau/((rho_s - rho_w)*g*D_s)
-
-    # import ipdb; ipdb.set_trace()
-    Q_c = 11.2*f_s*W/((rho_s - rho_w)/rho_w*g) \
-        * (tau/rho_w)**1.5 \
-        * numpy.maximum(0.0,
-                    (1.0 - 0.846*numpy.sqrt(ref_shear_stress/shields_stress))
-                    )**4.5
-
-    return Q_c
-
-
-def channel_sediment_flux_gravel(tau, W, f_g, D_g):
-    # Parker 1979, Wilcock 1997, 2001, Egholm 2013
-    # tau: Shear stress by water flow
-    # W: Channel width
-    # f_g: Gravel volume fraction
-    # D_g: Mean gravel fraction grain size
-
-    # Piecewise linear functions for nondimensional critical shear stresses
-    # dependent on sand fraction from Gasparini et al 1999 of Wilcock 1997
-    # data.
-    ref_shear_stress = numpy.ones_like(f_g)*0.01
-    ref_shear_stress[numpy.nonzero(f_g <= 0.1)] = 0.04
-    I = numpy.nonzero((0.1 < f_g) & (f_g <= 0.4))
-    ref_shear_stress[I] = 0.04 - 0.1*(f_g[I] - 0.1)
 
     # Non-dimensionalize shear stress
-    shields_stress = tau/((rho_s - rho_w)*g*D_g)
-
-    # From Wilcock 2001, eq. 3
-    Q_g = 11.2*f_g*W/((rho_s - rho_w)/rho_w*g) \
-        * (tau/rho_w)**1.5 \
-        * numpy.maximum(0.0,
-                    (1.0 - 0.846*ref_shear_stress/shields_stress))**4.5
-
-    # From Wilcock 2001, eq. 4
-    I = numpy.nonzero(ref_shear_stress/shields_stress < 1.)
-    Q_g[I] = f_g[I]*W[I]/((rho_s - rho_w)/rho_w*g) \
-        * (tau[I]/rho_w)**1.5 \
-        * 0.0025*(shields_stress[I]/ref_shear_stress[I])**14.2
+    shields_stress = tau/((rho_s - rho_w)*g*D)
 
-    return Q_g
+    stress_excess = shields_stress - tau_c
+    stress_excess[stress_excess < 0.] = 0.
+    return 8.*stress_excess**(3./2.)*W \
+        * numpy.sqrt((rho_s - rho_w)/rho_w*g*D**3.)
 
 
-def channel_growth_rate(e_dot, d_dot, W):
+def channel_growth_rate_sedflux(Q_s, porosity, s_c):
     # Damsgaard et al, in prep
-    return (e_dot - d_dot)*W
-
-
-def channel_growth_rate_sedflux(Q_t, porosity, s_c):
-    # Damsgaard et al, in prep
-    return 1./porosity[1:] * gradient(Q_t, s_c)
+    return 1./porosity[1:] * gradient(Q_s, s_c)
 
 
 def update_channel_size_with_limit(S, S_old, dSdt, dt, N_c):
t@@ -213,13 +155,13 @@ def flux_solver(m_dot, ds):
 
     # Iteratively find solution, do not settle for less iterations than the
     # number of nodes
-    while max_res > tol_Q or it < Ns:
+    while max_res > tol_Q:
 
         Q_old = Q.copy()
         # dQ/ds = m_dot  ->  Q_out = m*delta(s) + Q_in
         # Upwind information propagation (upwind)
         Q[0] = Q_upstream
-        Q[1:] = m_dot*ds[1:] + Q[:-1]
+        Q[1:] = m_dot[1:]*ds[1:] + Q[:-1]
         max_res = numpy.max(numpy.abs((Q - Q_old)/(Q + 1e-16)))
 
         if print_output_convergence:
t@@ -240,7 +182,7 @@ def pressure_solver(psi, f, Q, S):
 
     it = 0
     max_res = 1e9  # arbitrary large value
-    while max_res > tol_N_c or it < Ns:
+    while max_res > tol_N_c:
 
         N_c_old = N_c.copy()
 
t@@ -250,7 +192,7 @@ def pressure_solver(psi, f, Q, S):
         N_c[:-1] = N_c[1:] \
             + psi[:-1]*ds[:-1] \
             - f[:-1]*rho_w*g*Q[:-1]*numpy.abs(Q[:-1]) \
-            /(S[:-1]**(8./3.))*ds[:-1]
+            / (S[:-1]**(8./3.))*ds[:-1]
 
         max_res = numpy.max(numpy.abs((N_c - N_c_old)/(N_c + 1e-16)))
 
