| t@@ -76,6 +76,46 @@ if (isset($_GET['wait_id']) && !empty($_GET['wait_id'])) {
+
+ Generalized model parameter values
+
+
+ The histograms show the distribution of (a)
+ interglacial erosion rate, (b) glacial erosion rate, (c)
+ timing of last deglaciation, and (d)
+ d18Othreshold levels that provide
+ the best fit to the supplied TCN concentrations.
+ The vertical axis indicates the number of
+ simulations included in each bin out of the 10,000
+ simulations that followed the MCMC burn-in phase from each
+ MCMC walker. The solid magenta lines denote the median
+ values (second quartile), while the dashed magenta lines
+ denote the lower and upper quartiles (25th and 75th
+ percentiles, respectively).
+
+
+
+
+
+
+
+
+
+
+
+
+
Model parameter values per inversion walker |
| t@@ -210,7 +210,7 @@ for i1 = 1:M % for each model parameter
subplot(M,Nwalkers,isub)
%Nhistc=histc(Ss{iwalk}.ms(i1,:),xbins{i1});
%bar(xbins{i1},Nhistc,'histc')
- histogram(Ss{iwalk}.ms(i1,:), xbins{i1}, 'Normalization', 'probability');
+ histogram(Ss{iwalk}.ms(i1,:), xbins{i1});
if i1 == 1
title(['MCMC walker ' num2str(iwalk)])
t@@ -329,12 +329,26 @@ for i1 = 1:M % for each model parameter
for iwalker=1:Nwalkers
data = [data, Ss{iwalker}.ms(i1,:)];
end
- Nhistc=histc(data, xbins{i1});
- bar(xbins{i1},Nhistc,'histc')
+
+ hold on
+ %Nhistc=histc(data, xbins{i1});
+ %bar(xbins{i1},Nhistc,'histc')
+ histogram(data, xbins{i1});
+ % 2nd quartile = median = 50th percentile
med = median(data);
plot([med, med], get(gca,'YLim'), 'm-')
+ % 1st quartile = 25th percentile
+ prctile25 = prctile(data, 25);
+ plot([prctile25, prctile25], get(gca,'YLim'), 'm--')
+
+ % 3rd quartile = 75th percentile
+ prctile75 = prctile(data, 75);
+ plot([prctile75, prctile75], get(gca,'YLim'), 'm--')
+
+ hold off
+
if i1 == 1
xlabel('Interglacial erosion rate [mm/yr]')
text(0.02,0.98,'a', 'Units', ... |