t@@ -263,6 +205,7 @@ def pressure_solver(psi, f, Q, S):
         it += 1
 
     return N_c
+    # return N_c_old*(1 - relax_N_c) + N_c*relax_N_c
 
 
 def plot_state(step, time, S_, S_max_, title=True):
t@@ -286,9 +229,7 @@ def plot_state(step, time, S_, S_max_, title=True):
     ax_m3s.set_ylabel('[m$^3$/s]')
 
     ax_m3s_sed = plt.subplot(3, 1, 2, sharex=ax_Pa)
-    ax_m3s_sed.plot(s_c/1000., Q_g, ':', label='$Q_{gravel}$')
-    ax_m3s_sed.plot(s_c/1000., Q_s, '-', label='$Q_{sand}$')
-    ax_m3s_sed.plot(s_c/1000., Q_t, '--', label='$Q_{total}$')
+    ax_m3s_sed.plot(s_c/1000., Q_s, '-', label='$Q_{s}$')
     ax_m3s_sed.set_ylabel('[m$^3$/s]')
     ax_m3s_sed.legend(loc=2)
 
t@@ -314,11 +255,14 @@ def plot_state(step, time, S_, S_max_, title=True):
     else:
         plt.savefig('chan-' + str(step) + '.pdf')
     plt.clf()
+    plt.close()
 
 
-def find_new_timestep(ds, Q, S):
+def find_new_timestep(ds, Q, Q_s, S):
     # Determine the timestep using the Courant-Friedrichs-Lewy condition
-    dt = safety*numpy.minimum(60.*60.*24., numpy.min(numpy.abs(ds/(Q*S))))
+    dt = safety*numpy.minimum(60.*60.*24.,
+                              numpy.min(numpy.abs(ds/(Q*S),
+                                                  ds/(Q_s*S)+1e-16)))
 
     if dt < 1.0:
         raise Exception('Error: Time step less than 1 second at step '
t@@ -334,6 +278,8 @@ def print_status_to_stdout(step, time, dt):
                      .format(time, time/(60.*60.*24.), dt))
     sys.stdout.flush()
 
+
+# Initialize remaining values before entering time loop
 s_c = avg_midpoint(s)  # Channel section midpoint coordinates [m]
 H_c = avg_midpoint(H)
 
t@@ -351,7 +297,7 @@ step = 0
 while time <= t_end:
 
     # Determine time step length from water flux
-    dt = find_new_timestep(ds, Q, S)
+    dt = find_new_timestep(ds, Q, Q_s, S)
 
     # Display current simulation status
     print_status_to_stdout(step, time, dt)
t@@ -363,10 +309,8 @@ while time <= t_end:
     max_res = 1e9
 
     S_old = S.copy()
-    # Iteratively find solution, do not settle for less iterations than the
-    # number of nodes to make sure information has had a chance to pass through
-    # the system
-    while max_res > tol_Q or it < Ns:
+    # Iteratively find solution with the Jacobi relaxation method
+    while max_res > tol_S:
 
         S_prev_it = S.copy()
 
t@@ -377,23 +321,21 @@ while time <= t_end:
         # Find average shear stress from water flux for each channel segment
         tau = channel_shear_stress(Q, S)
 
-        # Determine sediment fluxes for each size fraction
-        f_g = 1./f_s  # gravel volume fraction is reciprocal to sand
-        Q_s = channel_sediment_flux_sand(tau, W, f_s, D_s)
-        Q_g = channel_sediment_flux_gravel(tau, W, f_g, D_g)
-        Q_t = Q_s + Q_g
+        # Determine sediment flux
+        Q_s = channel_sediment_flux(tau, W)
 
         # Determine change in channel size for each channel segment.
         # Use backward differences and assume dS/dt=0 in first segment.
-        #dSdt[1:] = channel_growth_rate_sedflux(Q_t, porosity, s_c)
-        #dSdt *= speedup_factor
+        dSdt[1:] = channel_growth_rate_sedflux(Q_s, porosity, s_c)
+        # dSdt *= speedup_factor * relax
 
         # Update channel cross-sectional area and width according to growth
         # rate and size limit for each channel segment
+        # S_prev = S.copy()
         S, W, S_max, dSdt = \
             update_channel_size_with_limit(S, S_old, dSdt, dt, N_c)
+        # S = S_prev*(1.0 - relax) + S*relax
 
-        # Find hydraulic roughness
         f = channel_hydraulic_roughness(manning, S, W, theta)
 
         # Find new water pressures consistent with the flow law
t@@ -402,6 +344,9 @@ while time <= t_end:
         # Find new effective pressure in channel segments
         P_c = rho_i*g*H_c - N_c
 
+        if plot_during_iterations:
+            plot_state(step + it/1e4, time, S, S_max)
+
         # Find new maximum normalized residual value
         max_res = numpy.max(numpy.abs((S - S_prev_it)/(S + 1e-16)))
         if print_output_convergence_main: